Section 2.7

1. $\left[A \mid I_{2}\right]=\left[\begin{array}{rr|rr}1 & 4 & 1 & 0 \\ -3 & 1 & 0 & 1\end{array}\right] \quad R_{2} \rightarrow R_{2}+3 R_{1}\left[\begin{array}{cc|cc}1 & 4 & 1 & 0 \\ 0 & 13 & 3 & 1\end{array}\right]$
$R_{2} \rightarrow \frac{1}{13} R_{2}\left[\begin{array}{ll|cc}1 & 4 & 1 & 0 \\ 0 & 1 & 3 / 13 & 1 / 13\end{array}\right] \quad R_{1} \rightarrow R_{1}-4 R_{2}\left[\begin{array}{ll|lr}1 & 0 & 1 / 13 & -4 / 13 \\ 0 & 1 & 3 / 13 & 1 / 13\end{array}\right]$.
Hence A is non-singular and $A^{-1}=\left[\begin{array}{rr}1 / 13 & -4 / 13 \\ 3 / 13 & 1 / 13\end{array}\right]$.
Moreover

$$
E_{12}(-4) E_{2}(1 / 13) E_{21}(3) A=I_{2},
$$

so

$$
A^{-1}=E_{12}(-4) E_{2}(1 / 13) E_{21}(3) .
$$

Hence

$$
A=\left\{E_{21}(3)\right\}^{-1}\left\{E_{2}(1 / 13)\right\}^{-1}\left\{E_{12}(-4)\right\}^{-1}=E_{21}(-3) E_{2}(13) E_{12}(4) .
$$

2. Let $D=\left[d_{i j}\right]$ be an $m \times m$ diagonal matrix and let $A=\left[a_{j k}\right]$ be an $m \times n$ matrix. Then

$$
(D A)_{i k}=\sum_{j=1}^{n} d_{i j} a_{j k}=d_{i i} a_{i k}
$$

as $d_{i j}=0$ if $i \neq j$. It follows that the i th row of $D A$ is obtained by multiplying the i th row of A by $d_{i i}$.

Similarly, post-multiplication of a matrix by a diagonal matrix D results in a matrix whose columns are those of A, multiplied by the respective diagonal elements of D.

In particular,

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)=\operatorname{diag}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right),
$$

as the left-hand side can be regarded as pre-multiplication of the matrix $\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ by the diagonal matrix $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$.

Finally, suppose that each of a_{1}, \ldots, a_{n} is non-zero. Then $a_{1}^{-1}, \ldots, a_{n}^{-1}$ all exist and we have

$$
\begin{aligned}
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \operatorname{diag}\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right) & =\operatorname{diag}\left(a_{1} a_{1}^{-1}, \ldots, a_{n} a_{n}^{-1}\right) \\
& =\operatorname{diag}(1, \ldots, 1)=I_{n}
\end{aligned}
$$

Hence diag $\left(a_{1}, \ldots, a_{n}\right)$ is non-singular and its inverse is diag $\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)$.

Next suppose that $a_{i}=0$. Then $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is row-equivalent to a matix containing a zero row and is hence singular.
3. $\left[A \mid I_{3}\right]=\left[\begin{array}{lll|lll}0 & 0 & 2 & 1 & 0 & 0 \\ 1 & 2 & 6 & 0 & 1 & 0 \\ 3 & 7 & 9 & 0 & 0 & 1\end{array}\right] \quad R_{1} \leftrightarrow R_{2}\left[\begin{array}{cccccc}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 3 & 7 & 9 & 0 & 0 & 1\end{array}\right]$
$R_{3} \rightarrow R_{3}-3 R_{1}\left[\begin{array}{rrrrrr}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -9 & 0 & -3 & 1\end{array}\right] \quad R_{2} \leftrightarrow R_{3}\left[\begin{array}{rrrrrr}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 1 & -9 & 0 & -3 & 1 \\ 0 & 0 & 2 & 1 & 0 & 0\end{array}\right]$
$R_{3} \rightarrow \frac{1}{2} R_{3}\left[\begin{array}{rrrrrr}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 1 & -9 & 0 & -3 & 1 \\ 0 & 0 & 1 & 1 / 2 & 0 & 0\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{rrrrrr}1 & 0 & 24 & 0 & 7 & -2 \\ 0 & 1 & -9 & 0 & -3 & 1 \\ 0 & 0 & 1 & 1 / 2 & 0 & 0\end{array}\right]$
$\begin{gathered}R_{1} \rightarrow R_{1}-24 R_{3} \\ R_{2} \rightarrow R_{2}+9 R_{3}\end{gathered}\left[\begin{array}{rrrrrr}1 & 0 & 0 & -12 & 7 & -2 \\ 0 & 1 & 0 & 9 / 2 & -3 & 1 \\ 0 & 0 & 1 & 1 / 2 & 0 & 0\end{array}\right]$.
Hence A is non-singular and $A^{-1}=\left[\begin{array}{rrr}-12 & 7 & -2 \\ 9 / 2 & -3 & 1 \\ 1 / 2 & 0 & 0\end{array}\right]$.
Also

