Section 3.6

1. (a) Let S be the set of vectors $[x, y]$ satisfying $x=2 y$. Then S is a vector subspace of \mathbb{R}^{2}. For
(i) $[0,0] \in S$ as $x=2 y$ holds with $x=0$ and $y=0$.
(ii) S is closed under addition. For let $\left[x_{1}, y_{1}\right]$ and $\left[x_{2}, y_{2}\right]$ belong to S. Then $x_{1}=2 y_{1}$ and $x_{2}=2 y_{2}$. Hence

$$
x_{1}+x_{2}=2 y_{1}+2 y_{2}=2\left(y_{1}+y_{2}\right)
$$

and hence

$$
\left[x_{1}+x_{2}, y_{1}+y_{2}\right]=\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]
$$

belongs to S.
(iii) S is closed under scalar multiplication. For let $[x, y] \in S$ and $t \in \mathbb{R}$. Then $x=2 y$ and hence $t x=2(t y)$. Consequently

$$
[t x, t y]=t[x, y] \in S
$$

(b) Let S be the set of vectors $[x, y]$ satisfying $x=2 y$ and $2 x=y$. Then S is a subspace of \mathbb{R}^{2}. This can be proved in the same way as (a), or alternatively we see that $x=2 y$ and $2 x=y$ imply $x=4 x$ and hence $x=0=y$. Hence $S=\{[0,0]\}$, the set consisting of the zero vector. This is always a subspace.
(c) Let S be the set of vectors $[x, y]$ satisfying $x=2 y+1$. Then S doesn't contain the zero vector and consequently fails to be a vector subspace.
(d) Let S be the set of vectors $[x, y]$ satisfying $x y=0$. Then S is not closed under addition of vectors. For example $[1,0] \in S$ and $[0,1] \in S$, but $[1,0]+[0,1]=[1,1] \notin S$.
(e) Let S be the set of vectors $[x, y]$ satisfying $x \geq 0$ and $y \geq 0$. Then S is not closed under scalar multiplication. For example $[1,0] \in S$ and $-1 \in \mathbb{R}$, but $(-1)[1,0]=[-1,0] \notin S$.
2. Let X, Y, Z be vectors in \mathbb{R}^{n}. Then by Lemma 3.2.1

$$
\langle X+Y, X+Z, Y+Z\rangle \subseteq\langle X, Y, Z\rangle
$$

as each of $X+Y, X+Z, Y+Z$ is a linear combination of X, Y, Z.

Also

$$
\begin{aligned}
X & =\frac{1}{2}(X+Y)+\frac{1}{2}(X+Z)-\frac{1}{2}(Y+Z) \\
Y & =\frac{1}{2}(X+Y)-\frac{1}{2}(X+Z)+\frac{1}{2}(Y+Z) \\
Z & =\frac{-1}{2}(X+Y)+\frac{1}{2}(X+Z)+\frac{1}{2}(Y+Z)
\end{aligned}
$$

So

$$
\langle X, Y, Z\rangle \subseteq\langle X+Y, X+Z, Y+Z\rangle
$$

Hence

$$
\langle X, Y, Z\rangle=\langle X+Y, X+Z, Y+Z\rangle
$$

3. Let $X_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right], X_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right]$ and $X_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]$. We have to decide if
X_{1}, X_{2}, X_{3} are linearly independent, that is if the equation $x X_{1}+y X_{2}+$ $z X_{3}=0$ has only the trivial solution. This equation is equivalent to the folowing homogeneous system

$$
\begin{aligned}
x+0 y+z & =0 \\
0 x+y+z & =0 \\
x+y+z & =0 \\
2 x+2 y+3 z & =0
\end{aligned}
$$

