Section 3.6

1. (a) Let S be the set of vectors [z, y] satisfying = 2y. Then S is a vector
subspace of R?. For

(i) [0, 0] € S as © = 2y holds with x = 0 and y = 0.
(ii) S is closed under addition. For let [z1, y1] and [z2, y2] belong to S.
Then 1 = 2y; and z9 = 2y». Hence
z1+ 2 = 2y1 + 2y2 = 2(v1 + y2)
and hence
(21 + 22, y1 + y2| = [z1, y1] + [22, o
belongs to S.

(iii) S is closed under scalar multiplication. For let [z, y] € S and ¢t € R.
Then x = 2y and hence tz = 2(ty). Consequently

[tz, ty] = tlx, y] € S.

(b) Let S be the set of vectors [z, y] satisfying © = 2y and 2z = y. Then S is
a subspace of R2. This can be proved in the same way as (a), or alternatively
we see that ¢ = 2y and 2x = y imply x = 42 and hence z = 0 = y. Hence
S ={]0, 0]}, the set consisting of the zero vector. This is always a subspace.

(c) Let S be the set of vectors [z, y] satisfying = 2y + 1. Then S doesn’t
contain the zero vector and consequently fails to be a vector subspace.

(d) Let S be the set of vectors [z, y] satisfying xy = 0. Then S is not
closed under addition of vectors. For example [1, 0] € S and [0, 1] € S, but
[1, 01+ [0, 1] =[1, 1] £ 5.

(e) Let S be the set of vectors [z, y] satisfying x > 0 and y > 0. Then S is
not closed under scalar multiplication. For example [1, 0] € S and —1 € R,
but (—=1)[1, 0] = [-1, 0] € S.

2. Let X, Y, Z be vectors in R". Then by Lemma 3.2.1
(X+Y, X+Z2, Y+2)C(X,Y, Z),

aseach of X +Y, X + Z,Y + Z is a linear combination of X, Y, Z.
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Also
1 1 1

1 1 1
-1 1 1
Z = 7(X+Y)+§(X+Z)+§(Y+Z),
SO
(X, Y, Z)C(X+Y, X+Z Y+ 2).
Hence
(X, Y, Z2)=(X+Y, X+Z Y+ 2).
1 0 1
0 1 1 Lo
3. Let X7 = NE Xy = 1 and X3 = e We have to decide if
2 2 3

X1, X9, X3 are linearly independent, that is if the equation xX; + yXs +
zX3 = 0 has only the trivial solution. This equation is equivalent to the
folowing homogeneous system

r+0y+z =
Ox+y+z =
r+y+z =
20 +2y + 32 =

o o o o

We reduce the coefficient matrix to reduced row—echelon form:

0 0

N = O =
LW =
OO O =
o~ O O

1 1
1 0
2 0

and consequently the system has only the trivial solution x =0, y =0, z =
0. Hence the given vectors are linearly independent.

4. The vectors

A —1 1
Xi=| 1], Xo=| )|, Xs3=| -1
—1 —1 A
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are linearly dependent for precisely those values of A\ for which the equation
xX1+yXo+2X35 = 0 has a non—trivial solution. This equation is equivalent
to the system of homogeneous equations

A—y—z =
—TH+AYy—2z =
—r—y+Az =

Now the coeflicient determinant of this system is

A -1 —1
-1 A —1|(=A+1)2*N-2).
-1 -1 A

So the values of A which make X7, X5, X3 linearly independent are those A
satisfying A # —1 and X\ # 2.

5. Let A be the following matrix of rationals:

1 1 2 0 1
2 2 5 0 3
A= 0O 0 0 1 3
8 11 19 0 11
Then A has reduced row—echelon form

1 00 0 -1

01 00 O

B= 001 0 1

0001 3

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A
also form a basis for R(A).)

(b) The first four columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

r1 = s

Tro = 0

r3 = —Ts
T4 = —31‘5,
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with x5 arbitrary. Then

Is 1
0 0
X = —x5 | =x5 | —1 |,
—31‘5 -3
Is5 1

so [1, 0, —1, =3, 1]¢ is a basis for N(A).