$$
E_{23}(9) E_{13}(-24) E_{12}(-2) E_{3}(1 / 2) E_{23} E_{31}(-3) E_{12} A=I_{3}
$$

Hence

$$
A^{-1}=E_{23}(9) E_{13}(-24) E_{12}(-2) E_{3}(1 / 2) E_{23} E_{31}(-3) E_{12}
$$

so

$$
A=E_{12} E_{31}(3) E_{23} E_{3}(2) E_{12}(2) E_{13}(24) E_{23}(-9)
$$

4.

$A=\left[\begin{array}{rrr}1 & 2 & k \\ 3 & -1 & 1 \\ 5 & 3 & -5\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & k \\ 0 & -7 & 1-3 k \\ 0 & -7 & -5-5 k\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & k \\ 0 & -7 & 1-3 k \\ 0 & 0 & -6-2 k\end{array}\right]=B$.
Hence if $-6-2 k \neq 0$, i.e. if $k \neq-3$, we see that B can be reduced to I_{3} and hence A is non-singular.

If $k=-3$, then $B=\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & -7 & 10 \\ 0 & 0 & 0\end{array}\right]=B$ and consequently A is singular, as it is row-equivalent to a matrix containing a zero row.
5. $E_{21}(2)\left[\begin{array}{rr}1 & 2 \\ -2 & -4\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$. Hence, as in the previous question, $\left[\begin{array}{rr}1 & 2 \\ -2 & -4\end{array}\right]$ is singular.
6. Starting from the equation $A^{2}-2 A+13 I_{2}=0$, we deduce

$$
A\left(A-2 I_{2}\right)=-13 I_{2}=\left(A-2 I_{2}\right) A
$$

Hence $A B=B A=I_{2}$, where $B=\frac{-1}{13}\left(A-2 I_{2}\right)$. Consequently A is nonsingular and $A^{-1}=B$.
7. We assume the equation $A^{3}=3 A^{2}-3 A+I_{3}$.

$$
\text { (ii) } \begin{aligned}
A^{4} & =A^{3} A=\left(3 A^{2}-3 A+I_{3}\right) A=3 A^{3}-3 A^{2}+A \\
& =3\left(3 A^{2}-3 A+I_{3}\right)-3 A^{2}+A=6 A^{2}-8 A+3 I_{3} .
\end{aligned}
$$

(iii) $A^{3}-3 A^{2}+3 A=I_{3}$. Hence

$$
A\left(A^{2}-3 A+3 I_{3}\right)=I_{3}=\left(A^{2}-3 A+3 I_{3}\right) A .
$$

Hence A is non-singular and

$$
\begin{aligned}
A^{-1} & =A^{2}-3 A+3 I_{3} \\
& =\left[\begin{array}{rrr}
-1 & -3 & 1 \\
2 & 4 & -1 \\
0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

