SECTION 1.6

2. (i) $\left[\begin{array}{lll}0 & 0 & 0 \\ 2 & 4 & 0\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{lll}2 & 4 & 0 \\ 0 & 0 & 0\end{array}\right] R_{1} \rightarrow \frac{1}{2} R_{1}\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$;
(ii) $\left[\begin{array}{lll}0 & 1 & 3 \\ 1 & 2 & 4\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 3\end{array}\right] R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 3\end{array}\right]$;
(iii) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \begin{aligned} & R_{2} \rightarrow R_{2}-R_{1} \\ & R_{3} \rightarrow R_{3}-R_{1}\end{aligned}\left[\begin{array}{rrr}1 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & -1\end{array}\right]$

$$
\begin{gathered}
R_{1} \rightarrow R_{1}+R_{3} \\
R_{3} \rightarrow-R_{3} \\
R_{2} \leftrightarrow R_{3}
\end{gathered}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right] \begin{gathered}
R_{2} \rightarrow R_{2}+R_{3} \\
R_{3} \rightarrow-R_{3}
\end{gathered}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ;
$$

(iv) $\left[\begin{array}{rll}2 & 0 & 0 \\ 0 & 0 & 0 \\ -4 & 0 & 0\end{array}\right] \begin{gathered}R_{3} \rightarrow R_{3}+2 R_{1} \\ R_{1} \rightarrow \frac{1}{2} R_{1}\end{gathered}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
3. (a) $\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 2 & 3 & -1 & 8 \\ 1 & -1 & -1 & -8\end{array}\right] \begin{gathered}R_{2} \rightarrow R_{2}-2 R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{gathered}\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & -2 & -2 & -10\end{array}\right]$
$R_{1} \rightarrow R_{1}-R_{2}$
$R_{3} \rightarrow R_{3}+2 R_{2}$$\left[\begin{array}{rrrr}1 & 0 & 4 & -2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & -8 & -2\end{array}\right] R_{3} \rightarrow \frac{-1}{8} R_{3}\left[\begin{array}{rrrr}1 & 0 & 4 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 1 & \frac{1}{4}\end{array}\right]$
$\begin{aligned} & R_{1} \rightarrow R_{1}-4 R_{3} \\ & R_{2} \rightarrow R_{2}+3 R_{3}\end{aligned}\left[\begin{array}{cccc}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & \frac{19}{4} \\ 0 & 0 & 1 & \frac{1}{4}\end{array}\right]$.
The augmented matrix has been converted to reduced row-echelon form and we read off the unique solution $x=-3, y=\frac{19}{4}, z=\frac{1}{4}$.
(b) $\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 3 & -1 & 7 & 4 & 1 \\ -5 & 3 & -15 & -6 & 9\end{array}\right] \begin{aligned} & R_{2} \rightarrow R_{2}-3 R_{1} \\ & R_{3} \rightarrow R_{3}+5 R_{1}\end{aligned}\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 8 & -20 & 4 & 59\end{array}\right]$
$R_{3} \rightarrow R_{3}+2 R_{2}\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
From the last matrix we see that the original system is inconsistent.

The augmented matrix has been converted to reduced row-echelon form and we read off the complete solution $x=-\frac{1}{2}-3 z, y=-\frac{3}{2}-2 z$, with z arbitrary.

$$
\begin{aligned}
& \text { 4. }\left[\begin{array}{rrrr}
2 & -1 & 3 & a \\
3 & 1 & -5 & b \\
-5 & -5 & 21 & c
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{rrrc}
2 & -1 & 3 & a \\
1 & 2 & -8 & b-a \\
-5 & -5 & 21 & c
\end{array}\right] \\
& R_{1} \leftrightarrow R_{2}\left[\begin{array}{rrrcc}
1 & 2 & -8 & b-a \\
2 & -1 & 3 & a \\
-5 & -5 & 21 & c
\end{array}\right] \begin{array}{c}
\\
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}+5 R_{1}
\end{array}\left[\begin{array}{rrcc}
1 & 2 & -8 & b-a \\
0 & -5 & 19 & -2 b+3 a \\
0 & 5 & -19 & 5 b-5 a+c
\end{array}\right] \\
& R_{3} \rightarrow R_{3}+R_{2}\left[\begin{array}{rrccc}
1 & 2 & -8 & b-a \\
0 & 1 & \frac{-19}{5} & \frac{2 b-3 a}{5} \\
0 & 0 & 0 & 3 b-2 a+c
\end{array}\right]
\end{aligned}
$$

$$
R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{cccc}
1 & 0 & \frac{-2}{5} & \frac{(b+a)}{5} \\
0 & 1 & \frac{-19}{5} & \frac{2 b-3 a}{5} \\
0 & 0 & 0 & 3 b-2 a+c
\end{array}\right]
$$

From the last matrix we see that the original system is inconsistent if $3 b-2 a+c \neq 0$. If $3 b-2 a+c=0$, the system is consistent and the solution is

$$
x=\frac{(b+a)}{5}+\frac{2}{5} z, y=\frac{(2 b-3 a)}{5}+\frac{19}{5} z,
$$

where z is arbitrary.

$$
\begin{aligned}
& \text { 5. }\left[\begin{array}{ccc}
1 & 1 & 1 \\
t & 1 & t \\
1+t & 2 & 3
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-t R_{1} \\
R_{3} \rightarrow R_{3}-(1+t) R_{1}
\end{array}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1-t & 0 \\
0 & 1-t & 2-t
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1-t & 0 \\
0 & 0 & 2-t
\end{array}\right]=B .
\end{aligned}
$$

Case 1. $\quad t \neq 2$. No solution.

$$
\begin{aligned}
& \text { (c) }\left[\begin{array}{rrrr}
3 & -1 & 7 & 0 \\
2 & -1 & 4 & \frac{1}{2} \\
1 & -1 & 1 & 1 \\
6 & -4 & 10 & 3
\end{array}\right] R_{1} \leftrightarrow R_{3}\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
2 & -1 & 4 & \frac{1}{2} \\
3 & -1 & 7 & 0 \\
6 & -4 & 10 & 3
\end{array}\right] \\
& \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{4} \rightarrow R_{4}-6 R_{1}
\end{array}\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
0 & 1 & 2 & \frac{-3}{2} \\
0 & 2 & 4 & -3 \\
0 & 2 & 4 & -3
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+R_{2} \\
R_{4} \rightarrow R_{4}-R_{3} \\
R_{3} \rightarrow R_{3}-2 R_{2}
\end{array}\left[\begin{array}{cccc}
1 & 0 & 3 & \frac{-1}{2} \\
0 & 1 & 2 & \frac{-3}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Case 2. $t=2 . B=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
We read off the unique solution $x=1, y=0$.
6. Method 1 .

