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SECTION 1.6

[0 00 2 4 0 . 1207
Zm{z4(%3”*&{000]&_Wm[000}’
[0 13 1 2 4 10 —2
w{12A&H&{o1J&H&_M%013}
I I B N I
(i) (1 1 0 e Ru— R 0 0 -1
100 3 A () S R |
Ry — R; + R3 1 0 1 0 0
Ry— Ry [0 1 1| fiRtlsd, g
Ry < Rs 00 —1 3 3 00 1
2 00 100
)| 00 o0 &;fgﬁ 00 0]
—4 0 0 1772 00 0
Lol 2] o e e [T 12
3.() |2 3 -1 8| o 0 1 -3 4
1 -1 -1 -8 BBl 0 2 —2 —10
(10 4 —2 1 4 27
5:?:% 01 -3 4|Ry— 3Ry 1 -3 4
PABTER 10 0 -8 -2 0 1 1]
R B-ams |00
Ey
&H&+w3ﬁ01 ]
The augmented matrix has been converted to reduced row—echelon form
and we read off the unique solution z = =3, y = %, z= i.
Lol =1 200] o p ap [L1 -1 210

| 3 -1 7 4 1
-5 3 —-15 -6 9

0 —4 10 -2 =29

Ry— Ra+5F | g ¢ 59 4 59

1 1 -1 2 10
Rs —R3+2Ry | 0O —4 10 —2 -29
0 0 0 0 1

From the last matrix we see that the original system is inconsistent.



3 -1 70 1 -1 1 1
2 -1 4 1 2 -1 4 1
2 2
@17 1 1 1 |mefsly 4 7
6 —4 10 3 6 —4 10 3
_ -1
Ry — Ry — 2Ry (1) 1 ; ;% Ry — Ri1+ Ry (1) (1) 3 2
Rs — R — 3Ry 2 Ry — Ry — R3 2
Ry — Ry — 6R, 0 2 4 -3 Rs — Ry — 2R, 0 00 O
4 0 2 4 -3 000 0
The augmented matrix has been converted to reduced row—echelon form
and we read off the complete solution z = —% -3z, y = —% — 2z, with z
arbitrary.
2 -1 3 a 2 -1 3 a
4. 3 1 -5 b R2—>R2—R1 1 2 =8 b—a
-5 =5 21 ¢ -5 -5 21 c
1 2 -8 b—a 1 2 =8 b—a
Ri—Ry| 2 -1 3 ?:?ig 0 =5 19 —2b+3a
-5 -5 21 ¢ BT Y10 5 —19 sb—ba+ec

1 2 -8 b—a
—19 2b—3a

0 1 = =

0 0 0 3b—2a-+c

R3 — R3+ Ry
Ry — Z Ry

5 5
—19 2b—3a

1 0 =2 (b+a)

Ri—=Ri—2R; | 0 1 = =
0 0 0 3b—2a+c

From the last matrix we see that the original system is inconsistent if

3b—2a+c#0. If 3b — 2a+ ¢ = 0, the system is consistent and the solution
is

_(b+a) 2 _(2b—3a) 19
xr = 5 +5Z,y— 5 + 5Z7
where 2z is arbitrary.
1 1 1 1 1 1
Ry — Ry —tR;
5. t 1 ¢ Ry — Rs— (1+ )R 0 1-—t¢ 0
1+t 2 3 3 3 V1o 1-¢ 2—¢
1 1 1
R3 — R3 — Ry 0 1—¢ 0 = B.
0 0 2—1

Case 1. t # 2. No solution.



1 1 01
Case2. t=2.B=1|0 —1 0 010
0 00 0
We read off the unique bolu‘mon r=1 y=
6. Method 1.
-3 1 1 1 Ri — Ry — Ry —4 0 0 4
1 -3 1 1 0 —4 0 4
Ry — Ry — Ry
1 1 -3 1 e R R 0 0 —4 4
1 1 1 -3 3 37 1 1 1 -3
1 00 -1 1 00 -1
01 0 -1 01 0 -1
“loo 1 o1 | Ra-Rs-Re—Ruy g
111 -3 0 00 0

Hence the given homogeneous system has complete solution
T1 = T4, T2 = T4, T3 = X4,
with x4 arbitrary.

Method 2. Write the system as

r1t+ax2+x3+zs = 4x
1+ x2+x3+ 28 = 4T2
1 +x9o+a3+ax4 = 4dxj
r1t+x2+ax3+xs = 4dzy4.

Then it is immediate that any solution must satisfy 1 = z9 = z3 = x4.
Conversely, if x1, x2, x3, x4 satisfy x1 = zo = x3 = x4, We get a solution.