8. (i) If $B^{3}=0$ then

$$
\begin{aligned}
\left(I_{n}-B\right)\left(I_{n}+B+B^{2}\right) & =I_{n}\left(I_{n}+B+B^{2}\right)-B\left(I_{n}+B+B^{2}\right) \\
& =\left(I_{n}+B+B^{2}\right)-\left(B+B^{2}+B^{3}\right) \\
& =I_{n}-B^{3}=I_{n}-0=I_{n} .
\end{aligned}
$$

Similarly $\left(I_{n}+B+B^{2}\right)\left(I_{n}-B\right)=I_{n}$.
Hence $A=I_{n}-B$ is non-singular and $A^{-1}=I_{n}+B+B^{2}$. It follows that the system $A X=b$ has the unique solution

$$
X=A^{-1} b=\left(I_{n}+B+B^{2}\right) b=b+B b+B^{2} b .
$$

(ii) Let $B=\left[\begin{array}{lll}0 & r & s \\ 0 & 0 & t \\ 0 & 0 & 0\end{array}\right]$. Then $B^{2}=\left[\begin{array}{ccc}0 & 0 & r t \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $B^{3}=0$. Hence from the preceding question

$$
\begin{aligned}
\left(I_{3}-B\right)^{-1} & =I_{3}+B+B^{2} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{llc}
0 & r & s \\
0 & 0 & t \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{llc}
0 & 0 & r t \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & r & s+r t \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

9. (i) Suppose that $A^{2}=0$. Then if A^{-1} exists, we deduce that $A^{-1}(A A)=$ $A^{-1} 0$, which gives $A=0$ and this is a contradiction, as the zero matrix is singular. We conclude that A does not have an inverse.
(ii). Suppose that $A^{2}=A$ and that A^{-1} exists. Then

$$
A^{-1}(A A)=A^{-1} A,
$$

which gives $A=I_{n}$. Equivalently, if $A^{2}=A$ and $A \neq I_{n}$, then A does not have an inverse.
10. The system of linear equations

$$
\begin{aligned}
x+y-z & =a \\
z & =b \\
2 x+y+2 z & =c
\end{aligned}
$$

is equivalent to the matrix equation $A X=B$, where

$$
A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 1 \\
2 & 1 & 2
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] .
$$

By Question 7, A^{-1} exists and hence the system has the unique solution

$$
X=\left[\begin{array}{rrr}
-1 & -3 & 1 \\
2 & 4 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
-a-3 b+c \\
2 a+4 b-c \\
b
\end{array}\right]
$$

Hence $x=-a-3 b+c, y=2 a+4 b-c, z=b$.
12.

$$
\begin{aligned}
A & =E_{3}(2) E_{14} E_{42}(3)=E_{3}(2) E_{14}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right] \\
& =E_{3}(2)\left[\begin{array}{llll}
0 & 3 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 3 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Also

$$
\begin{aligned}
A^{-1} & =\left(E_{3}(2) E_{14} E_{42}(3)\right)^{-1} \\
& =\left(E_{42}(3)\right)^{-1} E_{14}^{-1}\left(E_{3}(2)\right)^{-1} \\
& =E_{42}(-3) E_{14} E_{3}(1 / 2) \\
& =E_{42}(-3) E_{14}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =E_{42}(-3)\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
1 & -3 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

13. (All matrices in this question are over \mathbb{Z}_{2}.)
$\left.\begin{array}{rl}\text { (a) } & {\left[\begin{array}{llll|llll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]}\end{array} \rightarrow\left[\begin{array}{llll|llll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]\right)$

$$
\rightarrow\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Hence A is non-singular and

$$
A^{-1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

(b) $A=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right] \quad R_{4} \rightarrow R_{4}+R_{1}\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, so A is singular.
14.

$$
\begin{gathered}
\text { (a) }\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
R_{3} \rightarrow \frac{1}{2} R_{3} \\
R_{1} \rightarrow R_{1}-R_{3} \\
R_{2} \rightarrow R_{2}+R_{3} \\
R_{1} \leftrightarrow R_{3}
\end{array}\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 0 & 1 & 1 / 2 \\
0 & 1 & 1 & 1 & 0 & -1 / 2
\end{array}\right] \\
R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{lll|lrr}
1 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 0 & 1 & 1 / 2 \\
0 & 0 & 1 & 1 & -1 & -1
\end{array}\right] .
\end{gathered}
$$