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
-3 & 1 & 1 & 1 \\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}-R_{4} \\
R_{2} \rightarrow R_{2}-R_{4} \\
R_{3} \rightarrow R_{3}-R_{4}
\end{array}\left[\begin{array}{rrrr}
-4 & 0 & 0 & 4 \\
0 & -4 & 0 & 4 \\
0 & 0 & -4 & 4 \\
1 & 1 & 1 & -3
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{lrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 1 & -3
\end{array}\right] R_{4} \rightarrow R_{4}-R_{3}-R_{2}-R_{1}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] . }
\end{aligned}
$$

Hence the given homogeneous system has complete solution

$$
x_{1}=x_{4}, x_{2}=x_{4}, x_{3}=x_{4},
$$

with x_{4} arbitrary.
Method 2. Write the system as

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{1} \\
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{2} \\
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{3} \\
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{4} .
\end{aligned}
$$

Then it is immediate that any solution must satisfy $x_{1}=x_{2}=x_{3}=x_{4}$. Conversely, if $x_{1}, x_{2}, x_{3}, x_{4}$ satisfy $x_{1}=x_{2}=x_{3}=x_{4}$, we get a solution.
7.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\lambda-3 & 1 \\
1 & \lambda-3
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc}
1 & \lambda-3 \\
\lambda-3 & 1
\end{array}\right]} \\
& \quad R_{2} \rightarrow R_{2}-(\lambda-3) R_{1}\left[\begin{array}{cc}
1 & \lambda-3 \\
0 & -\lambda^{2}+6 \lambda-8
\end{array}\right]=B .
\end{aligned}
$$

Case 1: $-\lambda^{2}+6 \lambda-8 \neq 0$. That is $-(\lambda-2)(\lambda-4) \neq 0$ or $\lambda \neq 2$, 4. Here B is row equivalent to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$:

$$
R_{2} \rightarrow \frac{1}{-\lambda^{2}+6 \lambda-8} R_{2}\left[\begin{array}{cc}
1 & \lambda-3 \\
0 & 1
\end{array}\right] R_{1} \rightarrow R_{1}-(\lambda-3) R_{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Hence we get the trivial solution $x=0, y=0$.

Case 2: $\lambda=2$. Then $B=\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right]$ and the solution is $x=y$, with y arbitrary.
Case 3: $\lambda=4$. Then $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and the solution is $x=-y$, with y arbitrary.
8.

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
3 & 1 & 1 & 1 \\
5 & -1 & 1 & -1
\end{array}\right] R_{1} } & \rightarrow \frac{1}{3} R_{1}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
5 & -1 & 1 & -1
\end{array}\right] \\
R_{2} & \rightarrow R_{2}-5 R_{1}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & -\frac{8}{3} & -\frac{2}{3} & -\frac{8}{3}
\end{array}\right] \\
R_{2} & \rightarrow \frac{-3}{8} R_{2}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 1 & \frac{1}{4} & 1
\end{array}\right] \\
R_{1} & \rightarrow R_{1}-\frac{1}{3} R_{2}\left[\begin{array}{rrrr}
1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{1}{4} & 1
\end{array}\right] .
\end{aligned}
$$

Hence the solution of the associated homogeneous system is

$$
x_{1}=-\frac{1}{4} x_{3}, x_{2}=-\frac{1}{4} x_{3}-x_{4},
$$

with x_{3} and x_{4} arbitrary.
9.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1-n & 1 & \cdots & 1 \\
1 & 1-n & \cdots & 1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] \begin{array}{c}
R_{1} \rightarrow R_{1}-R_{n} \\
R_{2} \rightarrow R_{2}-R_{n} \\
\vdots \\
R_{n-1} \rightarrow R_{n-1}-R_{n}
\end{array}\left[\begin{array}{cccc}
-n & 0 & \cdots & n \\
0 & -n & \cdots & n \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & \cdots & -1 \\
0 & 1 & \cdots & -1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] \quad R_{n} \rightarrow R_{n}-R_{n-1} \cdots-R_{1}\left[\begin{array}{cclc}
1 & 0 & \cdots & -1 \\
0 & 1 & \cdots & -1 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] .
\end{aligned}
$$

The last matrix is in reduced row-echelon form.
Consequently the homogeneous system with coefficient matrix A has the solution

$$
x_{1}=x_{n}, x_{2}=x_{n}, \ldots, x_{n-1}=x_{n},
$$

with x_{n} arbitrary.
Alternatively, writing the system in the form

$$
\begin{aligned}
x_{1}+\cdots+x_{n} & =n x_{1} \\
x_{1}+\cdots+x_{n} & =n x_{2} \\
& \vdots \\
x_{1}+\cdots+x_{n} & =n x_{n}
\end{aligned}
$$

shows that any solution must satisfy $n x_{1}=n x_{2}=\cdots=n x_{n}$, so $x_{1}=x_{2}=$ $\cdots=x_{n}$. Conversely if $x_{1}=x_{n}, \ldots, x_{n-1}=x_{n}$, we see that x_{1}, \ldots, x_{n} is a solution.
10. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and assume that $a d-b c \neq 0$.