We reduce the coefficient matrix to reduced row-echelon form:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
2 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and consequently the system has only the trivial solution $x=0, y=0, z=$ 0 . Hence the given vectors are linearly independent.
4. The vectors

$$
X_{1}=\left[\begin{array}{r}
\lambda \\
-1 \\
-1
\end{array}\right], \quad X_{2}=\left[\begin{array}{r}
-1 \\
\lambda \\
-1
\end{array}\right], \quad X_{3}=\left[\begin{array}{r}
-1 \\
-1 \\
\lambda
\end{array}\right]
$$

are linearly dependent for precisely those values of λ for which the equation $x X_{1}+y X_{2}+z X_{3}=0$ has a non-trivial solution. This equation is equivalent to the system of homogeneous equations

$$
\begin{aligned}
\lambda x-y-z & =0 \\
-x+\lambda y-z & =0 \\
-x-y+\lambda z & =0 .
\end{aligned}
$$

Now the coefficient determinant of this system is

$$
\left|\begin{array}{rrr}
\lambda & -1 & -1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end{array}\right|=(\lambda+1)^{2}(\lambda-2) .
$$

So the values of λ which make X_{1}, X_{2}, X_{3} linearly independent are those λ satisfying $\lambda \neq-1$ and $\lambda \neq 2$.
5. Let A be the following matrix of rationals:

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & 0 & 1 \\
2 & 2 & 5 & 0 & 3 \\
0 & 0 & 0 & 1 & 3 \\
8 & 11 & 19 & 0 & 11
\end{array}\right]
$$

Then A has reduced row-echelon form

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right] .
$$

From B we read off the following:
(a) The rows of B form a basis for $R(A)$. (Consequently the rows of A also form a basis for $R(A)$.)
(b) The first four columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$. From B we see that the solution is

$$
\begin{aligned}
& x_{1}=x_{5} \\
& x_{2}=0 \\
& x_{3}=-x_{5} \\
& x_{4}=-3 x_{5},
\end{aligned}
$$

with x_{5} arbitrary. Then

$$
X=\left[\begin{array}{r}
x_{5} \\
0 \\
-x_{5} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{5}\left[\begin{array}{r}
1 \\
0 \\
-1 \\
-3 \\
1
\end{array}\right],
$$

so $[1,0,-1,-3,1]^{t}$ is a basis for $N(A)$.
6. In Section 1.6, problem 12, we found that the matrix

$$
A=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

has reduced row-echelon form

$$
B=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From B we read off the following:
(a) The three non-zero rows of B form a basis for $R(A)$.
(b) The first three columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$. From B we see that the solution is

$$
\begin{aligned}
x_{1} & =-x_{4}-x_{5}=x_{4}+x_{5} \\
x_{2} & =-x_{4}-x_{5}=x_{4}+x_{5} \\
x_{3} & =-x_{4}=x_{4}
\end{aligned}
$$

with x_{4} and x_{5} arbitrary elements of \mathbb{Z}_{2}. Hence

$$
X=\left[\begin{array}{c}
x_{4}+x_{5} \\
x_{4}+x_{5} \\
x_{4} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{4}\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence $[1,1,1,1,0]^{t}$ and $[1,1,0,0,1]^{t}$ form a basis for $N(A)$.
7. Let A be the following matrix over \mathbb{Z}_{5} :

$$
A=\left[\begin{array}{llllll}
1 & 1 & 2 & 0 & 1 & 3 \\
2 & 1 & 4 & 0 & 3 & 2 \\
0 & 0 & 0 & 1 & 3 & 0 \\
3 & 0 & 2 & 4 & 3 & 2
\end{array}\right]
$$

We find that A has reduced row-echelon form B :

$$
B=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 2 & 4 \\
0 & 1 & 0 & 0 & 4 & 4 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 0
\end{array}\right]
$$

From B we read off the following:
(a) The four rows of B form a basis for $R(A)$. (Consequently the rows of A also form a basis for $R(A)$.
(b) The first four columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$.