Hence A^{-1} exists and

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{rrr}
0 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
1 & -1 & -1
\end{array}\right] . \\
& \text { (b) }\left[\begin{array}{lll|lll}
2 & 2 & 4 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
R_{1} \rightarrow R_{1}-2 R_{2} \\
R_{1} \leftrightarrow R_{2} \\
R_{2} \leftrightarrow R_{3}
\end{array}\left[\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 2 & 2 & 1 & -2 & 0
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-2 R_{2}\left[\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 & -2 & -2
\end{array}\right] \\
& R_{3} \rightarrow \frac{1}{2} R_{3}\left[\begin{array}{lll|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 / 2 & -1 & -1
\end{array}\right]
\end{aligned}
$$

$$
R_{1} \rightarrow R_{1}-R_{3}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -1 / 2 & 2 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 / 2 & -1 & -1
\end{array}\right]
$$

Hence A^{-1} exists and

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{rrr}
-1 / 2 & 2 & 1 \\
0 & 0 & 1 \\
1 / 2 & -1 & -1
\end{array}\right] . \\
& \text { (c) }\left[\begin{array}{rrr}
4 & 6 & -3 \\
0 & 0 & 7 \\
0 & 0 & 5
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow \frac{1}{7} R_{2} \\
R_{3} \rightarrow \frac{1}{5} R_{3}
\end{array}\left[\begin{array}{rrr}
4 & 6 & -3 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{rrr}
4 & 6 & -3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text {. }
\end{aligned}
$$

Hence A is singular by virtue of the zero row.
(d) $\left[\begin{array}{rrr|rrr}2 & 0 & 0 & 1 & 0 & 0 \\ 0 & -5 & 0 & 0 & 1 & 0 \\ 0 & 0 & 7 & 0 & 0 & 1\end{array}\right] \begin{gathered}R_{1} \rightarrow \frac{1}{2} R_{1} \\ R_{2} \rightarrow \frac{-1}{5} R_{2} \\ R_{3} \rightarrow \frac{1}{7} R_{3}\end{gathered}\left[\begin{array}{lll|rrr}1 & 0 & 0 & 1 / 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 / 5 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 / 7\end{array}\right]$.

Hence A^{-1} exists and $A^{-1}=\operatorname{diag}(1 / 2,-1 / 5,1 / 7)$.
(Of course this was also immediate from Question 2.)
(e) $\left[\begin{array}{llll|llll}1 & 2 & 4 & 6 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 1\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{llll|lrll}1 & 0 & 0 & 6 & 1 & -2 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 1\end{array}\right]$

$$
\begin{gathered}
R_{2} \rightarrow R_{2}-2 R_{3}\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 6 & 1 & -2 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & 1 & -2 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 1
\end{array}\right] . \\
R_{1} \rightarrow R_{1}-3 R_{4} \\
R_{2} \rightarrow R_{2}+2 R_{4} \\
R_{3} \rightarrow R_{3}-R_{4} \\
R_{4} \rightarrow \frac{1}{2} R_{4}
\end{gathered}\left[\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 1 & -2 & 0 & -3 \\
0 & 1 & 0 & 0 & 0 & 1 & -2 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 / 2
\end{array}\right] .
$$

Hence A^{-1} exists and

$$
A^{-1}=\left[\begin{array}{rrrr}
1 & -2 & 0 & -3 \\
0 & 1 & -2 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 / 2
\end{array}\right] .
$$

(f)

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
5 & 7 & 9
\end{array}\right] \begin{aligned}
& R_{2} \rightarrow R_{2}-4 R_{1} \\
& R_{3} \rightarrow R_{3}-5 R_{1}
\end{aligned}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -3 & -6
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right] .
$$

