Section 6.3

1. Let $A=\left[\begin{array}{rr}4 & -3 \\ 1 & 0\end{array}\right]$. Then A has characteristic equation $\lambda^{2}-4 \lambda+3=0$ or $(\lambda-3)(\lambda-1)=0$. Hence the eigenvalues of A are $\lambda_{1}=3$ and $\lambda_{2}=1$.
$\lambda_{1}=3$. The corresponding eigenvectors satisfy $\left(A-\lambda_{1} I_{2}\right) X=0$, or

$$
\left[\begin{array}{ll}
1 & -3 \\
1 & -3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

or equivalently $x-3 y=0$. Hence

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 y \\
y
\end{array}\right]=y\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

and we take $X_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
Similarly for $\lambda_{2}=1$ we find the eigenvector $X_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Hence if $P=\left[X_{1} \mid X_{2}\right]=\left[\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right]$, then P is non-singular and

$$
P^{-1} A P=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] .
$$

Hence

$$
A=P\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] P^{-1}
$$

and consequently

$$
\begin{aligned}
A^{n} & =P\left[\begin{array}{cc}
3^{n} & 0 \\
0 & 1^{n}
\end{array}\right] P^{-1} \\
& =\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
3^{n} & 0 \\
0 & 1^{n}
\end{array}\right] \frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
3^{n+1} & 1 \\
3^{n} & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
3^{n+1}-1 & -3^{n+1}+3 \\
3^{n}-1 & -3^{n}+3
\end{array}\right] \\
& =\frac{3^{n}-1}{2} A+\frac{3-3^{n}}{2} I_{2} .
\end{aligned}
$$

2. Let $A=\left[\begin{array}{ll}3 / 5 & 4 / 5 \\ 2 / 5 & 1 / 5\end{array}\right]$. Then we find that the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-1 / 5$, with corresponding eigenvectors

$$
X_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad \text { and } \quad X_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Then if $P=\left[X_{1} \mid X_{2}\right], P$ is non-singular and

$$
P^{-1} A P=\left[\begin{array}{cc}
1 & 0 \\
0 & -1 / 5
\end{array}\right] \quad \text { and } \quad A=P\left[\begin{array}{cc}
1 & 0 \\
0 & -1 / 5
\end{array}\right] P^{-1} .
$$

Hence

$$
\begin{aligned}
A^{n} & =P\left[\begin{array}{lr}
1 & 0 \\
0 & (-1 / 5)^{n}
\end{array}\right] P^{-1} \\
& \rightarrow P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1} \\
& =\left[\begin{array}{rr}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 / 3 & 2 / 3 \\
1 / 3 & 1 / 3
\end{array}\right] .
\end{aligned}
$$

3. The given system of differential equations is equivalent to $\dot{X}=A X$, where

$$
A=\left[\begin{array}{ll}
3 & -2 \\
5 & -4
\end{array}\right] \quad \text { and } \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The matrix $P=\left[\begin{array}{ll}2 & 1 \\ 5 & 1\end{array}\right]$ is a non-singular matrix of eigenvectors corresponding to eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=1$. Then

$$
P^{-1} A P=\left[\begin{array}{rr}
-2 & 0 \\
0 & 1
\end{array}\right]
$$

The substitution $X=P Y$, where $Y=\left[x_{1}, y_{1}\right]^{t}$, gives

$$
\dot{Y}=\left[\begin{array}{rr}
-2 & 0 \\
0 & 1
\end{array}\right] Y,
$$

or equivalently $\dot{x_{1}}=-2 x_{1}$ and $\dot{y_{1}}=y_{1}$.
Hence $x_{1}=x_{1}(0) e^{-2 t}$ and $y_{1}=y_{1}(0) e^{t}$. To determine $x_{1}(0)$ and $y_{1}(0)$, we note that

$$
\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=-\frac{1}{3}\left[\begin{array}{rr}
1 & -1 \\
-5 & 2
\end{array}\right]\left[\begin{array}{l}
13 \\
22
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right]
$$