6. In Section 1.6, problem 12, we found that the matrix

1 01 01
01 011
A= 1 11 10
00110
has reduced row—echelon form
1 00 1 1
01 0 11
B= 00110
00 0 00O

From B we read off the following:

(a) The three non-zero rows of B form a basis for R(A).
(b) The first three columns of A form a basis for C'(A).

(¢) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

Tl = —T4—T5=2T4+T5
Ty = —T4—T5=2T4+T5
T3 = —T4= T4,

with x4 and x5 arbitrary elements of Zo. Hence

T4+ 5 1 1

T4+ x5 1 1

X = X4 = X4 1 +x5| 0
T4 1 0

x5 0 1

Hence [1, 1, 1, 1, 0] and [1, 1, 0, 0, 1]* form a basis for N(A).
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7. Let A be the following matrix over Zs:

11 2 01 3

21 4 0 3 2

A= 000130
| 3 0 2 4 3 2|
We find that A has reduced row—echelon form B:
1 0 0 0 2 4]

01 0 0 4 4

B= 001 000

L0 0 0 1 3 0

From B we read off the following:

(a) The four rows of B form a basis for R(A). (Consequently the rows of
A also form a basis for R(A).

(b) The first four columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

T1 = —2x5—4xg = 3T5+ x4
To = —4dxs5—4xg = T5+ X6
z3 = 0

x4 = —3x5=2xs5,

where x5 and xg are arbitrary elements of Zs. Hence

3

_ o O O - =

O = N O

so [3,1,0,2,1,0]" and [1, 1, 0, 0, 0, 1]* form a basis for N(A).

8. Let F'={0, 1, a, b} be a field and let A be the following matrix over F":

A=

— Q
— o Q
— o o
IS S
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In Section 1.6, problem 17, we found that A had reduced row—echelon form

B =

S O =

0 00
1 0 b
0 1 1
From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A
also form a basis for R(A).

(b) The first three columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

r1 = 0
Tro = —bx4 = ba:4
T3 = —X4= Ty,

where x4 is an arbitrary element of F. Hence

X:x4

_ = o O

so [0, b, 1, 1]t is a basis for N(A).

9. Suppose that Xi,...,X,, form a basis for a subspace S. We have to

prove that
X17X1+X27"'7X1+".+Xm

also form a basis for S.
First we prove the independence of the family: Suppose

.CEle—i—xQ(Xl+X2)+"‘+$m(X1+”'+Xm):0.

Then
(r1+ 22+ -+ 2) X1+ -+ 2, X, = 0.

Then the linear independence of X, ..., X, gives

1 +xo+ -+ xym=0,...,2, =0,
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form which we deduce that 1 =0,...,z,, = 0.
Secondly we have to prove that every vector of S is expressible as a linear
combination of X1, X1 + Xo,..., X1+ -+ X,,. Suppose X € S. Then

X=a1 X1+ +anXmn.
We have to find z1,...,x,, such that

X = mXi+x(Xi+Xo)+ - an(Xi+ -+ X))

Then
a1 X1+ FapXpm = (21t 22+ -+ T0) X1+ 2 X
So if we can solve the system
1 +To+ "+ Ty =A1,...,Tym = O,

we are finished. Clearly these equations have the unique solution

1 =0a1 —az,...,Tm-1 = am — Am—-1, Tm = Qm-
a b c . . .
10. Let A = [ 111 If [a, b, ¢] is a multiple of [1, 1, 1], (that is,

a=b=c), then rank A = 1. For if
[a, b, ¢ =t[1, 1, 1],
then
R(A) = ([a, b, c], [1, 1, 1]) = (¢[1, 1, 1], [1, 1, 1]) = ([1, 1, 1]),

so [1, 1, 1] is a basis for R(A).

However if [a, b, ¢] is not a multiple of [1, 1, 1], (that is at least two
of a, b, ¢ are distinct), then the left—to-right test shows that [a, b, ¢] and
[1, 1, 1] are linearly independent and hence form a basis for R(A). Conse-
quently rank A = 2 in this case.