Hence A is singular by virtue of the zero row.
15. Suppose that A is non-singular. Then

$$
A A^{-1}=I_{n}=A^{-1} A .
$$

Taking transposes throughout gives

$$
\begin{aligned}
\left(A A^{-1}\right)^{t} & =I_{n}^{t}=\left(A^{-1} A\right)^{t} \\
\left(A^{-1}\right)^{t} A^{t} & =I_{n}=A^{t}\left(A^{-1}\right)^{t},
\end{aligned}
$$

so A^{t} is non-singular and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
16. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a d-b c=0$. Then the equation

$$
A^{2}-(a+d) A+(a d-b c) I_{2}=0
$$

reduces to $A^{2}-(a+d) A=0$ and hence $A^{2}=(a+d) A$. From the last equation, if A^{-1} exists, we deduce that $A=(a+d) I_{2}$, or

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a+d & 0 \\
0 & a+d
\end{array}\right] .
$$

Hence $a=a+d, b=0, c=0, d=a+d$ and $a=b=c=d=0$, which contradicts the assumption that A is non-singular.
17.

$$
\left.\begin{array}{rl}
A=\left[\begin{array}{rrr}
1 & a & b \\
-a & 1 & c \\
-b & -c & 1
\end{array}\right]
\end{array} \begin{array}{l}
R_{2} \rightarrow R_{2}+a R_{1} \\
R_{3} \rightarrow R_{3}+b R_{1}
\end{array} \begin{array}{ccc}
1 & a & b \\
0 & 1+a^{2} & c+a b \\
0 & a b-c & 1+b^{2}
\end{array}\right] .\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & \frac{c+a b}{1+a^{2}} \\
0 & a b-c & 1+b^{2}
\end{array}\right] .
$$

Now

$$
\begin{aligned}
1+b^{2}+\frac{(c-a b)(c+a b)}{1+a^{2}} & =1+b^{2}+\frac{c^{2}-(a b)^{2}}{1+a^{2}} \\
& =\frac{1+a^{2}+b^{2}+c^{2}}{1+a^{2}} \neq 0
\end{aligned}
$$

Hence B can be reduced to I_{3} using four more row operations and consequently A is non-singular.
18. The proposition is clearly true when $n=1$. So let $n \geq 1$ and assume $\left(P^{-1} A P\right)^{n}=P^{-1} A^{n} P$. Then

$$
\begin{aligned}
\left(P^{-1} A P\right)^{n+1} & =\left(P^{-1} A P\right)^{n}\left(P^{-1} A P\right) \\
& =\left(P^{-1} A^{n} P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A^{n}\left(P P^{-1}\right) A P \\
& =P^{-1} A^{n} I A P \\
& =P^{-1}\left(A^{n} A\right) P \\
& =P^{-1} A^{n+1} P
\end{aligned}
$$

and the induction goes through.
19. Let $A=\left[\begin{array}{ll}2 / 3 & 1 / 4 \\ 1 / 3 & 3 / 4\end{array}\right]$ and $P=\left[\begin{array}{rr}1 & 3 \\ -1 & 4\end{array}\right]$. Then $P^{-1}=\frac{1}{7}\left[\begin{array}{rr}4 & -3 \\ 1 & 1\end{array}\right]$.

We then verify that $P^{-1} A P=\left[\begin{array}{cc}5 / 12 & 0 \\ 0 & 1\end{array}\right]$. Then from the previous question,
$P^{-1} A^{n} P=\left(P^{-1} A P\right)^{n}=\left[\begin{array}{cc}5 / 12 & 0 \\ 0 & 1\end{array}\right]^{n}=\left[\begin{array}{cc}(5 / 12)^{n} & 0 \\ 0 & 1^{n}\end{array}\right]=\left[\begin{array}{cc}(5 / 12)^{n} & 0 \\ 0 & 1\end{array}\right]$.
Hence