7.
A-3 1 1 A-3
[ 1 A—3]R“%R{A—3 1 ]

1 A—3
RQHRQ(A3)R1|:O —>\2+6)\—8:|:B'

Case 1: —A2 46X —8# 0. That is —(\ —2)(A —4) # 0 or A\ # 2, 4. Here B is

1
row equivalent to [ 0 (1) ]:

1 A—3 10

Hence we get the trivial solution z =0, y = 0.



Case 2: A = 2. Then B = (1) _(1)} and the solution is x = y, with y
arbitrary. ]
11 . .
Case 3: A = 4. Then B = 0 O] and the solution is x = —y, with y
arbitrary. ]
8.
3 11 1 1 I I S
- 3 3 3
5111}R1_>3R1[5 11 1]
1 L 1 1
Ry — R2—5R1{0 ¢ 3 %]
~3 73 73
-3 1 L 1 1
-2 3 3
wo [
1 10to
oty 2]

Hence the solution of the associated homogeneous system is

T = —1963, T2 = —1363 — T4,

with z3 and x4 arbitrary.

9.
—1—71 1 1 R1—>R1—Rn —-n 0 n
1 1—n 1 R2—>R2—Rn 0 —nNn n
A= .
1 1 1-n | Rit—Rp1—R, | 1 1 1-n
10 -1 10 - —1
01 -1 0 1 - -1
— RnHRn_Rnfl _Rl
11 - 1-n 00 - 0

The last matrix is in reduced row—echelon form.

Consequently the homogeneous system with coefficient matrix A has the
solution

Tl =Tp, T2 ==Tp,--.,Tn—-1 = Tn,



with z,, arbitrary.

Alternatively, writing the system in the form

1+ +xy = NTy
1+t = NT2
r1+---+xTy = Ny
shows that any solution must satisfy nz; = naxe = -+ = nx,, S0 r1 = T9 =
o« = x,. Conversely if x1 = z,,...,Tn_1 = T,, we see that x1,...,z, is a
solution.
10. LetA:[CCL Z} and assume that ad — be # 0.
Case 1: a # 0.
a b 1 ¢ 1 b
2t e[y ]
a
Ry — =R 13}2 R~ bRy | 'O
2 77 ad—bei2 0 1 1 — v — 0o 1|
Case 2: a = 0. Then bc # 0 and hence ¢ # 0.
0 b c d 14 10
— c
a=[tafmenl =10 T]-101)
. 10
So in both cases, A has reduced row—echelon form equal to 01|

11. We simplify the augmented matrix of the system using row operations:

1 2 -3 4 Ry — R — 3R 1 2 -3 4

3 —1 5 2 B — R — AR 0 -7 14 —-10

4 1 a®>—14 a+2 3 3 V910 =7 a2-2 a—14
R3—Rs—Ry [1 2 =3 4 1o 1 g
Ry — 2Ry 01 -2 0 Ri— R —2R, |0 1 -2 2
Ri—R —2Rs | 0 0 a*2—16 a—4 0 0 a2—16 a—4

Denote the last matrix by B.



Case 1: a? — 16 # 0. i.e. a # £4. Then

1 8a+25
ot | ) e
Rl — Rl — R3 0 1 0 7((1—1—4)
R2 - R2 + 2R3 0 0 1 atd
and we get the unique solution
8a + 25 10a + 54 1
= = z = .
Ta+4) V" 7a+4) " at4
10 1 %
Case 2: a=—4. Then B=| 0 1 -2 17 , SO our system is inconsistent.
00 0 -8
10 1 %
Case 3: a=4. Then B=| 0 1 -2 17 . We read off that the system is
00 0 O
consistent, with complete solution z = % -z, Y= 1—70 + 2z, where z is

arbitrary.

12. We reduce the augmented array of the system to reduced row—echelon
form:

1010 1 1010 1
0101 1 010011
11110 B7Rs+R o g
001 10 00110

1010 1 100 1 1
01 011 Ri — R1+ Ry 01011
Rs—Rs+Re | o v g 0 Rs & Ry 00110
00110 00000

The last matrix is in reduced row—echelon form and we read off the solution
of the corresponding homogeneous system:

Tl = —XT4—T5=2T4+T5
Ty = —T4—T5=2T4+ 25
T3 = —T4= Ty,



where x4 and x5 are arbitrary elements of Zo. Hence there are four solutions:

&
il
8
)
8
w
8
N
8
ot

O R = O
S = = O
—__= 0 O
= =0 O
_ o = O

DN >

21 3 1 3 2
4 1 4 R1 — 3R 4 1 1
3 1 2 3 1 0

o o

2
3| Re— 4Ry
4

Ry — Ry + Ry
R3 — R3 + 2Ry

S W
S O =
DN =W
S N
=N DN

[

13. (a) We reduce the augmented matrix to reduced row—echelon form:
1
0

1
2
0 01 0

Consequently the system has the unique solution z =1, y =2, 2 = 0.

