
Section 3.6

1. (a) Let S be the set of vectors [x, y] satisfying x = 2y. Then S is a vector
subspace of R

2. For

(i) [0, 0] ∈ S as x = 2y holds with x = 0 and y = 0.

(ii) S is closed under addition. For let [x1, y1] and [x2, y2] belong to S.
Then x1 = 2y1 and x2 = 2y2. Hence

x1 + x2 = 2y1 + 2y2 = 2(y1 + y2)

and hence
[x1 + x2, y1 + y2] = [x1, y1] + [x2, y2]

belongs to S.

(iii) S is closed under scalar multiplication. For let [x, y] ∈ S and t ∈ R.
Then x = 2y and hence tx = 2(ty). Consequently

[tx, ty] = t[x, y] ∈ S.

(b) Let S be the set of vectors [x, y] satisfying x = 2y and 2x = y. Then S is
a subspace of R

2. This can be proved in the same way as (a), or alternatively
we see that x = 2y and 2x = y imply x = 4x and hence x = 0 = y. Hence
S = {[0, 0]}, the set consisting of the zero vector. This is always a subspace.

(c) Let S be the set of vectors [x, y] satisfying x = 2y + 1. Then S doesn’t
contain the zero vector and consequently fails to be a vector subspace.

(d) Let S be the set of vectors [x, y] satisfying xy = 0. Then S is not
closed under addition of vectors. For example [1, 0] ∈ S and [0, 1] ∈ S, but
[1, 0] + [0, 1] = [1, 1] 6∈ S.

(e) Let S be the set of vectors [x, y] satisfying x ≥ 0 and y ≥ 0. Then S is
not closed under scalar multiplication. For example [1, 0] ∈ S and −1 ∈ R,
but (−1)[1, 0] = [−1, 0] 6∈ S.

2. Let X, Y, Z be vectors in R
n. Then by Lemma 3.2.1

〈X + Y, X + Z, Y + Z〉 ⊆ 〈X, Y, Z〉,

as each of X + Y, X + Z, Y + Z is a linear combination of X, Y, Z.
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Also

X =
1

2
(X + Y ) +

1

2
(X + Z) −

1

2
(Y + Z),

Y =
1

2
(X + Y ) −

1

2
(X + Z) +

1

2
(Y + Z),

Z =
−1

2
(X + Y ) +

1

2
(X + Z) +

1

2
(Y + Z),

so
〈X, Y, Z〉 ⊆ 〈X + Y, X + Z, Y + Z〉.

Hence
〈X, Y, Z〉 = 〈X + Y, X + Z, Y + Z〉.

3. Let X1 =









1
0
1
2









, X2 =









0
1
1
2









and X3 =









1
1
1
3









. We have to decide if

X1, X2, X3 are linearly independent, that is if the equation xX1 + yX2 +
zX3 = 0 has only the trivial solution. This equation is equivalent to the
folowing homogeneous system

x + 0y + z = 0

0x + y + z = 0

x + y + z = 0

2x + 2y + 3z = 0.

We reduce the coefficient matrix to reduced row–echelon form:








1 0 1
0 1 1
1 1 1
2 2 3









→









1 0 0
0 1 0
0 0 1
0 0 0









and consequently the system has only the trivial solution x = 0, y = 0, z =
0. Hence the given vectors are linearly independent.

4. The vectors

X1 =





λ

−1
−1



 , X2 =





−1
λ

−1



 , X3 =





−1
−1

λ




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are linearly dependent for precisely those values of λ for which the equation
xX1 +yX2 +zX3 = 0 has a non–trivial solution. This equation is equivalent
to the system of homogeneous equations

λx − y − z = 0

−x + λy − z = 0

−x − y + λz = 0.

Now the coefficient determinant of this system is
∣

∣

∣

∣

∣

∣

λ −1 −1
−1 λ −1
−1 −1 λ

∣

∣

∣

∣

∣

∣

= (λ + 1)2(λ − 2).

So the values of λ which make X1, X2, X3 linearly independent are those λ

satisfying λ 6= −1 and λ 6= 2.

5. Let A be the following matrix of rationals:

A =









1 1 2 0 1
2 2 5 0 3
0 0 0 1 3
8 11 19 0 11









.

Then A has reduced row–echelon form

B =









1 0 0 0 −1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 3









.

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A

also form a basis for R(A).)

(b) The first four columns of A form a basis for C(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

x1 = x5

x2 = 0

x3 = −x5

x4 = −3x5,
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with x5 arbitrary. Then

X =













x5

0
−x5

−3x5

x5













= x5













1
0

−1
−3

1













,

so [1, 0, −1, −3, 1]t is a basis for N(A).