$$
\begin{aligned}
A^{n} & =P\left[\begin{array}{cc}
(5 / 12)^{n} & 0 \\
0 & 1
\end{array}\right] P^{-1}=\left[\begin{array}{rr}
1 & 3 \\
-1 & 4
\end{array}\right]\left[\begin{array}{cc}
(5 / 12)^{n} & 0 \\
0 & 1
\end{array}\right] \frac{1}{7}\left[\begin{array}{cc}
4 & -3 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{rr}
(5 / 12)^{n} & 3 \\
-(5 / 12)^{n} & 4
\end{array}\right]\left[\begin{array}{rr}
4 & -3 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{cc}
4(5 / 12)^{n}+3 & (-3)(5 / 12)^{n}+3 \\
-4(5 / 12)^{n}+4 & 3(5 / 12)^{n}+4
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{ll}
3 & 3 \\
4 & 4
\end{array}\right]+\frac{1}{7}(5 / 12)^{n}\left[\begin{array}{rr}
4 & -3 \\
-4 & 3
\end{array}\right] .
\end{aligned}
$$

Notice that $A^{n} \rightarrow \frac{1}{7}\left[\begin{array}{ll}3 & 3 \\ 4 & 4\end{array}\right]$ as $n \rightarrow \infty$. This problem is a special case of a more general result about Markov matrices.
20. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix whose elements are non-negative real numbers satisfying

$$
a \geq 0, b \geq 0, c \geq 0, d \geq 0, a+c=1=b+d
$$

Also let $P=\left[\begin{array}{rr}b & 1 \\ c & -1\end{array}\right]$ and suppose that $A \neq I_{2}$.
(i) $\operatorname{det} P=-b-c=-(b+c)$. Now $b+c \geq 0$. Also if $b+c=0$, then we would have $b=c=0$ and hence $d=a=1$, resulting in $A=I_{2}$. Hence $\operatorname{det} P<0$ and P is non-singular.

Next,

$$
\begin{aligned}
P^{-1} A P & =\frac{-1}{b+c}\left[\begin{array}{rr}
-1 & -1 \\
-c & b
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
b & 1 \\
c & -1
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{cc}
-a-c & -b-d \\
-a c+b c & -c b+b d
\end{array}\right]\left[\begin{array}{rr}
b & 1 \\
c & -1
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{cc}
-1 & -1 \\
-a c+b c & -c b+b d
\end{array}\right]\left[\begin{array}{rr}
b & 1 \\
c & -1
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{cc}
-b-c & 0 \\
(-a c+b c) b+(-c b+b d) c & -a c+b c+c b-b d
\end{array}\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
-a c b+b^{2} c-c^{2} b+b d c & =-c b(a+c)+b c(b+d) \\
& =-c b+b c=0
\end{aligned}
$$

Also

$$
\begin{aligned}
-(a+d-1)(b+c) & =-a b-a c-d b-d c+b+c \\
& =-a c+b(1-a)+c(1-d)-b d \\
& =-a c+b c+c b-b d
\end{aligned}
$$

Hence

$$
P^{-1} A P=\frac{-1}{b+c}\left[\begin{array}{cc}
-(b+c) & 0 \\
0 & -(a+d-1)(b+c)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & a+d-1
\end{array}\right] .
$$

(ii) We next prove that if we impose the extra restriction that $A \neq\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $|a+d-1|<1$. This will then have the following consequence:

$$
\begin{aligned}
A & =P\left[\begin{array}{cc}
1 & 0 \\
0 & a+d-1
\end{array}\right] P^{-1} \\
A^{n} & =P\left[\begin{array}{cc}
1 & 0 \\
0 & a+d-1
\end{array}\right]^{n} P^{-1} \\
& =P\left[\begin{array}{cc}
1 & 0 \\
0 & (a+d-1)^{n}
\end{array}\right] P^{-1} \\
& \rightarrow P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1} \\
& =\left[\begin{array}{cc}
b & 1 \\
c & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \frac{-1}{b+c}\left[\begin{array}{cc}
-1 & -1 \\
-c & b
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{ll}
b & 0 \\
c & 0
\end{array}\right]\left[\begin{array}{rr}
-1 & -1 \\
-c & b
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{ll}
-b & -b \\
-c & -c
\end{array}\right] \\
& =\frac{1}{b+c}\left[\begin{array}{ll}
b & b \\
c & c
\end{array}\right]
\end{aligned}
$$

where we have used the fact that $(a+d-1)^{n} \rightarrow 0$ as $n \rightarrow \infty$.
We first prove the inequality $|a+d-1| \leq 1$:

$$
\begin{aligned}
& a+d-1 \leq 1+d-1=d \leq 1 \\
& a+d-1 \geq 0+0-1=-1
\end{aligned}
$$