Hence $x_{1}=3 e^{-2 t}$ and $y_{1}=7 e^{t}$. Consequently

$$
x=2 x_{1}+y_{1}=6 e^{-2 t}+7 e^{t} \quad \text { and } \quad y=5 x_{1}+y_{1}=15 e^{-2 t}+7 e^{t}
$$

4. Introducing the vector $X_{n}=\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right]$, the system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =3 x_{n}-y_{n} \\
y_{n+1} & =-x_{n}+3 y_{n}
\end{aligned}
$$

becomes $X_{n+1}=A X_{n}$, where $A=\left[\begin{array}{rr}3 & -1 \\ -1 & 3\end{array}\right]$. Hence $X_{n}=A^{n} X_{0}$, where $X_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

To find A^{n} we can use the eigenvalue method. We get

$$
A^{n}=\frac{1}{2}\left[\begin{array}{ll}
2^{n}+4^{n} & 2^{n}-4^{n} \\
2^{n}-4^{n} & 2^{n}+4^{n}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
X_{n} & =\frac{1}{2}\left[\begin{array}{ll}
2^{n}+4^{n} & 2^{n}-4^{n} \\
2^{n}-4^{n} & 2^{n}+4^{n}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{l}
2^{n}+4^{n}+2\left(2^{n}-4^{n}\right) \\
2^{n}-4^{n}+2\left(2^{n}+4^{n}\right)
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{l}
3 \times 2^{n}-4^{n} \\
3 \times 2^{n}+4^{n}
\end{array}\right]=\left[\begin{array}{c}
\left(3 \times 2^{n}-4^{n}\right) / 2 \\
\left(3 \times 2^{n}+4^{n}\right) / 2
\end{array}\right]
\end{aligned}
$$

Hence $x_{n}=\frac{1}{2}\left(3 \times 2^{n}-4^{n}\right)$ and $y_{n}=\frac{1}{2}\left(3 \times 2^{n}+4^{n}\right)$.
5. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a real or complex matrix with distinct eigenvalues λ_{1}, λ_{2} and corresponding eigenvectors X_{1}, X_{2}. Also let $P=\left[X_{1} \mid X_{2}\right]$.
(a) The system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =a x_{n}+b y_{n} \\
y_{n+1} & =c x_{n}+d y_{n}
\end{aligned}
$$

has the solution

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] } & =A^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left(P\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] P^{-1}\right)^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =P\left[\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right] P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =\left[X_{1} \mid X_{2}\right]\left[\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \\
& =\left[X_{1} \mid X_{2}\right]\left[\begin{array}{c}
\lambda_{1}^{n} \alpha \\
\lambda_{2}^{n} \beta
\end{array}\right]=\lambda_{1}^{n} \alpha X_{1}+\lambda_{2}^{n} \beta X_{2},
\end{aligned}
$$

where

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] .
$$

(b) In matrix form, the system is $\dot{X}=A X$, where $X=\left[\begin{array}{l}x \\ y\end{array}\right]$. We substitute $X=P Y$, where $Y=\left[x_{1}, y_{1}\right]^{t}$. Then

$$
\dot{X}=P \dot{Y}=A X=A(P Y)
$$

so

$$
\dot{Y}=\left(P^{-1} A P\right) Y=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] .
$$

Hence $\dot{x_{1}}=\lambda_{1} x_{1}$ and $\dot{y_{1}}=\lambda_{2} y_{1}$. Then

$$
x_{1}=x_{1}(0) e^{\lambda_{1} t} \quad \text { and } \quad y_{1}=y_{1}(0) e^{\lambda_{2} t} .
$$

But

$$
\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=P\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right],
$$

so

$$
\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] .
$$

Consequently $x_{1}(0)=\alpha$ and $y_{1}(0)=\beta$ and

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[X_{1} \mid X_{2}\right]\left[\begin{array}{l}
\alpha e^{\lambda_{1} t} \\
\beta e^{\lambda_{2} t}
\end{array}\right] \\
& =\alpha e^{\lambda_{1} t} X_{1}+\beta e^{\lambda_{2} t} X_{2} .
\end{aligned}
$$

6. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a real matrix with non-real eigenvalues $\lambda=a+i b$ and $\bar{\lambda}=a-i b$, with corresponding eigenvectors $X=U+i V$ and $\bar{X}=U-i V$, where U and V are real vectors. Also let P be the real matrix defined by $P=[U \mid V]$. Finally let $a+i b=r e^{i \theta}$, where $r>0$ and θ is real.
(a) As X is an eigenvector corresponding to the eigenvalue λ, we have $A X=$ λX and hence

$$
\begin{aligned}
A(U+i V) & =(a+i b)(U+i V) \\
A U+i A V & =a U-b V+i(b U+a V)
\end{aligned}
$$

Equating real and imaginary parts then gives

$$
\begin{aligned}
& A U=a U-b V \\
& A V=b U+a V
\end{aligned}
$$

(b)
$A P=A[U \mid V]=[A U \mid A V]=[a U-b V \mid b U+a V]=[U \mid V]\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]=P\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$.
Hence, as P can be shown to be non-singular,

$$
P^{-1} A P=\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right] .
$$

(The fact that P is non-singular is easily proved by showing the columns of P are linearly independent: Assume $x U+y V=0$, where x and y are real. Then we find

$$
(x+i y)(U-i V)+(x-i y)(U+i V)=0 .
$$

Consequently $x+i y=0$ as $U-i V$ and $U+i V$ are eigenvectors corresponding to distinct eigenvalues $a-i b$ and $a+i b$ and are hence linearly independent. Hence $x=0$ and $y=0$.)
(c) The system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =a x_{n}+b y_{n} \\
y_{n+1} & =c x_{n}+d y_{n}
\end{aligned}
$$

has solution

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] } & =A^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =P\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]^{n} P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =P\left[\begin{array}{cc}
r \cos \theta & r \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right]^{n}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& =P^{n}\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]^{n}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& =r^{n}[U \mid V]\left[\begin{array}{cc}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& =r^{n}[U \mid V]\left[\begin{array}{c}
\alpha \cos n \theta+\beta \sin n \theta \\
-\alpha \sin n \theta+\beta \cos n \theta
\end{array}\right] \\
& =r^{n}\{(\alpha \cos n \theta+\beta \sin n \theta) U+(-\alpha \sin n \theta+\beta \cos n \theta) V\} \\
& =r^{n}\{(\cos n \theta)(\alpha U+\beta V)+(\sin n \theta)(\beta U-\alpha V)\} .
\end{aligned}
$$

(d) The system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

is attacked using the substitution $X=P Y$, where $Y=\left[x_{1}, y_{1}\right]^{t}$. Then

$$
\dot{Y}=\left(P^{-1} A P\right) Y,
$$

so

$$
\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{y_{1}}
\end{array}\right]=\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] .
$$

Equating components gives

$$
\begin{aligned}
\dot{x_{1}} & =a x_{1}+b y_{1} \\
\dot{y_{1}} & =-b x_{1}+a y_{1} .
\end{aligned}
$$

Now let $z=x_{1}+i y_{1}$. Then

$$
\begin{aligned}
\dot{z}=\dot{x_{1}}+i \dot{y}_{1} & =\left(a x_{1}+b y_{1}\right)+i\left(-b x_{1}+a y_{1}\right) \\
& =(a-i b)\left(x_{1}+i y_{1}\right)=(a-i b) z .
\end{aligned}
$$

Hence

$$
\begin{aligned}
z & =z(0) e^{(a-i b) t} \\
x_{1}+i y_{1} & =\left(x_{1}(0)+i y_{1}(0)\right) e^{a t}(\cos b t-i \sin b t)
\end{aligned}
$$

Equating real and imaginary parts gives

$$
\begin{aligned}
x_{1} & =e^{a t}\left\{x_{1}(0) \cos b t+y_{1}(0) \sin b t\right\} \\
y_{1} & =e^{a t}\left\{y_{1}(0) \cos b t-x_{1}(0) \sin b t\right\}
\end{aligned}
$$