Case 1: $a \neq 0$.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] R_{1} \rightarrow \frac{1}{a} R_{1}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
c & d
\end{array}\right] R_{2} \rightarrow R_{2}-c R_{1}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
0 & \frac{a d-b c}{a}
\end{array}\right]} \\
& R_{2} \rightarrow \frac{a}{a d-b c} R_{2}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right] R_{1} \rightarrow R_{1}-\frac{b}{a} R_{2}\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Case 2: $a=0$. Then $b c \neq 0$ and hence $c \neq 0$.

$$
A=\left[\begin{array}{ll}
0 & b \\
c & d
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc}
c & d \\
0 & b
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \frac{d}{c} \\
0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So in both cases, A has reduced row-echelon form equal to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
11. We simplify the augmented matrix of the system using row operations:

$$
\begin{aligned}
& {\left[\begin{array}{rrcc}
1 & 2 & -3 & 4 \\
3 & -1 & 5 & 2 \\
4 & 1 & a^{2}-14 & a+2
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1}
\end{array}\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & -7 & 14 \\
0 & -7 & a^{2}-2 \\
a-14
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& R_{2} \rightarrow \frac{-1}{7} R_{2} \\
& R_{1} \rightarrow R_{1}-2 R_{2}
\end{aligned}\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & 1 & -2 & \frac{10}{7} \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{cccc}
1 & 0 & 1 & \frac{8}{7} \\
0 & 1 & -2 & \frac{10}{7} \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right] .
$$

Denote the last matrix by B.

Case 1: $a^{2}-16 \neq 0$. i.e. $a \neq \pm 4$. Then

$$
\begin{gathered}
R_{3} \rightarrow \frac{1}{a^{2}-16} R_{3} \\
R_{1} \rightarrow R_{1}-R_{3} \\
R_{2} \rightarrow R_{2}+2 R_{3}
\end{gathered}\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{8 a+25}{7(a+4)} \\
0 & 1 & 0 & \frac{10 a+54}{7(a+4)} \\
0 & 0 & 1 & \frac{1}{a+4}
\end{array}\right]
$$

and we get the unique solution

$$
x=\frac{8 a+25}{7(a+4)}, y=\frac{10 a+54}{7(a+4)}, z=\frac{1}{a+4} .
$$

Case 2: $a=-4$. Then $B=\left[\begin{array}{rrrr}1 & 0 & 1 & \frac{8}{7} \\ 0 & 1 & -2 & \frac{10}{7} \\ 0 & 0 & 0 & -8\end{array}\right]$, so our system is inconsistent.
Case 3: $a=4$. Then $B=\left[\begin{array}{rrrr}1 & 0 & 1 & \frac{8}{7} \\ 0 & 1 & -2 & \frac{10}{7} \\ 0 & 0 & 0 & 0\end{array}\right]$. We read off that the system is consistent, with complete solution $x=\frac{8}{7}-z, y=\frac{10}{7}+2 z$, where z is arbitrary.
12. We reduce the augmented array of the system to reduced row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]} \\
R_{3} \rightarrow R_{3}+R_{1}\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] . \\
R_{3} \rightarrow R_{3}+R_{2}\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \stackrel{\substack{ \\
R_{1} \rightarrow R_{1}+R_{4} \\
R_{3} \leftrightarrow R_{4}}}{ }\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

The last matrix is in reduced row-echelon form and we read off the solution of the corresponding homogeneous system:

$$
\begin{aligned}
& x_{1}=-x_{4}-x_{5}=x_{4}+x_{5} \\
& x_{2}=-x_{4}-x_{5}=x_{4}+x_{5} \\
& x_{3}=-x_{4}=x_{4},
\end{aligned}
$$

where x_{4} and x_{5} are arbitrary elements of \mathbb{Z}_{2}. Hence there are four solutions:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0	0	0	0	0
1	1	0	0	1
1	1	1	1	0
0	0	1	1	1

13. (a) We reduce the augmented matrix to reduced row-echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
4 & 1 & 4 & 1 \\
3 & 1 & 2 & 0
\end{array}\right] \quad R_{1} \rightarrow 3 R_{1}\left[\begin{array}{llll}
1 & 3 & 4 & 2 \\
4 & 1 & 4 & 1 \\
3 & 1 & 2 & 0
\end{array}\right]} \\
& \begin{array}{c}
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+2 R_{1}
\end{array}\left[\begin{array}{cccc}
1 & 3 & 4 & 2 \\
0 & 4 & 3 & 3 \\
0 & 2 & 0 & 4
\end{array}\right] \quad R_{2} \rightarrow 4 R_{2}\left[\begin{array}{cccc}
1 & 3 & 4 & 2 \\
0 & 1 & 2 & 2 \\
0 & 2 & 0 & 4
\end{array}\right] \\
& \begin{array}{l}
R_{1} \rightarrow R_{1}+2 R_{2} \\
R_{3} \rightarrow R_{3}+3 R_{2}
\end{array}\left[\begin{array}{llll}
1 & 0 & 3 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+2 R_{3} \\
R_{2} \rightarrow R_{2}+3 R_{3}
\end{array}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Consequently the system has the unique solution $x=1, y=2, z=0$.
(b) Again we reduce the augmented matrix to reduced row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
4 & 1 & 4 & 1 \\
1 & 1 & 0 & 3
\end{array}\right] R_{1} \leftrightarrow R_{3}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
4 & 1 & 4 & 1 \\
2 & 1 & 3 & 4
\end{array}\right]} \\
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+3 R_{1}
\end{gathered}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 2 & 4 & 4 \\
0 & 4 & 3 & 3
\end{array}\right] R_{2} \rightarrow 3 R_{2}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 1 & 2 & 2 \\
0 & 4 & 3 & 3
\end{array}\right] .
$$

We read off the complete solution

$$
\begin{aligned}
& x=1-3 z=1+2 z \\
& y=2-2 z=2+3 z
\end{aligned}
$$

where z is an arbitrary element of \mathbb{Z}_{5}.
14. Suppose that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$ are solutions of the system of linear equations

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad 1 \leq i \leq m
$$

Then

$$
\sum_{j=1}^{n} a_{i j} \alpha_{j}=b_{i} \quad \text { and } \quad \sum_{j=1}^{n} a_{i j} \beta_{j}=b_{i}
$$

for $1 \leq i \leq m$.
Let $\gamma_{i}=(1-t) \alpha_{i}+t \beta_{i}$ for $1 \leq i \leq m$. Then $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is a solution of the given system. For