6. In Section 1.6, problem 12, we found that the matrix

A =









1 0 1 0 1
0 1 0 1 1
1 1 1 1 0
0 0 1 1 0









has reduced row–echelon form

B =









1 0 0 1 1
0 1 0 1 1
0 0 1 1 0
0 0 0 0 0









.

From B we read off the following:

(a) The three non–zero rows of B form a basis for R(A).

(b) The first three columns of A form a basis for C(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

x1 = −x4 − x5 = x4 + x5

x2 = −x4 − x5 = x4 + x5

x3 = −x4 = x4,

with x4 and x5 arbitrary elements of Z2. Hence

X =













x4 + x5

x4 + x5

x4

x4

x5













= x4













1
1
1
1
0













+ x5













1
1
0
0
1













.

Hence [1, 1, 1, 1, 0]t and [1, 1, 0, 0, 1]t form a basis for N(A).
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7. Let A be the following matrix over Z5:

A =









1 1 2 0 1 3
2 1 4 0 3 2
0 0 0 1 3 0
3 0 2 4 3 2









.

We find that A has reduced row–echelon form B:

B =









1 0 0 0 2 4
0 1 0 0 4 4
0 0 1 0 0 0
0 0 0 1 3 0









.

From B we read off the following:

(a) The four rows of B form a basis for R(A). (Consequently the rows of
A also form a basis for R(A).

(b) The first four columns of A form a basis for C(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

x1 = −2x5 − 4x6 = 3x5 + x6

x2 = −4x5 − 4x6 = x5 + x6

x3 = 0

x4 = −3x5 = 2x5,

where x5 and x6 are arbitrary elements of Z5. Hence

X = x5

















3
1
0
2
1
0

















+ x6

















1
1
0
0
0
1

















,

so [3, 1, 0, 2, 1, 0]t and [1, 1, 0, 0, 0, 1]t form a basis for N(A).

8. Let F = {0, 1, a, b} be a field and let A be the following matrix over F :

A =





1 a b a

a b b 1
1 1 1 a



 .
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In Section 1.6, problem 17, we found that A had reduced row–echelon form

B =





1 0 0 0
0 1 0 b

0 0 1 1



 .

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A

also form a basis for R(A).

(b) The first three columns of A form a basis for C(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

x1 = 0

x2 = −bx4 = bx4

x3 = −x4 = x4,

where x4 is an arbitrary element of F . Hence

X = x4









0
b

1
1









,

so [0, b, 1, 1]t is a basis for N(A).

9. Suppose that X1, . . . , Xm form a basis for a subspace S. We have to
prove that

X1, X1 + X2, . . . , X1 + · · · + Xm

also form a basis for S.
First we prove the independence of the family: Suppose

x1X1 + x2(X1 + X2) + · · · + xm(X1 + · · · + Xm) = 0.

Then
(x1 + x2 + · · · + xm)X1 + · · · + xmXm = 0.

Then the linear independence of X1, . . . , Xm gives

x1 + x2 + · · · + xm = 0, . . . , xm = 0,
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form which we deduce that x1 = 0, . . . , xm = 0.
Secondly we have to prove that every vector of S is expressible as a linear

combination of X1, X1 + X2, . . . , X1 + · · · + Xm. Suppose X ∈ S. Then

X = a1X1 + · · · + amXm.

We have to find x1, . . . , xm such that

X = x1X1 + x2(X1 + X2) + · · · + xm(X1 + · · · + Xm)

= (x1 + x2 + · · · + xm)X1 + · · · + xmXm.

Then

a1X1 + · · · + amXm = (x1 + x2 + · · · + xm)X1 + · · · + xmXm.

So if we can solve the system

x1 + x2 + · · · + xm = a1, . . . , xm = am,

we are finished. Clearly these equations have the unique solution

x1 = a1 − a2, . . . , xm−1 = am − am−1, xm = am.

10. Let A =

[

a b c

1 1 1

]

. If [a, b, c] is a multiple of [1, 1, 1], (that is,

a = b = c), then rankA = 1. For if

[a, b, c] = t[1, 1, 1],

then

R(A) = 〈[a, b, c], [1, 1, 1]〉 = 〈t[1, 1, 1], [1, 1, 1]〉 = 〈[1, 1, 1]〉,

so [1, 1, 1] is a basis for R(A).
However if [a, b, c] is not a multiple of [1, 1, 1], (that is at least two

of a, b, c are distinct), then the left–to–right test shows that [a, b, c] and
[1, 1, 1] are linearly independent and hence form a basis for R(A). Conse-
quently rankA = 2 in this case.