From B we see that the solution is

$$
\begin{aligned}
& x_{1}=-2 x_{5}-4 x_{6}=3 x_{5}+x_{6} \\
& x_{2}=-4 x_{5}-4 x_{6}=x_{5}+x_{6} \\
& x_{3}=0 \\
& x_{4}=-3 x_{5}=2 x_{5}
\end{aligned}
$$

where x_{5} and x_{6} are arbitrary elements of \mathbb{Z}_{5}. Hence

$$
X=x_{5}\left[\begin{array}{l}
3 \\
1 \\
0 \\
2 \\
1 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

so $[3,1,0,2,1,0]^{t}$ and $[1,1,0,0,0,1]^{t}$ form a basis for $N(A)$.
8. Let $F=\{0,1, a, b\}$ be a field and let A be the following matrix over F :

$$
A=\left[\begin{array}{llll}
1 & a & b & a \\
a & b & b & 1 \\
1 & 1 & 1 & a
\end{array}\right]
$$

In Section 1.6, problem 17, we found that A had reduced row-echelon form

$$
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 1
\end{array}\right]
$$

From B we read off the following:
(a) The rows of B form a basis for $R(A)$. (Consequently the rows of A also form a basis for $R(A)$.
(b) The first three columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$. From B we see that the solution is

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=-b x_{4}=b x_{4} \\
& x_{3}=-x_{4}=x_{4}
\end{aligned}
$$

where x_{4} is an arbitrary element of F. Hence

$$
X=x_{4}\left[\begin{array}{l}
0 \\
b \\
1 \\
1
\end{array}\right]
$$

so $[0, b, 1,1]^{t}$ is a basis for $N(A)$.
9. Suppose that X_{1}, \ldots, X_{m} form a basis for a subspace S. We have to prove that

$$
X_{1}, X_{1}+X_{2}, \ldots, X_{1}+\cdots+X_{m}
$$

also form a basis for S.
First we prove the independence of the family: Suppose

$$
x_{1} X_{1}+x_{2}\left(X_{1}+X_{2}\right)+\cdots+x_{m}\left(X_{1}+\cdots+X_{m}\right)=0
$$

Then

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right) X_{1}+\cdots+x_{m} X_{m}=0
$$

Then the linear independence of X_{1}, \ldots, X_{m} gives

$$
x_{1}+x_{2}+\cdots+x_{m}=0, \ldots, x_{m}=0
$$

form which we deduce that $x_{1}=0, \ldots, x_{m}=0$.
Secondly we have to prove that every vector of S is expressible as a linear combination of $X_{1}, X_{1}+X_{2}, \ldots, X_{1}+\cdots+X_{m}$. Suppose $X \in S$. Then

$$
X=a_{1} X_{1}+\cdots+a_{m} X_{m}
$$

We have to find x_{1}, \ldots, x_{m} such that

$$
\begin{aligned}
X & =x_{1} X_{1}+x_{2}\left(X_{1}+X_{2}\right)+\cdots+x_{m}\left(X_{1}+\cdots+X_{m}\right) \\
& =\left(x_{1}+x_{2}+\cdots+x_{m}\right) X_{1}+\cdots+x_{m} X_{m}
\end{aligned}
$$

Then

$$
a_{1} X_{1}+\cdots+a_{m} X_{m}=\left(x_{1}+x_{2}+\cdots+x_{m}\right) X_{1}+\cdots+x_{m} X_{m}
$$

So if we can solve the system

$$
x_{1}+x_{2}+\cdots+x_{m}=a_{1}, \ldots, x_{m}=a_{m}
$$

we are finished. Clearly these equations have the unique solution

$$
x_{1}=a_{1}-a_{2}, \ldots, x_{m-1}=a_{m}-a_{m-1}, x_{m}=a_{m}
$$

10. Let $A=\left[\begin{array}{ccc}a & b & c \\ 1 & 1 & 1\end{array}\right]$. If $[a, b, c]$ is a multiple of $[1,1,1]$, (that is, $a=b=c$), then $\operatorname{rank} A=1$. For if

$$
[a, b, c]=t[1,1,1]
$$

then

$$
R(A)=\langle[a, b, c],[1,1,1]\rangle=\langle t[1,1,1],[1,1,1]\rangle=\langle[1,1,1]\rangle
$$

so $[1,1,1]$ is a basis for $R(A)$.
However if $[a, b, c]$ is not a multiple of $[1,1,1]$, (that is at least two of a, b, c are distinct), then the left-to-right test shows that $[a, b, c]$ and $[1,1,1]$ are linearly independent and hence form a basis for $R(A)$. Consequently $\operatorname{rank} A=2$ in this case.
11. Let S be a subspace of F^{n} with $\operatorname{dim} S=m$. Also suppose that X_{1}, \ldots, X_{m} are vectors in S such that $S=\left\langle X_{1}, \ldots, X_{m}\right\rangle$. We have to prove that X_{1}, \ldots, X_{m} form a basis for S; in other words, we must prove that X_{1}, \ldots, X_{m} are linearly independent.