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} \gamma_{j} & =\sum_{j=1}^{n} a_{i j}\left\{(1-t) \alpha_{j}+t \beta_{j}\right\} \\
& =\sum_{j=1}^{n} a_{i j}(1-t) \alpha_{j}+\sum_{j=1}^{n} a_{i j} t \beta_{j} \\
& =(1-t) b_{i}+t b_{i} \\
& =b_{i}
\end{aligned}
$$

15. Suppose that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a solution of the system of linear equations

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad 1 \leq i \leq m \tag{1}
\end{equation*}
$$

Then the system can be rewritten as

$$
\sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n} a_{i j} \alpha_{j}, \quad 1 \leq i \leq m
$$

or equivalently

$$
\sum_{j=1}^{n} a_{i j}\left(x_{j}-\alpha_{j}\right)=0, \quad 1 \leq i \leq m
$$

So we have

$$
\sum_{j=1}^{n} a_{i j} y_{j}=0, \quad 1 \leq i \leq m
$$

where $x_{j}-\alpha_{j}=y_{j}$. Hence $x_{j}=\alpha_{j}+y_{j}, 1 \leq j \leq n$, where $\left(y_{1}, \ldots, y_{n}\right)$ is a solution of the associated homogeneous system. Conversely if $\left(y_{1}, \ldots, y_{n}\right)$
is a solution of the associated homogeneous system and $x_{j}=\alpha_{j}+y_{j}, 1 \leq$ $j \leq n$, then reversing the argument shows that $\left(x_{1}, \ldots, x_{n}\right)$ is a solution of the system 2 .
16. We simplify the augmented matrix using row operations, working towards row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
a & 1 & 1 & 1 & b \\
3 & 2 & 0 & a & 1+a
\end{array}\right] \begin{array}{c}
\\
R_{2} \rightarrow R_{2}-a R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1-a & 1+a & 1-a & b-a \\
0 & -1 & 3 & a-3 & a-2
\end{array}\right]} \\
R_{2} \leftrightarrow R_{3} \\
R_{2} \rightarrow-R_{2}
\end{gathered}\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 3-a & 2-a \\
0 & 1-a & 1+a & 1-a & b-a
\end{array}\right] .
$$

Case 1: $a \neq 2$. Then $4-2 a \neq 0$ and

$$
B \rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 3-a & 2-a \\
0 & 0 & 1 & \frac{a-1}{2} & \frac{-a^{2}+2 a+b-2}{4-2 a}
\end{array}\right]
$$

Hence we can solve for x, y and z in terms of the arbitrary variable w.
Case 2: $a=2$. Then

$$
B=\left[\begin{array}{rrrcc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & b-2
\end{array}\right]
$$

Hence there is no solution if $b \neq 2$. However if $b=2$, then

$$
B=\left[\begin{array}{rrrrr}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and we get the solution $x=1-2 z, y=3 z-w$, where w is arbitrary.
17. (a) We first prove that $1+1+1+1=0$. Observe that the elements

$$
1+0, \quad 1+1, \quad 1+a, \quad 1+b
$$

are distinct elements of F by virtue of the cancellation law for addition. For this law states that $1+x=1+y \Rightarrow x=y$ and hence $x \neq y \Rightarrow 1+x \neq 1+y$.

Hence the above four elements are just the elements $0,1, a, b$ in some order. Consequently

$$
\begin{aligned}
(1+0)+(1+1)+(1+a)+(1+b) & =0+1+a+b \\
(1+1+1+1)+(0+1+a+b) & =0+(0+1+a+b)
\end{aligned}
$$

so $1+1+1+1=0$ after cancellation.
Now $1+1+1+1=(1+1)(1+1)$, so we have $x^{2}=0$, where $x=1+1$. Hence $x=0$. Then $a+a=a(1+1)=a \cdot 0=0$.

Next $a+b=1$. For $a+b$ must be one of $0,1, a, b$. Clearly we can't have $a+b=a$ or b; also if $a+b=0$, then $a+b=a+a$ and hence $b=a$; hence $a+b=1$. Then

$$
a+1=a+(a+b)=(a+a)+b=0+b=b
$$

Similarly $b+1=a$. Consequently the addition table for F is

+	0	1		b
0	0	1	a	b
	1	0	b	a
a	a	b	0	1
b	b	a	1	0

We now find the multiplication table. First, $a b$ must be one of $1, a, b$; however we can't have $a b=a$ or b, so this leaves $a b=1$.

Next $a^{2}=b$. For a^{2} must be one of $1, a, b$; however $a^{2}=a \Rightarrow a=0$ or $a=1$; also

$$
a^{2}=1 \Rightarrow a^{2}-1=0 \Rightarrow(a-1)(a+1)=0 \Rightarrow(a-1)^{2}=0 \Rightarrow a=1
$$

hence $a^{2}=b$. Similarly $b^{2}=a$. Consequently the multiplication table for F is

\times	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

(b) We use the addition and multiplication tables for F :

$$
A=\left[\begin{array}{cccc}
1 & a & b & a \\
a & b & b & 1 \\
1 & 1 & 1 & a
\end{array}\right] \begin{gathered}
R_{2} \rightarrow R_{2}+a R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{gathered}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & 0 & a & a \\
0 & b & a & 0
\end{array}\right]
$$

$$
\begin{array}{r}
R_{2} \leftrightarrow R_{3}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & b & a & 0 \\
0 & 0 & a & a
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow a R_{2} \\
R_{3} \rightarrow b R_{3}
\end{array}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \\
R_{1} \leftrightarrow R_{1}+a R_{2}\left[\begin{array}{llll}
1 & 0 & a & a \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+a R_{3} \\
R_{2} \rightarrow R_{2}+b R_{3}
\end{array}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{array}
$$

The last matrix is in reduced row-echelon form.