Ry — Ry + 2R3
Ry — Ry + 3R3

Ri — R+ 2Ry
Rs — R3+ 3R>

= O O O =
N W DN =~ W

[\]
= o O

1
0
0

)
o = O

(b) Again we reduce the augmented matrix to reduced row—echelon form:

2 1 3 4 110 3
414 1| RReRs |41 41
110 3 2 1 3 4
110 3 110 3
§Q:§2j3% 0 2 44| RR—3Ry, |0 1 2 2
3 3 Y104 3 3 0 4 3 3
Ry By 4 AR, 103 1
Ry — Ry + R 0 1 22
3 3T 10 00 0

We read off the complete solution

r = 1-3z2=1+2z
2—-2z=2+4 3z,

where z is an arbitrary element of Zs.



14. Suppose that (aq,...,a,) and (51,...,3,) are solutions of the system
of linear equations

n
Zaijxj:bi, 1§Z§m
J=1

Then

n

Z Qi Q5 = bl and zn:aij/@j = bz

j=1 J=1
for 1 <i<m.
Let v; = (1 —t)a; +t6; for 1 <i < m. Then (v1,...,7,) is a solution of
the given system. For

n n
D aiyy = Y a{(1—t)a; +18;}
j=1 j=1

n n
= D ay(l—thaj+ Y aiith;
j=1 j=1
= (1 —=1t)b; +tb;
= b.
15. Suppose that (aq,...,ay) is a solution of the system of linear equations
n

Zaijacj = bi, 1 < ) <m. (1)
j=1

Then the system can be rewritten as
n n
Zaijxj = Zaijaj, 1 S ) S m,
j=1 j=1
or equivalently

n
Zaij(xj—aj)zo, ISZSm
7j=1

So we have

n
Zaijyjzo, 1§Z§m
j=1
where z; — oj = y;. Hence z; = oj +y;, 1 < j < n, where (y1,...,yn) is
a solution of the associated homogeneous system. Conversely if (y1,...,yn)



is a solution of the associated homogeneous system and z; = o; +y;j, 1 <

j < n, then reversing the argument shows that (x1,...,x,) is a solution of
the system 1 .

16. We simplify the augmented matrix using row operations, working to-
wards row—echelon form:

11 -1 1 1 11 ~1 1 1
a1l 11 b g2jﬁ?:ggl 0 1-a l+a l—a b-a
32 0 1+a 3 3 Llo -1 3 a—-3 a—2

Ry o Ry 1 1 ~1 1 1
R _R 0 1 -3 3—a 2-—a
2 210 1-a 14a 1—a b—a
11 -1 1 1
R3—>R3+(G—1)R2 01 -3 3—a 2—a
0 0 4—2a (1—a)(a—2) —a®+2a+0b—2

Case 1: a # 2. Then 4 — 2a # 0 and

1 1 -1 1 1

B— |01 -3 3—a 2—a
-1 —a’®+2a+b—2

00 1 o ==

Hence we can solve for x, y and z in terms of the arbitrary variable w.

Case 2: a = 2. Then
11 -1 1 1

B=]01 -31 0
00 00 b-2

Hence there is no solution if b # 2. However if b = 2, then

11 -1 11 10 2 01
B=|101-310]|—=]01 -310
00 00O 00 000

and we get the solution ¢ = 1 — 2z, y = 3z — w, where w is arbitrary.

17. (a) We first prove that 1+ 1+ 1+ 1 = 0. Observe that the elements

140, 141, 1+4a, 1+5b



are distinct elements of F' by virtue of the cancellation law for addition. For
this law states that 1+x =14y =x =y and hencex #y = 1+x # 1+y.

Hence the above four elements are just the elements 0, 1, a, b in some
order. Consequently
1+0)+(14+1)+(1+a)+(1+b) = 0+14+a+bd
1+1+14+1)+0O+14+a+b) = 0+(0+1+a+b),
so 1+ 1414 1=0 after cancellation.

Now 1 +1+1+1=(1+1)(1+ 1), so we have 2% = 0, where x = 1 + 1.
Hence x =0. Thena+a=a(l+1)=a-0=0.

Next a + b = 1. For a + b must be one of 0, 1, a, b. Clearly we can’t
have a + b = a or b; also if a + b = 0, then a + b = a + a and hence b = a;
hence a +b = 1. Then

a+l=a+(a+b)=(a+a)+b=0+b=0.