However if X_{1}, \ldots, X_{m} were linearly dependent, then one of these vectors would be a linear combination of the remaining vectors. Consequently S would be spanned by $m-1$ vectors. But there exist a family of m linearly independent vectors in S. Then by Theorem 3.3.2, we would have the contradiction $m \leq m-1$.
12. Let $[x, y, z]^{t} \in S$. Then $x+2 y+3 z=0$. Hence $x=-2 y-3 z$ and

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 y-3 z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right] .
$$

Hence $[-2,1,0]^{t}$ and $[-3,0,1]^{t}$ form a basis for S.
Next $(-1)+2(-1)+3(1)=0$, so $[-1,-1,1]^{t} \in S$.
To find a basis for S which includes $[-1,-1,1]^{t}$, we note that $[-2,1,0]^{t}$ is not a multiple of $[-1,-1,1]^{t}$. Hence we have found a linearly independent family of two vectors in S, a subspace of dimension equal to 2 . Consequently these two vectors form a basis for S.
13. Without loss of generality, suppose that $X_{1}=X_{2}$. Then we have the non-trivial dependency relation:

$$
1 X_{1}+(-1) X_{2}+0 X_{3}+\cdots+0 X_{m}=0
$$

14. (a) Suppose that X_{m+1} is a linear combination of X_{1}, \ldots, X_{m}. Then

$$
\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\left\langle X_{1}, \ldots, X_{m}\right\rangle
$$

and hence

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle
$$

(b) Suppose that X_{m+1} is not a linear combination of X_{1}, \ldots, X_{m}. If not all of X_{1}, \ldots, X_{m} are zero, there will be a subfamily $X_{c_{1}}, \ldots, X_{c_{r}}$ which is a basis for $\left\langle X_{1}, \ldots, X_{m}\right\rangle$.

Then as X_{m+1} is not a linear combination of $X_{c_{1}}, \ldots, X_{c_{r}}$, it follows that $X_{c_{1}}, \ldots, X_{c_{r}}, X_{m+1}$ are linearly independent. Also

$$
\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\left\langle X_{c_{1}}, \ldots, X_{c_{r}}, X_{m+1}\right\rangle
$$

Consequently

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=r+1=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle+1
$$

Our result can be rephrased in a form suitable for the second part of the problem:

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle
$$

if and only if X_{m+1} is a linear combination of X_{1}, \ldots, X_{m}.
If $X=\left[x_{1}, \ldots, x_{n}\right]^{t}$, then $A X=B$ is equivalent to

$$
B=x_{1} A_{* 1}+\cdots+x_{n} A_{* n}
$$

So $A X=B$ is soluble for X if and only if B is a linear combination of the columns of A, that is $B \in C(A)$. However by the first part of this question, $B \in C(A)$ if and only if $\operatorname{dim} C([A \mid B])=\operatorname{dim} C(A)$, that is, $\operatorname{rank}[A \mid B]=$ rank A.
15. Let a_{1}, \ldots, a_{n} be elements of F, not all zero. Let S denote the set of vectors $\left[x_{1}, \ldots, x_{n}\right]^{t}$, where x_{1}, \ldots, x_{n} satisfy

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

Then $S=N(A)$, where A is the row matrix $\left[a_{1}, \ldots, a_{n}\right]$. Now $\operatorname{rank} A=1$ as $A \neq 0$. So by the "rank + nullity" theorem, noting that the number of columns of A equals n, we have

$$
\operatorname{dim} N(A)=\operatorname{nullity}(A)=n-\operatorname{rank} A=n-1
$$