SECTION 1.6

2. (i) $\left[\begin{array}{lll}0 & 0 & 0 \\ 2 & 4 & 0\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{lll}2 & 4 & 0 \\ 0 & 0 & 0\end{array}\right] R_{1} \rightarrow \frac{1}{2} R_{1}\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$;
(ii) $\left[\begin{array}{lll}0 & 1 & 3 \\ 1 & 2 & 4\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 3\end{array}\right] R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 3\end{array}\right]$;
(iii) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \begin{aligned} & R_{2} \rightarrow R_{2}-R_{1} \\ & R_{3} \rightarrow R_{3}-R_{1}\end{aligned}\left[\begin{array}{rrr}1 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & -1\end{array}\right]$

$$
\begin{gathered}
R_{1} \rightarrow R_{1}+R_{3} \\
R_{3} \rightarrow-R_{3} \\
R_{2} \leftrightarrow R_{3}
\end{gathered}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right] \begin{gathered}
R_{2} \rightarrow R_{2}+R_{3} \\
R_{3} \rightarrow-R_{3}
\end{gathered}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ;
$$

(iv) $\left[\begin{array}{rll}2 & 0 & 0 \\ 0 & 0 & 0 \\ -4 & 0 & 0\end{array}\right] \begin{gathered}R_{3} \rightarrow R_{3}+2 R_{1} \\ R_{1} \rightarrow \frac{1}{2} R_{1}\end{gathered}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
3. (a) $\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 2 & 3 & -1 & 8 \\ 1 & -1 & -1 & -8\end{array}\right] \begin{gathered}R_{2} \rightarrow R_{2}-2 R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{gathered}\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & -2 & -2 & -10\end{array}\right]$
$R_{1} \rightarrow R_{1}-R_{2}$
$R_{3} \rightarrow R_{3}+2 R_{2}$$\left[\begin{array}{rrrr}1 & 0 & 4 & -2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & -8 & -2\end{array}\right] R_{3} \rightarrow \frac{-1}{8} R_{3}\left[\begin{array}{rrrr}1 & 0 & 4 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 1 & \frac{1}{4}\end{array}\right]$
$\begin{aligned} & R_{1} \rightarrow R_{1}-4 R_{3} \\ & R_{2} \rightarrow R_{2}+3 R_{3}\end{aligned}\left[\begin{array}{cccc}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & \frac{19}{4} \\ 0 & 0 & 1 & \frac{1}{4}\end{array}\right]$.
The augmented matrix has been converted to reduced row-echelon form and we read off the unique solution $x=-3, y=\frac{19}{4}, z=\frac{1}{4}$.
(b) $\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 3 & -1 & 7 & 4 & 1 \\ -5 & 3 & -15 & -6 & 9\end{array}\right] \begin{aligned} & R_{2} \rightarrow R_{2}-3 R_{1} \\ & R_{3} \rightarrow R_{3}+5 R_{1}\end{aligned}\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 8 & -20 & 4 & 59\end{array}\right]$
$R_{3} \rightarrow R_{3}+2 R_{2}\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
From the last matrix we see that the original system is inconsistent.

The augmented matrix has been converted to reduced row-echelon form and we read off the complete solution $x=-\frac{1}{2}-3 z, y=-\frac{3}{2}-2 z$, with z arbitrary.

$$
\begin{aligned}
& \text { 4. }\left[\begin{array}{rrrr}
2 & -1 & 3 & a \\
3 & 1 & -5 & b \\
-5 & -5 & 21 & c
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{rrrc}
2 & -1 & 3 & a \\
1 & 2 & -8 & b-a \\
-5 & -5 & 21 & c
\end{array}\right] \\
& R_{1} \leftrightarrow R_{2}\left[\begin{array}{rrrcc}
1 & 2 & -8 & b-a \\
2 & -1 & 3 & a \\
-5 & -5 & 21 & c
\end{array}\right] \begin{array}{c}
\\
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}+5 R_{1}
\end{array}\left[\begin{array}{rrcc}
1 & 2 & -8 & b-a \\
0 & -5 & 19 & -2 b+3 a \\
0 & 5 & -19 & 5 b-5 a+c
\end{array}\right] \\
& R_{3} \rightarrow R_{3}+R_{2}\left[\begin{array}{rrccc}
1 & 2 & -8 & b-a \\
0 & 1 & \frac{-19}{5} & \frac{2 b-3 a}{5} \\
0 & 0 & 0 & 3 b-2 a+c
\end{array}\right]
\end{aligned}
$$

$$
R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{cccc}
1 & 0 & \frac{-2}{5} & \frac{(b+a)}{5} \\
0 & 1 & \frac{-19}{5} & \frac{2 b-3 a}{5} \\
0 & 0 & 0 & 3 b-2 a+c
\end{array}\right]
$$

From the last matrix we see that the original system is inconsistent if $3 b-2 a+c \neq 0$. If $3 b-2 a+c=0$, the system is consistent and the solution is

$$
x=\frac{(b+a)}{5}+\frac{2}{5} z, y=\frac{(2 b-3 a)}{5}+\frac{19}{5} z,
$$

where z is arbitrary.

$$
\begin{aligned}
& \text { 5. }\left[\begin{array}{ccc}
1 & 1 & 1 \\
t & 1 & t \\
1+t & 2 & 3
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-t R_{1} \\
R_{3} \rightarrow R_{3}-(1+t) R_{1}
\end{array}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1-t & 0 \\
0 & 1-t & 2-t
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1-t & 0 \\
0 & 0 & 2-t
\end{array}\right]=B .
\end{aligned}
$$

Case 1. $\quad t \neq 2$. No solution.

$$
\begin{aligned}
& \text { (c) }\left[\begin{array}{rrrr}
3 & -1 & 7 & 0 \\
2 & -1 & 4 & \frac{1}{2} \\
1 & -1 & 1 & 1 \\
6 & -4 & 10 & 3
\end{array}\right] R_{1} \leftrightarrow R_{3}\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
2 & -1 & 4 & \frac{1}{2} \\
3 & -1 & 7 & 0 \\
6 & -4 & 10 & 3
\end{array}\right] \\
& \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{4} \rightarrow R_{4}-6 R_{1}
\end{array}\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
0 & 1 & 2 & \frac{-3}{2} \\
0 & 2 & 4 & -3 \\
0 & 2 & 4 & -3
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+R_{2} \\
R_{4} \rightarrow R_{4}-R_{3} \\
R_{3} \rightarrow R_{3}-2 R_{2}
\end{array}\left[\begin{array}{cccc}
1 & 0 & 3 & \frac{-1}{2} \\
0 & 1 & 2 & \frac{-3}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Case 2. $t=2 . B=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
We read off the unique solution $x=1, y=0$.
6. Method 1 .