Similarly b + 1 = a. Consequently the addition table for F' is

4+ 0 1 a b
0l0|1]al|b
1[1]0|b]|al
ala|b|0]1
b|{bja|1]0

We now find the multiplication table. First, ab must be one of 1, a, b;
however we can’t have ab = a or b, so this leaves ab = 1.

Next a? = b. For a® must be one of 1, a, b; however a?

=a=a=0or
a = 1; also

’=1=2d>-1=0=(a—1a+1)=0=>(a-1)’=0=a=1;
hence a? = b. Similarly b?> = a. Consequently the multiplication table for F
is

x 0 1 a b
0]l0[0|01]0
1|0|1]al|b|
a|l0la|b]|l
blO0O|b|1l]|a

(b) We use the addition and multiplication tables for F:

1 a b «a Ry — Ry + aRy 1 a b a
A=]1a b b 1 R — Ra+ R 0 0 a a
(111 a PTET 1 0 b a0

10



1 a b a
RosRy | 0 b a 0 ?:£2
|0 0 a a | 3 3
1 0 a a
Ri—Ri+aRy | 0 1 b o | [~ itk
00 1 1 Ry — Ry + bR3

The last matrix is in reduced row—echelon form.

11



Section 2.4

a b
2. Suppose B=| ¢ d | and that AB = I5. Then
e f
a b
[ 101} . d 10} [—aﬂte b+ f
11 e f 0 1 c+e d+f
Hence
—a+e=1 —b+f=0
c+e=0 " d+f=1"
e=a+1 f=5b )
c=—-e=—(a+1) " d=1—-f=1-b"
a b
B=| —a—-1 1-5b
a+1 b
Next,

(BA)?B = (BA)(BA)B = B(AB)(AB) = BL,I, = B, = B.

4. Let p,, denote the statement

A — (3"271)14Jr (3;3n)12_

Then p; asserts that A = @A + @IQ, which is true. So let n > 1 and
assume p,. Then from (1),

AL pAn — A{(3”2—1)A + (3—23n)12} — (3n2—1)A2 + (3—23n)A

= BoDgagry) 4 B34 - BDLEEY 4 DS
n n n+1

_ (43 23) 1A—|—(3 32+)1-2

= @by B30,

Hence py,+1 is true and the induction proceeds.

5. The equation 1 = axy, + bxy,—1 is seen to be equivalent to

R

12



or

Xn = Aanlv
where X,, = [ x;“ ] and A = [ Cll 8 ] Then
n
X, =A"X,

if n > 1. Hence by Question 3,
Tn+1 (3” - 1) A (3 — 3") T1
= I

e ER RS

(371 _ 1)2 + 372371 (Sn_12)(—3) |: . :|

3"—1 3—-3"
2 2

Hence, equating the (2,1) elements gives

n __ _an
(3 5 1)x1+(3 23 )a:o ifn>1

Ty —

7. Note: \{ + Ao = a+d and A\ Ay = ad — be.
Then

(A +22)kn — AMdakn1 = A+ X)OAT AT 20 + - A2 AT
—/\1/\2(/\711_2 + )\71‘_3)\2 NI /\1)\3—3 + /\721—2)

= AP+ AT A+ AT
AT A+ AT D)
AT+ AT

= M AN M N = ki

If A1 = X, we see

kn, = )\?_1 + )\?_2)\2 4ot )\1)\721—2 + )\3—1
)\?71 + )\?72)\1 4t )\1)\711*2 + )\?71

_ n—1
= n\

13



If A1 # Ag, we see that

M= Ak, = A=) AT HAT D -  F AT 2T
= A AT N+ AT
—(AF A 4 AT AD)
= AT — )L

AT Ay

Hence k,, = ST

We have to prove
A" = knA — Al)\gkn_lfg. *

n=1:

Al = A; also k1A — MAokols = k1A — M0l
= A

Let n > 1 and assume equation % holds. Then

A’Nf"l — An LA = (knA - )\IAQkTL—1I2)A

Now A? = (a+ d)A — (ad — be) Iy = (A1 + A2)A — A A2lo. Hence

Antl En(A + X2)A — M oDy — A hok, 1A

= {kn(A1 +X2) — MA2kn_1}A — Mok, 1o
= kpt1A — Mok, 1o,

and the induction goes through.

8. Here A1, Ao are the roots of the polynomial 22 — 2z — 3 = (z — 3)(z + 1).
So we can take Ay = 3, Ao = —1. Then

=) 1
Hence
PR i Gt i A-(-3) 3+ (=),
_ i”+(11)”+1 [}1 2}+3E3"1f(1)€f1 0}
4 2 1 4 0 1]



which is equivalent to the stated result.

9. In terms of matrices, we have

Fooi ] |11 F,
[ F }_{1 0:||:Fn—1:| for n > 1.