11. Let S be a subspace of F" with dimS = m. Also suppose that
X1,..., X, are vectors in S such that S = (Xi,...,X,,). We have to
prove that Xq,...,X,, form a basis for S; in other words, we must prove
that X,..., X,, are linearly independent.
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However if X,..., X,, were linearly dependent, then one of these vec-
tors would be a linear combination of the remaining vectors. Consequently
S would be spanned by m — 1 vectors. But there exist a family of m lin-
early independent vectors in S. Then by Theorem 3.3.2, we would have the
contradiction m < m — 1.

12. Let [z, y, 2] € S. Then = + 2y + 32 = 0. Hence # = —2y — 3z and

x —2y — 3z —2 -3
y | = Yy =Y 11 +=z 0
z z 0 1

Hence [—2, 1, 0] and [-3, 0, 1]* form a basis for S.

Next (—1) +2(—1)+3(1) =0, s0 [-1, -1, 1}t € S.

To find a basis for S which includes [—1, —1, 1]*, we note that [-2, 1, 0]’
is not a multiple of [—-1, —1, 1]*. Hence we have found a linearly independent
family of two vectors in S, a subspace of dimension equal to 2. Consequently
these two vectors form a basis for S.

13. Without loss of generality, suppose that X; = X5. Then we have the
non—trivial dependency relation:

1X, —|—(—1)X2—|—0X3+"'+0Xm = 0.

14. (a) Suppose that X, 11 is a linear combination of X1, ..., X,,. Then
(X1, oy Xy Xng1) = (X1, ..., Xon)

and hence
dim <X1, e ,Xm, Xm+1> = dim <X1, .. ,Xm>

(b) Suppose that X,,+1 is not a linear combination of Xi,..., X,,. If not
all of X1,...,X,, are zero, there will be a subfamily X,,,..., X, which is
a basis for (X71,..., X,,).

Then as X,,+1 is not a linear combination of X, ,..., X, it follows that
Xeyy-ooy Xe,y Xmy1 are linearly independent. Also

(X1, ooy Xy Xn1) = (Xeys oo Xy Ximt1)-
Consequently

dim<X1,...,Xm, Xm+1>:7’+1:dim<X1,...,Xm>+1.
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Our result can be rephrased in a form suitable for the second part of the
problem:
dim <X1, ce ,Xm, Xm+1> = dim <X1, - 7Xm>

if and only if X,,11 is a linear combination of Xi,..., X;,.
If X =[z1,...,2,)", then AX = B is equivalent to
B=x1Ag+ -+ 2.

So AX = B is soluble for X if and only if B is a linear combination of the
columns of A, that is B € C(A). However by the first part of this question,
B € C(A) if and only if dim C([A|B]) = dim C(A), that is, rank [4|B] =
rank A.

15. Let a1,...,a, be elements of F, not all zero. Let S denote the set of
vectors [z1,. .., %]t where x1, ..., z, satisfy

a1x1 + -+ apxy = 0.

Then S = N(A), where A is the row matrix [aj,...,a,]. Now rank A =1
as A # 0. So by the “rank + nullity” theorem, noting that the number of
columns of A equals n, we have

dim N(A) = nullity (A) =n —rank A =n — 1.

16. (a) (Proof of Lemma 3.2.1) Suppose that each of Xi,..., X, is a linear
combination of Y7,...,Y;. Then

S
Xi=> a;Y;, (1<i<r).
j=1

Now let X = 2:21 x;X; be a linear combination of X4,...,X,. Then

X = zi(anYi+ -+ a15Y5)

+
+ xr(arlyl +---+ a?”SYS)
= Y1+ +ysYs,
where y; = a1;21+- - -+a,jz,. Hence X is a linear combination of Y1,...,Y,.

Another way of stating Lemma 3.2.1 is

(X1,..., X)) € (N1, Ys), (1)
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if each of X1,..., X, is a linear combination of Yi,...,Y;.

(b) (Proof of Theorem 3.2.1) Suppose that each of X7,..., X, is a linear
combination of Y7,...,Ys and that each of Y7, ..., Y} is a linear combination
of Xi1,...,X,. Then by (a) equation (1) above

<X17"'7XT> c <Y1,"'7}/S>

and
(Y1,...,Ys) C(Xq,..., X,).