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
-3 & 1 & 1 & 1 \\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}-R_{4} \\
R_{2} \rightarrow R_{2}-R_{4} \\
R_{3} \rightarrow R_{3}-R_{4}
\end{array}\left[\begin{array}{rrrr}
-4 & 0 & 0 & 4 \\
0 & -4 & 0 & 4 \\
0 & 0 & -4 & 4 \\
1 & 1 & 1 & -3
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{lrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 1 & -3
\end{array}\right] R_{4} \rightarrow R_{4}-R_{3}-R_{2}-R_{1}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] . }
\end{aligned}
$$

Hence the given homogeneous system has complete solution

$$
x_{1}=x_{4}, x_{2}=x_{4}, x_{3}=x_{4},
$$

with x_{4} arbitrary.
Method 2. Write the system as

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{1} \\
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{2} \\
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{3} \\
x_{1}+x_{2}+x_{3}+x_{4} & =4 x_{4} .
\end{aligned}
$$

Then it is immediate that any solution must satisfy $x_{1}=x_{2}=x_{3}=x_{4}$. Conversely, if $x_{1}, x_{2}, x_{3}, x_{4}$ satisfy $x_{1}=x_{2}=x_{3}=x_{4}$, we get a solution.
7.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\lambda-3 & 1 \\
1 & \lambda-3
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc}
1 & \lambda-3 \\
\lambda-3 & 1
\end{array}\right]} \\
& \quad R_{2} \rightarrow R_{2}-(\lambda-3) R_{1}\left[\begin{array}{cc}
1 & \lambda-3 \\
0 & -\lambda^{2}+6 \lambda-8
\end{array}\right]=B .
\end{aligned}
$$

Case 1: $-\lambda^{2}+6 \lambda-8 \neq 0$. That is $-(\lambda-2)(\lambda-4) \neq 0$ or $\lambda \neq 2$, 4. Here B is row equivalent to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$:

$$
R_{2} \rightarrow \frac{1}{-\lambda^{2}+6 \lambda-8} R_{2}\left[\begin{array}{cc}
1 & \lambda-3 \\
0 & 1
\end{array}\right] R_{1} \rightarrow R_{1}-(\lambda-3) R_{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Hence we get the trivial solution $x=0, y=0$.

Case 2: $\lambda=2$. Then $B=\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right]$ and the solution is $x=y$, with y arbitrary.
Case 3: $\lambda=4$. Then $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and the solution is $x=-y$, with y arbitrary.
8.

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
3 & 1 & 1 & 1 \\
5 & -1 & 1 & -1
\end{array}\right] R_{1} } & \rightarrow \frac{1}{3} R_{1}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
5 & -1 & 1 & -1
\end{array}\right] \\
R_{2} & \rightarrow R_{2}-5 R_{1}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & -\frac{8}{3} & -\frac{2}{3} & -\frac{8}{3}
\end{array}\right] \\
R_{2} & \rightarrow \frac{-3}{8} R_{2}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 1 & \frac{1}{4} & 1
\end{array}\right] \\
R_{1} & \rightarrow R_{1}-\frac{1}{3} R_{2}\left[\begin{array}{rrrr}
1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{1}{4} & 1
\end{array}\right] .
\end{aligned}
$$

Hence the solution of the associated homogeneous system is

$$
x_{1}=-\frac{1}{4} x_{3}, x_{2}=-\frac{1}{4} x_{3}-x_{4},
$$

with x_{3} and x_{4} arbitrary.
9.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1-n & 1 & \cdots & 1 \\
1 & 1-n & \cdots & 1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] \begin{array}{c}
R_{1} \rightarrow R_{1}-R_{n} \\
R_{2} \rightarrow R_{2}-R_{n} \\
\vdots \\
R_{n-1} \rightarrow R_{n-1}-R_{n}
\end{array}\left[\begin{array}{cccc}
-n & 0 & \cdots & n \\
0 & -n & \cdots & n \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & \cdots & -1 \\
0 & 1 & \cdots & -1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] \quad R_{n} \rightarrow R_{n}-R_{n-1} \cdots-R_{1}\left[\begin{array}{cclc}
1 & 0 & \cdots & -1 \\
0 & 1 & \cdots & -1 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] .
\end{aligned}
$$

The last matrix is in reduced row-echelon form.
Consequently the homogeneous system with coefficient matrix A has the solution

$$
x_{1}=x_{n}, x_{2}=x_{n}, \ldots, x_{n-1}=x_{n},
$$

with x_{n} arbitrary.
Alternatively, writing the system in the form

$$
\begin{aligned}
x_{1}+\cdots+x_{n} & =n x_{1} \\
x_{1}+\cdots+x_{n} & =n x_{2} \\
& \vdots \\
x_{1}+\cdots+x_{n} & =n x_{n}
\end{aligned}
$$

shows that any solution must satisfy $n x_{1}=n x_{2}=\cdots=n x_{n}$, so $x_{1}=x_{2}=$ $\cdots=x_{n}$. Conversely if $x_{1}=x_{n}, \ldots, x_{n-1}=x_{n}$, we see that x_{1}, \ldots, x_{n} is a solution.
10. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and assume that $a d-b c \neq 0$.