16. (a) (Proof of Lemma 3.2.1) Suppose that each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s}. Then

$$
X_{i}=\sum_{j=1}^{s} a_{i j} Y_{j}, \quad(1 \leq i \leq r)
$$

Now let $X=\sum_{i=1}^{r} x_{i} X_{i}$ be a linear combination of X_{1}, \ldots, X_{r}. Then

$$
\begin{aligned}
X & =x_{1}\left(a_{11} Y_{1}+\cdots+a_{1 s} Y_{s}\right) \\
& +\cdots \\
& +x_{r}\left(a_{r 1} Y_{1}+\cdots+a_{r s} Y_{s}\right) \\
& =y_{1} Y_{1}+\cdots+y_{s} Y_{s}
\end{aligned}
$$

where $y_{j}=a_{1 j} x_{1}+\cdots+a_{r j} x_{r}$. Hence X is a linear combination of Y_{1}, \ldots, Y_{s}.
Another way of stating Lemma 3.2.1 is

$$
\begin{equation*}
\left\langle X_{1}, \ldots, X_{r}\right\rangle \subseteq\left\langle Y_{1}, \ldots, Y_{s}\right\rangle \tag{1}
\end{equation*}
$$

if each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s}.
(b) (Proof of Theorem 3.2.1) Suppose that each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s} and that each of Y_{1}, \ldots, Y_{s} is a linear combination of X_{1}, \ldots, X_{r}. Then by (a) equation (1) above

$$
\left\langle X_{1}, \ldots, X_{r}\right\rangle \subseteq\left\langle Y_{1}, \ldots, Y_{s}\right\rangle
$$

and

$$
\left\langle Y_{1}, \ldots, Y_{s}\right\rangle \subseteq\left\langle X_{1}, \ldots, X_{r}\right\rangle
$$

Hence

$$
\left\langle X_{1}, \ldots, X_{r}\right\rangle=\left\langle Y_{1}, \ldots, Y_{s}\right\rangle .
$$

(c) (Proof of Corollary 3.2.1) Suppose that each of Z_{1}, \ldots, Z_{t} is a linear combination of X_{1}, \ldots, X_{r}. Then each of $X_{1}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}$ is a linear combination of X_{1}, \ldots, X_{r}.

Also each of X_{1}, \ldots, X_{r} is a linear combination of $X_{1}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}$, so by Theorem 3.2.1

$$
\left\langle X_{1}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}\right\rangle=\left\langle X_{1}, \ldots, X_{r}\right\rangle .
$$

(d) (Proof of Theorem 3.3.2) Let Y_{1}, \ldots, Y_{s} be vectors in $\left\langle X_{1}, \ldots, X_{r}\right\rangle$ and assume that $s>r$. We have to prove that Y_{1}, \ldots, Y_{s} are linearly dependent. So we consider the equation

$$
x_{1} Y_{1}+\cdots+x_{s} Y_{s}=0 .
$$

Now $Y_{i}=\sum_{j=1}^{r} a_{i j} X_{j}$, for $1 \leq i \leq s$. Hence

$$
\begin{align*}
x_{1} Y_{1}+\cdots+x_{s} Y_{s} & =x_{1}\left(a_{11} X_{1}+\cdots+a_{1 r} X_{r}\right) \\
& +\cdots \\
& +x_{r}\left(a_{s 1} X_{1}+\cdots+a_{s r} X_{r}\right) . \\
& =y_{1} X_{1}+\cdots+y_{r} X_{r}, \quad(1) \tag{1}
\end{align*}
$$

where $y_{j}=a_{1 j} x_{1}+\cdots+a_{s j} x_{s}$. However the homogeneous system

$$
y_{1}=0, \cdots, y_{r}=0
$$

has a non-trivial solution x_{1}, \ldots, x_{s}, as $s>r$ and from (1), this results in a non-trivial solution of the equation

$$
x_{1} Y_{1}+\cdots+x_{s} Y_{s}=0 .
$$

Hence Y_{1}, \ldots, Y_{s} are linearly dependent.
17. Let R and S be subspaces of F^{n}, with $R \subseteq S$. We first prove

$$
\operatorname{dim} R \leq \operatorname{dim} S
$$

Let X_{1}, \ldots, X_{r} be a basis for R. Now by Theorem 3.5.2, because X_{1}, \ldots, X_{r} form a linearly independent family lying in S, this family can be extended to a basis $X_{1}, \ldots, X_{r}, \ldots, X_{s}$ for S. Then