Fox | 1 11" [R] [t 1]"]1
F, 110 F| |10 0|
Now Ap, Ag are the roots of the polynomial 22 — 2 — 1 here.

Hence A\ = 1+72\/5 and Ay = % and

()= (5

kn

1+2\/5 _ (1—2\@>
n—1 n—1
() -(%Y)
a V5
Hence
A" = kA — Mk, 11
= knA + kn—1]2
So
Fn+1 _ 1
(B ] = tam [ 1]
. 1 1 o kn + kn—l
R EY RS P R
Hence

10. From Question 5, we know that
Tn | | 1 7 "Ta
yn | |1 1 b |-

15



Now by Question 7, with A = { 1 7{ } ,

A" = kA — M k,_11
= knA — (1 — T)kn_lfg,
where Ay = 1+ /r and \y = 1 — /r are the roots of the polynomial

2?2 =22+ (1 —7r) and
_ AN A

kn, = .
27

Hence

(kpA — (1 — r)kp_115) { Z ]

- (e S -1 w Sl DL

{ b (lk; s oy — (1kiTr)kn_1 ] [ b ]
[ a(kn — (1= 1)kn_1) + blnr } |
ki + bk — (1 — )kn_1)

—
8
3
[EE—
Il

Yn

Hence, in view of the fact that

ko X2 — D NP1 — {323
= yn—1 n—1 — yn—1 A 1 A1, asn — oo,
kn-1 AT = A3 AT A=A

we have

[ T, ] _ a(ky, — (1 = r)kp—1) + bkyr
aky, + b(ky, — (1 —1r)kp_1)
a(% —(1—=7))+ bkf—’ilr
ak’z’il + b(% —(1=r)
~ a(Ap — (1 —=71)) + b7
ar1 +b(\ — (1 —1))
a(\/r+7)+ b1+ /r)r
a(l+/r)+b(/r+7)
Vri{a(l+r) +b(1 + )/}
a(l1+ /1) +b(y/r+7)

-

16



Section 2.7

1 4710 1 4 1 0
1.[A|]2]—|:_3 1‘0 1:|R2—>R2+3R1 |:O 13'3 1:|
1 4 1 0 1 0] 1/13 —4/13
1 _
Bz = 13R2[0 1 ’ 3/13 1/13} B B~ 4R [o 1 ‘ 3/13 1/13]‘
. : _ 1/13 —4/13
_ 1_
Hence A is non-singular and A [ 313 1/13 } .
Moreover
E12(—4)E5(1/13)E2(3)A = I,
SO
A™! = E15(—4)Fy(1/13)Fay(3).
Hence

A ={Exn(3)} {E2(1/13)} {E1a(—4)} " = E21(—3)Ea(13) E12(4).

2. Let D = [d;;] be an m x m diagonal matrix and let A = [a;] be an m xn
matrix. Then .
(DA), = Z dijajr = dia,
j=1
as d;j = 0 if ¢ # j. It follows that the ith row of DA is obtained by
multiplying the ith row of A by d;;.

Similarly, post—multiplication of a matrix by a diagonal matrix D results
in a matrix whose columns are those of A, multiplied by the respective
diagonal elements of D.

In particular,

diag (a1, ...,a,)diag (by,...,b,) = diag (a1by,. .., anby),

as the left-hand side can be regarded as pre—multiplication of the matrix
diag (b1, ...,by) by the diagonal matrix diag (a1, ..., an).

Finally, suppose that each of aq,...,a, is non—zero. Then afl, coant
all exist and we have

diag (a1, . ..,an)diag (a;',...,a,") = diag(aia?,..., ana,")
= diag(1,...,1) =I,.
Hence diag (a1, . . ., ay,) is non-singular and its inverse is diag (a7, ..., a;").

17



Next suppose that a; = 0. Then diag (a1, ..., a,) is row—equivalent to a
matix containing a zero row and is hence singular.

002|100 126010
3.JAL)=|1 26|01 0| ReRy, |002100
379001 379001

12 60 10 12 60 1

Rs—R3—3R, |00 21 00| RReRg |01 -9 0 -3

01 -9 0 -3 1 00 21 0

12 6 0 10 10 24 0

Rg—1iRg |01 -9 0 -3 1| R—R-2R |0 1 =9 0

00 1 1/2 00 00 1 1/2

0 —-12 7T =2

10
Bo—= B =240 0y g gn 3
00 1

Ry — Ro + 9R3 1/2 0 0
-12 7 -2
Hence A is non-singular and A=t = | 9/2 -3 1
/2 0 0
Also

E23(9)Eq13(—24)E12(—2)E3(1/2) Eos E31(—3) E19A = Is.