11. Let S be a subspace of Fn with dimS = m. Also suppose that
X1, . . . , Xm are vectors in S such that S = 〈X1, . . . , Xm〉. We have to
prove that X1, . . . , Xm form a basis for S; in other words, we must prove
that X1, . . . , Xm are linearly independent.
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However if X1, . . . , Xm were linearly dependent, then one of these vec-
tors would be a linear combination of the remaining vectors. Consequently
S would be spanned by m − 1 vectors. But there exist a family of m lin-
early independent vectors in S. Then by Theorem 3.3.2, we would have the
contradiction m ≤ m − 1.

12. Let [x, y, z]t ∈ S. Then x + 2y + 3z = 0. Hence x = −2y − 3z and





x

y

z



 =





−2y − 3z

y

z



 = y





−2
1
0



 + z





−3
0
1



 .

Hence [−2, 1, 0]t and [−3, 0, 1]t form a basis for S.
Next (−1) + 2(−1) + 3(1) = 0, so [−1, −1, 1]t ∈ S.
To find a basis for S which includes [−1, −1, 1]t, we note that [−2, 1, 0]t

is not a multiple of [−1, −1, 1]t. Hence we have found a linearly independent
family of two vectors in S, a subspace of dimension equal to 2. Consequently
these two vectors form a basis for S.

13. Without loss of generality, suppose that X1 = X2. Then we have the
non–trivial dependency relation:

1X1 + (−1)X2 + 0X3 + · · · + 0Xm = 0.

14. (a) Suppose that Xm+1 is a linear combination of X1, . . . , Xm. Then

〈X1, . . . , Xm, Xm+1〉 = 〈X1, . . . , Xm〉

and hence
dim 〈X1, . . . , Xm, Xm+1〉 = dim 〈X1, . . . , Xm〉.

(b) Suppose that Xm+1 is not a linear combination of X1, . . . , Xm. If not
all of X1, . . . , Xm are zero, there will be a subfamily Xc1 , . . . , Xcr

which is
a basis for 〈X1, . . . , Xm〉.

Then as Xm+1 is not a linear combination of Xc1 , . . . , Xcr
, it follows that

Xc1 , . . . , Xcr
, Xm+1 are linearly independent. Also

〈X1, . . . , Xm, Xm+1〉 = 〈Xc1 , . . . , Xcr
, Xm+1〉.

Consequently

dim 〈X1, . . . , Xm, Xm+1〉 = r + 1 = dim 〈X1, . . . , Xm〉 + 1.
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Our result can be rephrased in a form suitable for the second part of the
problem:

dim 〈X1, . . . , Xm, Xm+1〉 = dim 〈X1, . . . , Xm〉

if and only if Xm+1 is a linear combination of X1, . . . , Xm.

If X = [x1, . . . , xn]t, then AX = B is equivalent to

B = x1A∗1 + · · · + xnA∗n.

So AX = B is soluble for X if and only if B is a linear combination of the
columns of A, that is B ∈ C(A). However by the first part of this question,
B ∈ C(A) if and only if dimC([A|B]) = dimC(A), that is, rank [A|B] =
rankA.

15. Let a1, . . . , an be elements of F , not all zero. Let S denote the set of
vectors [x1, . . . , xn]t, where x1, . . . , xn satisfy

a1x1 + · · · + anxn = 0.

Then S = N(A), where A is the row matrix [a1, . . . , an]. Now rankA = 1
as A 6= 0. So by the “rank + nullity” theorem, noting that the number of
columns of A equals n, we have

dim N(A) = nullity (A) = n − rankA = n − 1.

16. (a) (Proof of Lemma 3.2.1) Suppose that each of X1, . . . , Xr is a linear
combination of Y1, . . . , Ys. Then

Xi =
s

∑

j=1

aijYj , (1 ≤ i ≤ r).

Now let X =
∑r

i=1
xiXi be a linear combination of X1, . . . , Xr. Then

X = x1(a11Y1 + · · · + a1sYs)

+ · · ·

+ xr(ar1Y1 + · · · + arsYs)

= y1Y1 + · · · + ysYs,

where yj = a1jx1+· · ·+arjxr. Hence X is a linear combination of Y1, . . . , Ys.
Another way of stating Lemma 3.2.1 is

〈X1, . . . , Xr〉 ⊆ 〈Y1, . . . , Ys〉, (1)
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if each of X1, . . . , Xr is a linear combination of Y1, . . . , Ys.

(b) (Proof of Theorem 3.2.1) Suppose that each of X1, . . . , Xr is a linear
combination of Y1, . . . , Ys and that each of Y1, . . . , Ys is a linear combination
of X1, . . . , Xr. Then by (a) equation (1) above

〈X1, . . . , Xr〉 ⊆ 〈Y1, . . . , Ys〉

and
〈Y1, . . . , Ys〉 ⊆ 〈X1, . . . , Xr〉.

Hence
〈X1, . . . , Xr〉 = 〈Y1, . . . , Ys〉.