Now if we define α and β by

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]
$$

we see that $\alpha=x_{1}(0)$ and $\beta=y_{1}(0)$. Then

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \\
& =[U \mid V]\left[\begin{array}{c}
e^{a t}(\alpha \cos b t+\beta \sin b t) \\
e^{a t}(\beta \cos b t-\alpha \sin b t)
\end{array}\right] \\
& =e^{a t}\{(\alpha \cos b t+\beta \sin b t) U+(\beta \cos b t-\alpha \sin b t) V\} \\
& =e^{a t}\{\cos b t(\alpha U+\beta V)+\sin b t(\beta U-\alpha V)\}
\end{aligned}
$$

7. (The case of repeated eigenvalues.) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and suppose that the characteristic polynomial of $A, \lambda^{2}-(a+d) \lambda+(a d-b c)$, has a repeated root α. Also assume that $A \neq \alpha I_{2}$.
(i)

$$
\begin{aligned}
\lambda^{2}-(a+d) \lambda+(a d-b c) & =(\lambda-\alpha)^{2} \\
& =\lambda^{2}-2 \alpha \lambda+\alpha^{2}
\end{aligned}
$$

Hence $a+d=2 \alpha$ and $a d-b c=\alpha^{2}$ and

$$
\begin{aligned}
(a+d)^{2} & =4(a d-b c) \\
a^{2}+2 a d+d^{2} & =4 a d-4 b c \\
a^{2}-2 a d+d^{2}+4 b c & =0 \\
(a-d)^{2}+4 b c & =0
\end{aligned}
$$

(ii) Let $B-A-\alpha I_{2}$. Then

$$
\begin{aligned}
B^{2}=\left(A-\alpha I_{2}\right)^{2} & =A^{2}-2 \alpha A+\alpha^{2} I_{2} \\
& =A^{2}-(a+d) A+(a d-b c) I_{2}
\end{aligned}
$$

But by problem 3, chapter 2.4, $A^{2}-(a+d) A+(a d-b c) I_{2}=0$, so $B^{2}=0$.
(iii) Now suppose that $B \neq 0$. Then $B E_{1} \neq 0$ or $B E_{2} \neq 0$, as $B E_{i}$ is the $i-$ th column of B. Hence $B X_{2} \neq 0$, where $X_{2}=E_{1}$ or $X_{2}=E_{2}$.
(iv) Let $X_{1}=B X_{2}$ and $P=\left[X_{1} \mid X_{2}\right]$. We prove P is non-singular by demonstrating that X_{1} and X_{2} are linearly independent.
Assume $x X_{1}+y X_{2}=0$. Then

$$
\begin{aligned}
x B X_{2}+y X_{2} & =0 \\
B\left(x B X_{2}+y X_{2}\right) & =B 0=0 \\
x B^{2} X_{2}+y B X_{2} & =0 \\
x 0 X_{2}+y B X_{2} & =0 \\
y B X_{2} & =0 .
\end{aligned}
$$

Hence $y=0$ as $B X_{2} \neq 0$. Hence $x B X_{2}=0$ and so $x=0$.
Finally, $B X_{1}=B\left(B X_{2}\right)=B^{2} X_{2}=0$, so $\left(A-\alpha I_{2}\right) X_{1}=0$ and

$$
\begin{equation*}
A X_{1}=\alpha X_{1} \tag{2}
\end{equation*}
$$

Also

$$
X_{1}=B X_{2}=\left(A-\alpha I_{2}\right) X_{2}=A X_{2}-\alpha X_{2}
$$

Hence

$$
\begin{equation*}
A X_{2}=X_{1}+\alpha X_{2} . \tag{3}
\end{equation*}
$$

Then, using (2) and (3), we have

$$
\begin{aligned}
A P=A\left[X_{1} \mid X_{2}\right] & =\left[A X_{1} \mid A X_{2}\right] \\
& =\left[\alpha X_{1} \mid X_{1}+\alpha X_{2}\right] \\
& =\left[X_{1} \mid X_{2}\right]\left[\begin{array}{cc}
\alpha & 1 \\
0 & \alpha
\end{array}\right] .
\end{aligned}
$$