Hence
A_l = E23(9)E13(—24)E12(—2)E3(1/2)E23E31(—3)E12,
SO
A= E12E31 (3)E23E3(2)E12(2)E13(24)E23(—9).

4.

1 2 k 1 2 k 1 2 k
A= 3 -1 1| —10 -7 1-3k| — | 0 =7 1-3k | =B.

5 3 -5 0 -7 —-5-5k 0 0 —6—2k

Hence if —6 — 2k # 0, i.e. if k # —3, we see that B can be reduced to I3
and hence A is non—singular.

1 2 -3
Ifk=-3,then B=| 0 —7 10 | = B and consequently A is singu-
0 0 0

lar, as it is row—equivalent to a matrix containing a zero row.

18



5. FE2(2) { _; _i } = [ (1) g } Hence, as in the previous question,

1 2. . 1

_o _, | issingular.

6. Starting from the equation A2 — 24 + 131, = 0, we deduce
A(A = 21) = —131, = (A — 2I,) A.

Hence AB = BA = I, where B = 73 (A — 2I5). Consequently A is non-
singular and A~ = B.

7. We assume the equation A% = 342 — 34 + I3.

(i) A' = APA= (342 -3A+L)A=34%-3421+A
3(342 —3A+ I3) — 3A% + A = 6A% — 8A 4 3I3.

(iii) A3 — 342 +3A = I3. Hence
A(A% —3A+4313) = I3 = (A® — 3A + 3I3) A.
Hence A is non—singular and

A7l = A2 _3A 43I,

-1 -3 1
= 2 4 -1
0 1 0
8. (i) If B3 =0 then
(I, — B)(I, + B+ B* = I,(I,+ B+ B% — B(I, + B+ B?

= (I,+ B+ B* —(B+B*+B%
= ,-B=1,-0=1,.
Similarly (I,, + B + B?)(I, — B) = I,,.
Hence A = I,, — B is non-singular and A~! = I,, + B + B2
It follows that the system AX = b has the unique solution

X=A"%=(I,+B+ B*b=b+ Bb+ B%.

19



0 r s 0 0 rt
(ii)Let B=|0 0 t |.ThenB?=|0 0 0 | and B3=0. Hence
000 00 0
from the preceding question
(Iz—-B)™' = L+ B+ B?

(1.0 0 0 r 0 0 rt

= |010|+|00¢t|+]00 0
|0 01 0 0 00 0
(1 r s+t

= |01 ¢
00 1

9. (i) Suppose that A% = 0. Then if A~! exists, we deduce that A=1(AA) =
A~10, which gives A = 0 and this is a contradiction, as the zero matrix is
singular. We conclude that A does not have an inverse.

(ii). Suppose that A? = A and that A~! exists. Then

A7H(AA) = A2 A,

which gives A = I,,. Equivalently, if A2 = A and A # I,,, then A does not
have an inverse.

10. The system of linear equations

rt+y—z =
z = b
2r+y+22 = c

is equivalent to the matrix equation AX = B, where

\
—_
8
S|

2 z c

By Question 7, A~! exists and hence the system has the unique solution

-1 -3 1 a —a—3b+c
X = 2 4 -1 b |l =] 2a+4b—c
0 1 0 c b

Hencex =—a—3b+c, y=2a+4b—c, z=0.
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12.

S O O

OO H O

S —H O M

— o O O

E3(2)E14

E3(2)E14FE42(3)

Also

A7l = (B3(2)BEuEn(3)™

13. (All matrices in this question are over Zs.)

1 0 00
0100

o

—

o O

o O

— O

1 0 01

1 010

1110

1 101

0011

0010

0100

0010

00 01

1 0 00
0100

0010

1 0 01

1 010

0100

1101

0 011

1 111

0100

0 010

0 011
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1
1
e

11

00

01
1110

1
1
1

1 000
0100
0010
0 001

) {
Hence A is non—singular and

— - O O

— O

— o O -

™ o o~

, S0 A is singular.

- - O O

O — - O

— - O O

— O —H O

Ry — Ry+ Ry

— — O

S — - O

—— — O -

— O~

(b) A =

14.

|

1/2
1/2
—1/2

0
1
10

0
0

0 0
10
11

1
0
0

LiE)
R — Ry — R3
Ry < R3
0 1/2
1 1/2

-1

R3 —
Ry — Ry + R3

0
0

0
0

0
1

0

R3s — R3 — R

-1

Hence A1 exists and

] |

0 1/2
1 1/2

0
-1

0
1

-1

A7l =

o —H O
— O A
_
S O H
— O A
S —
— O O
o
S
N N o»
| &K
i
= 11
—
T
i
~
I 1
S O
S —H O
— O O
<t — O
AN O
A —H O
1
—
0
~—

0
2

1
0

0

R3 — R3 — 2Ry

-2 =2

1
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virtue of the zero row.