(c) (Proof of Corollary 3.2.1) Suppose that each of Z1, . . . , Zt is a linear
combination of X1, . . . , Xr. Then each of X1, . . . , Xr, Z1, . . . , Zt is a linear
combination of X1, . . . , Xr.

Also each of X1, . . . , Xr is a linear combination of X1, . . . , Xr, Z1, . . . , Zt,
so by Theorem 3.2.1

〈X1, . . . , Xr, Z1, . . . , Zt〉 = 〈X1, . . . , Xr〉.

(d) (Proof of Theorem 3.3.2) Let Y1, . . . , Ys be vectors in 〈X1, . . . , Xr〉
and assume that s > r. We have to prove that Y1, . . . , Ys are linearly
dependent. So we consider the equation

x1Y1 + · · · + xsYs = 0.

Now Yi =
∑r

j=1
aijXj , for 1 ≤ i ≤ s. Hence

x1Y1 + · · · + xsYs = x1(a11X1 + · · · + a1rXr)

+ · · ·

+ xr(as1X1 + · · · + asrXr).

= y1X1 + · · · + yrXr, (1)

where yj = a1jx1 + · · · + asjxs. However the homogeneous system

y1 = 0, · · · , yr = 0

has a non–trivial solution x1, . . . , xs, as s > r and from (1), this results in a
non–trivial solution of the equation

x1Y1 + · · · + xsYs = 0.
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Hence Y1, . . . , Ys are linearly dependent.

17. Let R and S be subspaces of Fn, with R ⊆ S. We first prove

dimR ≤ dimS.

Let X1, . . . , Xr be a basis for R. Now by Theorem 3.5.2, because X1, . . . , Xr

form a linearly independent family lying in S, this family can be extended
to a basis X1, . . . , Xr, . . . , Xs for S. Then

dim S = s ≥ r = dimR.

Next suppose that dimR = dimS. Let X1, . . . , Xr be a basis for R. Then
because X1, . . . , Xr form a linearly independent family in S and S is a sub-
space whose dimension is r, it follows from Theorem 3.4.3 that X1, . . . , Xr

form a basis for S. Then

S = 〈X1, . . . , Xr〉 = R.

18. Suppose that R and S are subspaces of Fn with the property that R∪S

is also a subspace of Fn. We have to prove that R ⊆ S or S ⊆ R. We argue
by contradiction: Suppose that R 6⊆ S and S 6⊆ R. Then there exist vectors
u and v such that

u ∈ R and u 6∈ S, v ∈ S and v 6∈ R.

Consider the vector u+ v. As we are assuming R∪S is a subspace, R∪S is
closed under addition. Hence u + v ∈ R ∪ S and so u + v ∈ R or u + v ∈ S.
However if u + v ∈ R, then v = (u + v) − u ∈ R, which is a contradiction;
similarly if u + v ∈ S.

Hence we have derived a contradiction on the asumption that R 6⊆ S and
S 6⊆ R. Consequently at least one of these must be false. In other words
R ⊆ S or S ⊆ R.

19. Let X1, . . . , Xr be a basis for S.
(i) First let

Y1 = a11X1 + · · · + a1rXr

... (2)

Yr = ar1X1 + · · · + arrXr,
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where A = [aij ] is non–singular. Then the above system of equations can
be solved for X1, . . . , Xr in terms of Y1, . . . , Yr. Consequently by Theorem
3.2.1

〈Y1, . . . , Yr〉 = 〈X1, . . . , Xr〉 = S.

It follows from problem 11 that Y1, . . . , Yr is a basis for S.
(ii) We show that all bases for S are given by equations 2. So suppose

that Y1, . . . , Yr forms a basis for S. Then because X1, . . . , Xr form a basis
for S, we can express Y1, . . . , Yr in terms of X1, . . . , Xr as in 2, for some
matrix A = [aij ]. We show A is non–singular by demonstrating that the
linear independence of Y1, . . . , Yr implies that the rows of A are linearly
independent.

So assume

x1[a11, . . . , a1r] + · · · + xr[ar1, . . . , arr] = [0, . . . , 0].

Then on equating components, we have

a11x1 + · · · + ar1xr = 0
...

a1rx1 + · · · + arrxr = 0.

Hence

x1Y1 + · · · + xrYr = x1(a11X1 + · · · + a1rXr) + · · · + xr(ar1X1 + · · · + arrXr)

= (a11x1 + · · · + ar1xr)X1 + · · · + (a1rx1 + · · · + arrxr)Xr

= 0X1 + · · · + 0Xr = 0.

Then the linear independence of Y1, . . . , Yr implies x1 = 0, . . . , xr = 0.
(We mention that the last argument is reversible and provides an alter-

native proof of part (i).)
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