Hence

$$
A P=P\left[\begin{array}{ll}
\alpha & 1 \\
0 & \alpha
\end{array}\right]
$$

and hence

$$
P^{-1} A P=\left[\begin{array}{ll}
\alpha & 1 \\
0 & \alpha
\end{array}\right]
$$

8. The system of differential equations is equivalent to the single matrix equation $\dot{X}=A X$, where $A=\left[\begin{array}{rr}4 & -1 \\ 4 & 8\end{array}\right]$.

The characteristic polynomial of A is $\lambda^{2}-12 \lambda+36=(\lambda-6)^{2}$, so we can use the previous question with $\alpha=6$. Let

$$
B=A-6 I_{2}=\left[\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right] .
$$

Then $B X_{2}=\left[\begin{array}{r}-2 \\ 4\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$, if $X_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Also let $X_{1}=B X_{2}$. Then if $P=\left[X_{1} \mid X_{2}\right]$, we have

$$
P^{-1} A P=\left[\begin{array}{ll}
6 & 1 \\
0 & 6
\end{array}\right] .
$$

Now make the change of variables $X=P Y$, where $Y=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$. Then

$$
\dot{Y}=\left(P^{-1} A P\right) Y=\left[\begin{array}{ll}
6 & 1 \\
0 & 6
\end{array}\right] Y,
$$

or equivalently $\dot{x_{1}}=6 x_{1}+y_{1}$ and $\dot{y_{1}}=6 y_{1}$.
Solving for y_{1} gives $y_{1}=y_{1}(0) e^{6 t}$. Consequently

$$
\dot{x_{1}}=6 x_{1}+y_{1}(0) e^{6 t} .
$$

Multiplying both side of this equation by $e^{-6 t}$ gives

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-6 t} x_{1}\right) & =e^{-6 t} \dot{x_{1}}-6 e^{-6 t} x_{1}=y_{1}(0) \\
e^{-6 t} x_{1} & =y_{1}(0) t+c
\end{aligned}
$$

where c is a constant. Substituting $t=0$ gives $c=x_{1}(0)$. Hence

$$
e^{-6 t} x_{1}=y_{1}(0) t+x_{1}(0)
$$

and hence

$$
x_{1}=e^{6 t}\left(y_{1}(0) t+x_{1}(0)\right) .
$$

However, since we are assuming $x(0)=1=y(0)$, we have

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right] } & =P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right] \\
& =\frac{1}{-4}\left[\begin{array}{rr}
0 & -1 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{l}
-1 \\
-6
\end{array}\right]=\left[\begin{array}{l}
1 / 4 \\
3 / 2
\end{array}\right]
\end{aligned}
$$

Hence $x_{1}=e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right)$ and $y_{1}=\frac{3}{2} e^{6 t}$.
Finally, solving for x and y,

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{rl}
-2 & 1 \\
4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \\
& =\left[\begin{array}{rr}
-2 & 1 \\
4 & 0
\end{array}\right]\left[\begin{array}{c}
e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right) \\
\frac{3}{2} e^{6 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
(-2) e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right)+\frac{3}{2} e^{6 t} \\
4 e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{6 t}(1-3 t) \\
e^{6 t}(6 t+1)
\end{array}\right] .
\end{aligned}
$$

Hence $x=e^{6 t}(1-3 t)$ and $y=e^{6 t}(6 t+1)$.
9. Let

$$
A=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right]
$$

(a) We first determine the characteristic polynomial $\operatorname{ch}_{A}(\lambda)$.