Case 1: $a \neq 0$.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] R_{1} \rightarrow \frac{1}{a} R_{1}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
c & d
\end{array}\right] R_{2} \rightarrow R_{2}-c R_{1}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
0 & \frac{a d-b c}{a}
\end{array}\right]} \\
& R_{2} \rightarrow \frac{a}{a d-b c} R_{2}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right] R_{1} \rightarrow R_{1}-\frac{b}{a} R_{2}\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Case 2: $a=0$. Then $b c \neq 0$ and hence $c \neq 0$.

$$
A=\left[\begin{array}{ll}
0 & b \\
c & d
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc}
c & d \\
0 & b
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \frac{d}{c} \\
0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So in both cases, A has reduced row-echelon form equal to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
11. We simplify the augmented matrix of the system using row operations:

$$
\begin{aligned}
& {\left[\begin{array}{rrcc}
1 & 2 & -3 & 4 \\
3 & -1 & 5 & 2 \\
4 & 1 & a^{2}-14 & a+2
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1}
\end{array}\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & -7 & 14 \\
0 & -7 & a^{2}-2 \\
a-14
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& R_{2} \rightarrow \frac{-1}{7} R_{2} \\
& R_{1} \rightarrow R_{1}-2 R_{2}
\end{aligned}\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & 1 & -2 & \frac{10}{7} \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{cccc}
1 & 0 & 1 & \frac{8}{7} \\
0 & 1 & -2 & \frac{10}{7} \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right] .
$$

Denote the last matrix by B.

Case 1: $a^{2}-16 \neq 0$. i.e. $a \neq \pm 4$. Then

$$
\begin{gathered}
R_{3} \rightarrow \frac{1}{a^{2}-16} R_{3} \\
R_{1} \rightarrow R_{1}-R_{3} \\
R_{2} \rightarrow R_{2}+2 R_{3}
\end{gathered}\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{8 a+25}{7(a+4)} \\
0 & 1 & 0 & \frac{10 a+54}{7(a+4)} \\
0 & 0 & 1 & \frac{1}{a+4}
\end{array}\right]
$$

and we get the unique solution

$$
x=\frac{8 a+25}{7(a+4)}, y=\frac{10 a+54}{7(a+4)}, z=\frac{1}{a+4} .
$$

Case 2: $a=-4$. Then $B=\left[\begin{array}{rrrr}1 & 0 & 1 & \frac{8}{7} \\ 0 & 1 & -2 & \frac{10}{7} \\ 0 & 0 & 0 & -8\end{array}\right]$, so our system is inconsistent.
Case 3: $a=4$. Then $B=\left[\begin{array}{rrrr}1 & 0 & 1 & \frac{8}{7} \\ 0 & 1 & -2 & \frac{10}{7} \\ 0 & 0 & 0 & 0\end{array}\right]$. We read off that the system is consistent, with complete solution $x=\frac{8}{7}-z, y=\frac{10}{7}+2 z$, where z is arbitrary.
12. We reduce the augmented array of the system to reduced row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]} \\
R_{3} \rightarrow R_{3}+R_{1}\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] . \\
R_{3} \rightarrow R_{3}+R_{2}\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \stackrel{\substack{ \\
R_{1} \rightarrow R_{1}+R_{4} \\
R_{3} \leftrightarrow R_{4}}}{ }\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

The last matrix is in reduced row-echelon form and we read off the solution of the corresponding homogeneous system:

$$
\begin{aligned}
& x_{1}=-x_{4}-x_{5}=x_{4}+x_{5} \\
& x_{2}=-x_{4}-x_{5}=x_{4}+x_{5} \\
& x_{3}=-x_{4}=x_{4},
\end{aligned}
$$

where x_{4} and x_{5} are arbitrary elements of \mathbb{Z}_{2}. Hence there are four solutions:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0	0	0	0	0
1	1	0	0	1
1	1	1	1	0
0	0	1	1	1

13. (a) We reduce the augmented matrix to reduced row-echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
4 & 1 & 4 & 1 \\
3 & 1 & 2 & 0
\end{array}\right] \quad R_{1} \rightarrow 3 R_{1}\left[\begin{array}{llll}
1 & 3 & 4 & 2 \\
4 & 1 & 4 & 1 \\
3 & 1 & 2 & 0
\end{array}\right]} \\
& \begin{array}{c}
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+2 R_{1}
\end{array}\left[\begin{array}{cccc}
1 & 3 & 4 & 2 \\
0 & 4 & 3 & 3 \\
0 & 2 & 0 & 4
\end{array}\right] \quad R_{2} \rightarrow 4 R_{2}\left[\begin{array}{cccc}
1 & 3 & 4 & 2 \\
0 & 1 & 2 & 2 \\
0 & 2 & 0 & 4
\end{array}\right] \\
& \begin{array}{l}
R_{1} \rightarrow R_{1}+2 R_{2} \\
R_{3} \rightarrow R_{3}+3 R_{2}
\end{array}\left[\begin{array}{llll}
1 & 0 & 3 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+2 R_{3} \\
R_{2} \rightarrow R_{2}+3 R_{3}
\end{array}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Consequently the system has the unique solution $x=1, y=2, z=0$.
(b) Again we reduce the augmented matrix to reduced row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
4 & 1 & 4 & 1 \\
1 & 1 & 0 & 3
\end{array}\right] R_{1} \leftrightarrow R_{3}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
4 & 1 & 4 & 1 \\
2 & 1 & 3 & 4
\end{array}\right]} \\
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+3 R_{1}
\end{gathered}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 2 & 4 & 4 \\
0 & 4 & 3 & 3
\end{array}\right] R_{2} \rightarrow 3 R_{2}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 1 & 2 & 2 \\
0 & 4 & 3 & 3
\end{array}\right] .
$$

We read off the complete solution

$$
\begin{aligned}
& x=1-3 z=1+2 z \\
& y=2-2 z=2+3 z
\end{aligned}
$$

where z is an arbitrary element of \mathbb{Z}_{5}.
14. Suppose that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$ are solutions of the system of linear equations