Next, if $a+d-1=1$, we have $a+d=2$; so $a=1=d$ and hence $c=0=b$, contradicting our assumption that $A \neq I_{2}$. Also if $a+d-1=-1$, then $a+d=0$; so $a=0=d$ and hence $c=1=b$ and hence $A=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$.
22. The system is inconsistent: We work towards reducing the augmented matrix:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1 & 2 & 4 \\
1 & 1 & 5 \\
3 & 5 & 12
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}\left[\begin{array}{rr|r}
1 & 2 & 4 \\
0 & -1 & 1 \\
0 & -1 & 0
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{rr|r}
1 & 2 & 4 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

The last row reveals inconsistency.
The system in matrix form is $A X=B$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1 \\
3 & 5
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad B=\left[\begin{array}{c}
4 \\
5 \\
12
\end{array}\right] .
$$

The normal equations are given by the matrix equation

$$
A^{t} A X=A^{t} B
$$

Now

$$
\begin{aligned}
& A^{t} A=\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 1 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1 \\
3 & 5
\end{array}\right]=\left[\begin{array}{ll}
11 & 18 \\
18 & 30
\end{array}\right] \\
& A^{t} B=\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 1 & 5
\end{array}\right]\left[\begin{array}{c}
4 \\
5 \\
12
\end{array}\right]=\left[\begin{array}{l}
45 \\
73
\end{array}\right] .
\end{aligned}
$$

Hence the normal equations are

$$
\begin{aligned}
& 11 x+18 y=45 \\
& 18 x+30 y=73
\end{aligned}
$$

These may be solved, for example, by Cramer's rule:

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{ll}
45 & 18 \\
73 & 30
\end{array}\right|}{\left|\begin{array}{ll}
11 & 18 \\
18 & 30
\end{array}\right|}=\frac{36}{6}=6 \\
& y=\frac{\left|\begin{array}{ll}
11 & 45 \\
18 & 73
\end{array}\right|}{\left|\begin{array}{ll}
11 & 18 \\
18 & 30
\end{array}\right|}=\frac{-7}{6} .
\end{aligned}
$$

23. Substituting the coordinates of the five points into the parabola equation gives the following equations:

$$
\begin{aligned}
a & =0 \\
a+b+c & =0 \\
a+2 b+4 c & =-1 \\
a+3 b+9 c & =4 \\
a+4 b+16 c & =8 .
\end{aligned}
$$

The associated normal equations are given by

$$
\left[\begin{array}{ccc}
5 & 10 & 30 \\
10 & 30 & 100 \\
30 & 100 & 354
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
11 \\
42 \\
160
\end{array}\right]
$$

which have the solution $a=1 / 5, b=-2, c=1$.
24. Suppose that A is symmetric, i.e. $A^{t}=A$ and that $A B$ is defined. Then

$$
\left(B^{t} A B\right)^{t}=B^{t} A^{t}\left(B^{t}\right)^{t}=B^{t} A B
$$

so $B^{t} A B$ is also symmetric.
25 . Let A be $m \times n$ and B be $n \times m$, where $m>n$. Then the homogeneous system $B X=0$ has a non-trivial solution X_{0}, as the number of unknowns is greater than the number of equations. Then

$$
(A B) X_{0}=A\left(B X_{0}\right)=A 0=0
$$

and the $m \times m$ matrix $A B$ is therefore singular, as $X_{0} \neq 0$.
26. (i) Let B be a singular $n \times n$ matrix. Then $B X=0$ for some non-zero column vector X. Then $(A B) X=A(B X)=A 0=0$ and hence $A B$ is also singular.
(ii) Suppose A is a singular $n \times n$ matrix. Then A^{t} is also singular and hence by (i) so is $B^{t} A^{t}=(A B)^{t}$. Consequently $A B$ is also singular