$$
\begin{aligned}
\operatorname{ch}_{A}(\lambda) & =\operatorname{det}\left(\lambda I_{3}-A\right)=\left|\begin{array}{rrr}
\lambda-1 / 2 & -1 / 2 & 0 \\
-1 / 4 & \lambda-1 / 4 & -1 / 2 \\
-1 / 4 & -1 / 4 & \lambda-1 / 2
\end{array}\right| \\
& =\left(\lambda-\frac{1}{2}\right)\left|\begin{array}{rrr}
\lambda-1 / 4 & -1 / 2 \\
-1 / 4 & \lambda-1 / 2
\end{array}\right|+\frac{1}{2}\left|\begin{array}{rr}
-1 / 4 & -1 / 2 \\
-1 / 4 & \lambda-1 / 2
\end{array}\right| \\
& =\left(\lambda-\frac{1}{2}\right)\left\{\left(\lambda-\frac{1}{4}\right)\left(\lambda-\frac{1}{2}\right)-\frac{1}{8}\right\}+\frac{1}{2}\left\{\frac{-1}{4}\left(\lambda-\frac{1}{2}\right)-\frac{1}{8}\right\} \\
& =\left(\lambda-\frac{1}{2}\right)\left(\lambda^{2}-\frac{3 \lambda}{4}\right)-\frac{\lambda}{8} \\
& =\lambda\left\{\left(\lambda-\frac{1}{2}\right)\left(\lambda-\frac{3}{4}\right)-\frac{1}{8}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda\left(\lambda^{2}-\frac{5 \lambda}{4}+\frac{1}{4}\right) \\
& =\lambda(\lambda-1)\left(\lambda-\frac{1}{4}\right) .
\end{aligned}
$$

(b) Hence the characteristic polynomial has no repeated roots and we can use Theorem 6.2.2 to find a non-singular matrix P such that

$$
P^{-1} A P=\operatorname{diag}\left(1,0, \frac{1}{4}\right)
$$

We take $P=\left[X_{1}\left|X_{2}\right| X_{3}\right]$, where X_{1}, X_{2}, X_{3} are eigenvectors corresponding to the respective eigenvalues $1,0, \frac{1}{4}$.
Finding X_{1} : We have to solve $\left(A-I_{3}\right) X=0$. we have

$$
A-I_{3}=\left[\begin{array}{rrr}
-1 / 2 & 1 / 2 & 0 \\
1 / 4 & -3 / 4 & 1 / 2 \\
1 / 4 & 1 / 4 & -1 / 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=z$ and $y=z$, with z arbitrary. Hence

$$
X=\left[\begin{array}{l}
z \\
z \\
z
\end{array}\right]=z\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

and we can take $X_{1}=[1,1,1]^{t}$.
Finding X_{2} : We solve $A X=0$. We have

$$
A=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-y$ and $z=0$, with y arbitrary. Hence

$$
X=\left[\begin{array}{r}
-y \\
y \\
0
\end{array}\right]=y\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]
$$

and we can take $X_{2}=[-1,1,0]^{t}$.
Finding X_{3} : We solve $\left(A-\frac{1}{4} I_{3}\right) X=0$. We have

$$
A-\frac{1}{4} I_{3}=\left[\begin{array}{ccc}
1 / 4 & 1 / 2 & 0 \\
1 / 4 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-2 z$ and $y=z$, with z arbitrary. Hence

$$
X=\left[\begin{array}{r}
-2 z \\
z \\
0
\end{array}\right]=z\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]
$$

and we can take $X_{3}=[-2,1,1]^{t}$.
Hence we can take $P=\left[\begin{array}{rrr}1 & -1 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(c) $A=P \operatorname{diag}\left(1,0, \frac{1}{4}\right) P^{-1}$ so $A^{n}=P \operatorname{diag}\left(1,0, \frac{1}{4^{n}}\right) P^{-1}$.