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad 1 \leq i \leq m
$$

Then

$$
\sum_{j=1}^{n} a_{i j} \alpha_{j}=b_{i} \quad \text { and } \quad \sum_{j=1}^{n} a_{i j} \beta_{j}=b_{i}
$$

for $1 \leq i \leq m$.
Let $\gamma_{i}=(1-t) \alpha_{i}+t \beta_{i}$ for $1 \leq i \leq m$. Then $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is a solution of the given system. For

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} \gamma_{j} & =\sum_{j=1}^{n} a_{i j}\left\{(1-t) \alpha_{j}+t \beta_{j}\right\} \\
& =\sum_{j=1}^{n} a_{i j}(1-t) \alpha_{j}+\sum_{j=1}^{n} a_{i j} t \beta_{j} \\
& =(1-t) b_{i}+t b_{i} \\
& =b_{i}
\end{aligned}
$$

15. Suppose that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a solution of the system of linear equations

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad 1 \leq i \leq m \tag{2}
\end{equation*}
$$

Then the system can be rewritten as

$$
\sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n} a_{i j} \alpha_{j}, \quad 1 \leq i \leq m
$$

or equivalently

$$
\sum_{j=1}^{n} a_{i j}\left(x_{j}-\alpha_{j}\right)=0, \quad 1 \leq i \leq m
$$

So we have

$$
\sum_{j=1}^{n} a_{i j} y_{j}=0, \quad 1 \leq i \leq m
$$

where $x_{j}-\alpha_{j}=y_{j}$. Hence $x_{j}=\alpha_{j}+y_{j}, 1 \leq j \leq n$, where $\left(y_{1}, \ldots, y_{n}\right)$ is a solution of the associated homogeneous system. Conversely if $\left(y_{1}, \ldots, y_{n}\right)$
is a solution of the associated homogeneous system and $x_{j}=\alpha_{j}+y_{j}, 1 \leq$ $j \leq n$, then reversing the argument shows that $\left(x_{1}, \ldots, x_{n}\right)$ is a solution of the system 2 .
16. We simplify the augmented matrix using row operations, working towards row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
a & 1 & 1 & 1 & b \\
3 & 2 & 0 & a & 1+a
\end{array}\right] \begin{array}{c}
\\
R_{2} \rightarrow R_{2}-a R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1-a & 1+a & 1-a & b-a \\
0 & -1 & 3 & a-3 & a-2
\end{array}\right]} \\
R_{2} \leftrightarrow R_{3} \\
R_{2} \rightarrow-R_{2}
\end{gathered}\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 3-a & 2-a \\
0 & 1-a & 1+a & 1-a & b-a
\end{array}\right] .
$$

Case 1: $a \neq 2$. Then $4-2 a \neq 0$ and

$$
B \rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 3-a & 2-a \\
0 & 0 & 1 & \frac{a-1}{2} & \frac{-a^{2}+2 a+b-2}{4-2 a}
\end{array}\right]
$$

Hence we can solve for x, y and z in terms of the arbitrary variable w.
Case 2: $a=2$. Then

$$
B=\left[\begin{array}{rrrcc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & b-2
\end{array}\right]
$$

Hence there is no solution if $b \neq 2$. However if $b=2$, then

$$
B=\left[\begin{array}{rrrrr}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and we get the solution $x=1-2 z, y=3 z-w$, where w is arbitrary.
17. (a) We first prove that $1+1+1+1=0$. Observe that the elements

$$
1+0, \quad 1+1, \quad 1+a, \quad 1+b
$$

are distinct elements of F by virtue of the cancellation law for addition. For this law states that $1+x=1+y \Rightarrow x=y$ and hence $x \neq y \Rightarrow 1+x \neq 1+y$.

Hence the above four elements are just the elements $0,1, a, b$ in some order. Consequently

$$
\begin{aligned}
(1+0)+(1+1)+(1+a)+(1+b) & =0+1+a+b \\
(1+1+1+1)+(0+1+a+b) & =0+(0+1+a+b)
\end{aligned}
$$

so $1+1+1+1=0$ after cancellation.
Now $1+1+1+1=(1+1)(1+1)$, so we have $x^{2}=0$, where $x=1+1$. Hence $x=0$. Then $a+a=a(1+1)=a \cdot 0=0$.

Next $a+b=1$. For $a+b$ must be one of $0,1, a, b$. Clearly we can't have $a+b=a$ or b; also if $a+b=0$, then $a+b=a+a$ and hence $b=a$; hence $a+b=1$. Then

$$
a+1=a+(a+b)=(a+a)+b=0+b=b
$$

Similarly $b+1=a$. Consequently the addition table for F is

+	0	1		b
0	0	1	a	b
	1	0	b	a
a	a	b	0	1
b	b	a	1	0

We now find the multiplication table. First, $a b$ must be one of $1, a, b$; however we can't have $a b=a$ or b, so this leaves $a b=1$.

Next $a^{2}=b$. For a^{2} must be one of $1, a, b$; however $a^{2}=a \Rightarrow a=0$ or $a=1$; also

$$
a^{2}=1 \Rightarrow a^{2}-1=0 \Rightarrow(a-1)(a+1)=0 \Rightarrow(a-1)^{2}=0 \Rightarrow a=1
$$

hence $a^{2}=b$. Similarly $b^{2}=a$. Consequently the multiplication table for F is

\times	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

(b) We use the addition and multiplication tables for F :

$$
A=\left[\begin{array}{cccc}
1 & a & b & a \\
a & b & b & 1 \\
1 & 1 & 1 & a
\end{array}\right] \begin{gathered}
R_{2} \rightarrow R_{2}+a R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{gathered}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & 0 & a & a \\
0 & b & a & 0
\end{array}\right]
$$

$$
\begin{array}{r}
R_{2} \leftrightarrow R_{3}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & b & a & 0 \\
0 & 0 & a & a
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow a R_{2} \\
R_{3} \rightarrow b R_{3}
\end{array}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \\
R_{1} \leftrightarrow R_{1}+a R_{2}\left[\begin{array}{llll}
1 & 0 & a & a \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+a R_{3} \\
R_{2} \rightarrow R_{2}+b R_{3}
\end{array}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{array}
$$

The last matrix is in reduced row-echelon form.