1 00
Ry — Ry — Rj3 010
0 01
Hence A1 exists and
Al =
4 6 -3 Ry — 1Ry
(c) 0 0 7 {
00 5| 375l
Hence A is singular by
2 0 01 00O
(d) 0 -5 0|0 10
0 0 710 0 1

46
00 1
00 1]

Ry — %Rl
Ry — =Ry
R3 — ZR3

[ 1
0
| O

Hence A~! exists and A~! = diag (1/2, —1/5, 1/7).

(Of course this was also immediate from Question 2.)

1 246|100
(o) 0120|010
001 2001
0O 002|000
Ry — Ry — 2R3
Ry — Ry — 3Ry
Ry — Ry + 2Ry
R3 — Rs — Ry
Ry — Ry
Hence A1 exists and
A7l =

_ o O O

o O O

o O O =

o O O

Ry — Ry — 2Ry
00 6]1
10 —4]0
01 2|0
00 2|0
00 0] 1 =2
1000 1
010[0 0
00 1[0 0
-2 0 -3
1 -2 2
0 1 -1
0 0 1/2

23

o O O

O = NN O

O O = O

— o O O

N W

—
~
\]

O~ NN O

“1/5

NN OOD
o O O

1)7

S O~ N

O = O O

_ o O O



(f)

1 2 3 1 2 3 1 2 3
45 6 22:?:‘5121 0 -3 6| Ry—R3—Ry | 0 -3 —6
579 s Ylo -3 -6 0 0 0
Hence A is singular by virtue of the zero row.
15. Suppose that A is non—singular. Then
AA™ =1, =471A.
Taking transposes throughout gives
(AA™HE = Tt = (A71A)!
(A—l)tAt — In _ At(A_l)t,
so A! is non-singular and (A)~! = (A71)%
16. Let A = [ CCL 2 } , where ad — bc = 0. Then the equation
A? —(a+d)A + (ad — bc)I, =0
reduces to A2 — (a + d)A = 0 and hence A? = (a + d)A. From the last
equation, if A~! exists, we deduce that A = (a + d)I3, or
a b| |a+d 0
c d| 0 a+d |’
Hencea =a+d, b=0, c=0, d=a+dand a =b=c=d =0, which
contradicts the assumption that A is non—singular.
17.
1 a b 1 a b
A=|—-a 1 ¢ %:%izgl 0 1+a® c+ab
b —c 1 3 3 ! 0 ab—c 1+10?
1 a b
Ro— R |0 1 5
0 ab—c 1+0b?
1 a b
ctab
RgﬂRgf(ab*C)RQ 0 1 1+a2
(c—ab)(c+ab)

0 0 14082+
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Now

_ 2 _ (b2
b2 (¢ —ab)(c+ ab) e (ab)
1+ a? 1+a?
1+ a?+ b+
= T # 0.

Hence B can be reduced to I3 using four more row operations and conse-
quently A is non-singular.

18. The proposition is clearly true when n = 1. So let n > 1 and assume
(P~'AP)" = P~1A"P. Then

(P7AP)" = (P7lAP)"(P7'AP)
= (P'A"P)(PT'AP)
= plAnPPHYAP
= P lA"TAP
= P l(A"A)P

p~lAntlp

and the induction goes through.

_12/3 1/4 - 1 3 1_1 4 -3
19.LetA—[1/3 3/4]andP—[_1 4] Then P~ =71 11

5/12 0

We then verify that P~ AP = [ } . Then from the previous ques-

0 1
tion,
PlAnP:(PlAP)n:[f)/Om (1)]”:{(5/(1)%" 191]:[(5/(1)2)" (1)]
Hence
g o p| GAT 0] [ 1 3] (/12" 0]1[4 -3
_1_ (5()/12)n1jp4[31 4“ 0 1]7[1 1]
— 7| (512" 4“1 1}
_ L[ 4(5/12)"+3  (=3)(5/12)" + ]
7| —4(5/12)" +4  3(5/12)" +
S CHIET




3
. 1
Notice that A" — A

a more general result about Markov matrices.

a b
20. LetA—[c d

as n — oo. This problem is a special case of

} be a matrix whose elements are non—negative real

numbers satisfying

a>0,6>0,¢>0,d>0,a+c=1=b+d.

Also let P = [ I; _i } and suppose that A # Is.

(i) detP=—-b—c= —(b+¢). Now b+ ¢ > 0. Also if b+ ¢ = 0, then we
would have b = ¢ = 0 and hence d = a = 1, resulting in A = I5. Hence
det P < 0 and P is non-singular.