$$
\operatorname{dim} S=s \geq r=\operatorname{dim} R
$$

Next suppose that $\operatorname{dim} R=\operatorname{dim} S$. Let X_{1}, \ldots, X_{r} be a basis for R. Then because X_{1}, \ldots, X_{r} form a linearly independent family in S and S is a subspace whose dimension is r, it follows from Theorem 3.4.3 that X_{1}, \ldots, X_{r} form a basis for S. Then

$$
S=\left\langle X_{1}, \ldots, X_{r}\right\rangle=R
$$

18. Suppose that R and S are subspaces of F^{n} with the property that $R \cup S$ is also a subspace of F^{n}. We have to prove that $R \subseteq S$ or $S \subseteq R$. We argue by contradiction: Suppose that $R \nsubseteq S$ and $S \nsubseteq R$. Then there exist vectors u and v such that

$$
u \in R \text { and } u \notin S, \quad v \in S \text { and } v \notin R
$$

Consider the vector $u+v$. As we are assuming $R \cup S$ is a subspace, $R \cup S$ is closed under addition. Hence $u+v \in R \cup S$ and so $u+v \in R$ or $u+v \in S$. However if $u+v \in R$, then $v=(u+v)-u \in R$, which is a contradiction; similarly if $u+v \in S$.

Hence we have derived a contradiction on the asumption that $R \nsubseteq S$ and $S \nsubseteq R$. Consequently at least one of these must be false. In other words $R \subseteq S$ or $S \subseteq R$.
19. Let X_{1}, \ldots, X_{r} be a basis for S.
(i) First let

$$
\begin{align*}
Y_{1} & =a_{11} X_{1}+\cdots+a_{1 r} X_{r} \\
& \vdots \tag{2}\\
Y_{r} & =a_{r 1} X_{1}+\cdots+a_{r r} X_{r}
\end{align*}
$$

where $A=\left[a_{i j}\right]$ is non-singular. Then the above system of equations can be solved for X_{1}, \ldots, X_{r} in terms of Y_{1}, \ldots, Y_{r}. Consequently by Theorem 3.2.1

$$
\left\langle Y_{1}, \ldots, Y_{r}\right\rangle=\left\langle X_{1}, \ldots, X_{r}\right\rangle=S
$$

It follows from problem 11 that Y_{1}, \ldots, Y_{r} is a basis for S.
(ii) We show that all bases for S are given by equations 2. So suppose that Y_{1}, \ldots, Y_{r} forms a basis for S. Then because X_{1}, \ldots, X_{r} form a basis for S, we can express Y_{1}, \ldots, Y_{r} in terms of X_{1}, \ldots, X_{r} as in 2 , for some matrix $A=\left[a_{i j}\right]$. We show A is non-singular by demonstrating that the linear independence of Y_{1}, \ldots, Y_{r} implies that the rows of A are linearly independent.

So assume

$$
x_{1}\left[a_{11}, \ldots, a_{1 r}\right]+\cdots+x_{r}\left[a_{r 1}, \ldots, a_{r r}\right]=[0, \ldots, 0] .
$$

Then on equating components, we have

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{r 1} x_{r} & =0 \\
& \vdots \\
a_{1 r} x_{1}+\cdots+a_{r r} x_{r} & =0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
x_{1} Y_{1}+\cdots+x_{r} Y_{r} & =x_{1}\left(a_{11} X_{1}+\cdots+a_{1 r} X_{r}\right)+\cdots+x_{r}\left(a_{r 1} X_{1}+\cdots+a_{r r} X_{r}\right) \\
& =\left(a_{11} x_{1}+\cdots+a_{r 1} x_{r}\right) X_{1}+\cdots+\left(a_{1 r} x_{1}+\cdots+a_{r r} x_{r}\right) X_{r} \\
& =0 X_{1}+\cdots+0 X_{r}=0 .
\end{aligned}
$$

Then the linear independence of Y_{1}, \ldots, Y_{r} implies $x_{1}=0, \ldots, x_{r}=0$.
(We mention that the last argument is reversible and provides an alternative proof of part (i).)