Hence
<X17"'7X7"> = <YiaaYS>

(c) (Proof of Corollary 3.2.1) Suppose that each of Z1,...,Z; is a linear
combination of X1,...,X,. Then each of X1,...,X,, Z1,...,Z; is a linear
combination of X1,...,X,.

Also each of X1, ..., X, is a linear combination of X1, ..., X,, Z1,..., Z,
so by Theorem 3.2.1

(X1, X, Z0,e o Z0) = (X1, X)),

(d) (Proof of Theorem 3.3.2) Let Y1,...,Ys be vectors in (Xy,...,X,)
and assume that s > r. We have to prove that Yi,..., Y, are linearly
dependent. So we consider the equation

Y1+ + Y, =0.
Now Y; = Z§:1 a;; X;, for 1 <i <s. Hence
Y1+ +aYs = m(anXy+ -+ a1 X)

_|_

+ xr(alel +-+ asrXr)-

= nXi+-+yuX, (1)
where y; = ay;71 + - -+ + as;75. However the homogeneous system

yl:07 T yT‘:O

has a non—trivial solution z1, ..., zs, as s > r and from (1), this results in a
non—trivial solution of the equation

Y1+ +aYs = 0.
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Hence Y1, ...,Y; are linearly dependent.

17. Let R and S be subspaces of F", with R C .S. We first prove
dim R < dim S.

Let X1,..., X, be abasis for R. Now by Theorem 3.5.2, because X1, ..., X,
form a linearly independent family lying in S, this family can be extended
to a basis X1,...,X,,...,Xs for S. Then

dimS = s >r =dimR.

Next suppose that dim R = dim S. Let Xi,..., X, be a basis for R. Then
because X1,..., X, form a linearly independent family in S and S is a sub-
space whose dimension is r, it follows from Theorem 3.4.3 that Xy,..., X,
form a basis for S. Then

S=(Xi,....,X,)=R.

18. Suppose that R and S are subspaces of F" with the property that RUS
is also a subspace of F. We have to prove that R C S or S C R. We argue
by contradiction: Suppose that R Z S and S € R. Then there exist vectors
u and v such that

ueRandu ¢S, veSandv¢R.

Consider the vector u+v. As we are assuming RU S is a subspace, RUS is
closed under addition. Hence u+v € RUS andsou+v € Roru+wv e S.
However if u + v € R, then v = (u 4+ v) — u € R, which is a contradiction;
similarly if u +v € S.

Hence we have derived a contradiction on the asumption that R ¢ S and
S ¢ R. Consequently at least one of these must be false. In other words
RCSorSCR.

19. Let X1,..., X, be a basis for S.
(i) First let
Yi = aunXi+--+a X,

Y, = anXi+--+a Xy,
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where A = [a;;] is non-singular. Then the above system of equations can
be solved for Xi,..., X, in terms of Y7,...,Y,. Consequently by Theorem
3.2.1

(Y1,...,Y,) =(Xy,...,X,) = S.

It follows from problem 11 that Y7,...,Y, is a basis for S.

(ii) We show that all bases for S are given by equations 2. So suppose
that Yi,...,Y, forms a basis for S. Then because X1i,..., X, form a basis
for S, we can express Y7,...,Y, in terms of Xi,..., X, as in 2, for some
matrix A = [a;;]. We show A is non-singular by demonstrating that the
linear independence of Y7,...,Y, implies that the rows of A are linearly
independent.

So assume

zilail, ..., a1 + -+ xplarr, ... ap] = [0,...,0].
Then on equating components, we have

anry +--+apx, = 0

ayrxy + -+ apry, = 0.
Hence

Y1+t Y, = zi(anXi++arXy) + o F (e X 4+ an Xo)
= (anzi+ - +amz) X1+ + (apz1 + - + aprzy) X
= 0X;+ - +0X,=0.

Then the linear independence of Y7, ...,Y, implies 1 =0,...,x, = 0.
(We mention that the last argument is reversible and provides an alter-
native proof of part (i).)
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