Hence

$$
\begin{aligned}
A^{n} & =\left[\begin{array}{rrr}
1 & -1 & -2 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \frac{1}{4^{n}}
\end{array}\right] \frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 3 & -3 \\
-1 & -1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{rrr}
1 & 0 & -\frac{2}{4^{n}} \\
1 & 0 & \frac{1}{4^{n}} \\
1 & 0 & \frac{1}{4^{n}}
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 3 & -3 \\
-1 & -1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{lll}
1+\frac{2}{4^{n}} & 1+\frac{2}{4^{n}} & 1-\frac{4}{4^{n}} \\
1-\frac{1}{4^{n}} & 1-\frac{1}{4^{n}} & 1+\frac{2}{4^{n}} \\
1-\frac{1}{4^{n}} & 1-\frac{1}{4^{n}} & 1+\frac{2}{4^{n}}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{3 \cdot 4^{n}}\left[\begin{array}{rrr}
2 & 2 & -4 \\
-1 & -1 & 2 \\
-1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

10. Let

$$
A=\left[\begin{array}{rrr}
5 & 2 & -2 \\
2 & 5 & -2 \\
-2 & -2 & 5
\end{array}\right]
$$

(a) We first determine the characteristic polynomial $\operatorname{ch}_{A}(\lambda)$.

$$
\begin{aligned}
\operatorname{ch}_{A}(\lambda) & \left.=\left\lvert\, \begin{array}{ccc}
\lambda-5 & -2 & 2 \\
-2 & \lambda-5 & 2 \\
2 & 2 & \lambda-5
\end{array}\right.\right] \quad \begin{array}{c}
R_{3} \rightarrow R_{3}+R_{2} \\
=
\end{array}\left|\begin{array}{ccc}
\lambda-5 & -2 & 2 \\
-2 & \lambda-5 & 2 \\
0 & \lambda-3 & \lambda-3
\end{array}\right| \\
& =(\lambda-3)\left|\begin{array}{ccc}
\lambda-5 & -2 & 2 \\
-2 & \lambda-5 & 2 \\
0 & 1 & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
C_{3} \rightarrow C_{3}-C_{2} & =(\lambda-3)\left|\begin{array}{ccc}
\lambda-5 & -2 & 4 \\
-2 & \lambda-5 & -\lambda+7 \\
0 & 1 & 0
\end{array}\right| \\
& =-(\lambda-3)\left|\begin{array}{cc}
\lambda-5 & 4 \\
-2 & -\lambda+7
\end{array}\right| \\
& =-(\lambda-3)\{(\lambda-5)(-\lambda+7)+8\} \\
& =-(\lambda-3)\left(-\lambda^{2}+5 \lambda+7 \lambda-35+8\right) \\
& =-(\lambda-3)\left(-\lambda^{2}+12 \lambda-27\right) \\
& =-(\lambda-3)(-1)(\lambda-3)(\lambda-9) \\
& =(\lambda-3)^{2}(\lambda-9) .
\end{aligned}
$$

We have to find bases for each of the eigenspaces $N\left(A-9 I_{3}\right)$ and $N\left(A-3 I_{3}\right)$.
First we solve $\left(A-3 I_{3}\right) X=0$. We have

$$
A-3 I_{3}=\left[\begin{array}{rrr}
2 & 2 & -2 \\
2 & 2 & -2 \\
-2 & -2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-y+z$, with y and z arbitrary. Hence

$$
X=\left[\begin{array}{c}
-y+z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

so $X_{1}=[-1,1,0]^{t}$ and $X_{2}=[1,0,1]^{t}$ form a basis for the eigenspace corresponding to the eigenvalue 3 .

Next we solve $\left(A-9 I_{3}\right) X=0$. We have

$$
A-9 I_{3}=\left[\begin{array}{rrr}
-4 & 2 & -2 \\
2 & -4 & -2 \\
-2 & -2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-z$ and $y=-z$, with z arbitrary. Hence

$$
X=\left[\begin{array}{r}
-z \\
-z \\
z
\end{array}\right]=z\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]
$$

and we can take $X_{3}=[-1,-1,1]^{t}$ as a basis for the eigenspace corresponding to the eigenvalue 9 .

Then Theorem 6.2.3 assures us that $P=\left[X_{1}\left|X_{2}\right| X_{3}\right]$ is non-singular and

$$
P^{-1} A P=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 9
\end{array}\right] .
$$