Next,
-1 [ -1 -1 a b b 1
1 o
PAP_b+c_—c b][c d][c —1}
-1 [ —a—c —b—d b 1
- b+c| —ac+bc —cb+bd c —1
S B .| ~1 b1
"~ b+c| —ac+bc —cb+bd c —1
-1 ~-b—c 0
~ btc| (—ac+be)b+ (—cb+bd)c —ac+bc+cb—bd |
Now
—ach+b*c—cb+bde = —cb(a+ )+ be(b+d)
= —cb+bc=0.
Also
—(a+d—-1)b+¢) = —ab—ac—db—dc+b+c
—ac+b(1 —a)+c(l1—d)—bd
= —ac+bc+ cb—bd.
Hence
B 1 [ —(b+e) 0 10
1ap _
P AP_b—l—c 0 —(a+d—1)(b+0)}_[0 a—i—d—l]
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(ii) We next prove that if we impose the extra restriction that A # [

01
10

|

then |a + d — 1| < 1. This will then have the following consequence:

A P

P

b+c
-1

b+c |

1

b+c |

1
1

0 —1
a+d—1}P
0 "
a—i—d—l} P
0 —1
(a+d—D"]P
0] -1
0|7
1 0 —1 -1 -1
0 O|b+c| —c b
b 0 -1 -1
c 0 —c b
[ —b —b
—c —c
)
c c|’

where we have used the fact that (e +d —1)" — 0 as n — 0.

We first prove the inequality |a +d — 1| < 1:

a+d—1

< 14+4d-1=d<1

at+d—-1 > 04+0-1=-1

Next, ifa+d—1=1, wehavea+d=2;s0a=1=d and hence c =0 = b,
contradicting our assumption that A # I,. Also if a+d —1 = —1, then

a+d=0;soazOzdandhencec:1:bandhenceA:[

01
10

|

22. The system is inconsistent: We work towards reducing the augmented

matrix:
1 2 4
1 1 5
3 5 12
R3 — R3 — Ry

Ry — Ry — Ry é_j ?
Ry—Ry—3Ri | o ||
12
0 -1
0 0f -
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The last row reveals inconsistency.
The system in matrix form is AX = B, where

1 2 4
35 y 12

The normal equations are given by the matrix equation

A'AX = A'B.
Now

1 2

11 3 11 18

2 1 5 EX: 18 30
[ 4

1 1 3 45

2 1 5 m] 73

Hence the normal equations are

11z +18y = 45

18z +30y = T73.
These may be solved, for example, by Cramer’s rule:
45 18
73 30 36
11 18 6
18 30
11 45
18 73 -7

11 18 6
18 30

23. Substituting the coordinates of the five points into the parabola equation
gives the following equations:
a =0
a+b+c = 0
a+2b+4c = -1
a+3b+9 =
a+4b+16c =

28



The associated normal equations are given by

5 10 30 a 11
10 30 100 b | =1 42 |,
30 100 354 c 160

which have the solution a = 1/5, b= -2, ¢=1.
24. Suppose that A is symmetric, i.e. A® = A and that AB is defined. Then

(B'AB)! = B'AY(B")' = B'AB,
so B'AB is also symmetric.

25. Let A be m x n and B be n x m, where m > n. Then the homogeneous
system BX = 0 has a non-trivial solution Xy, as the number of unknowns
is greater than the number of equations. Then

(AB)X, = A(BXg) = A0 =0

and the m x m matrix AB is therefore singular, as X # 0.

26. (i) Let B be a singular n x n matrix. Then BX = 0 for some non—zero
column vector X. Then (AB)X = A(BX) = A0 = 0 and hence AB is also
singular.

(ii) Suppose A is a singular n x n matrix. Then A?! is also singular and
hence by (i) so is B!A? = (AB)!. Consequently AB is also singular
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Section 3.6

1. (a) Let S be the set of vectors [z, y] satisfying = 2y. Then S is a vector
subspace of R?. For

(i) [0, 0] € S as © = 2y holds with x = 0 and y = 0.
(ii) S is closed under addition. For let [z1, y1] and [z2, y2] belong to S.
Then 1 = 2y; and z9 = 2y». Hence
z1+ 2 = 2y1 + 2y2 = 2(v1 + y2)
and hence
(21 + 22, y1 + y2| = [z1, y1] + [22, o
belongs to S.

(iii) S is closed under scalar multiplication. For let [z, y] € S and ¢t € R.
Then x = 2y and hence tz = 2(ty). Consequently

[tz, ty] = tlx, y] € S.

(b) Let S be the set of vectors [z, y] satisfying © = 2y and 2z = y. Then S is
a subspace of R2. This can be proved in the same way as (a), or alternatively
we see that ¢ = 2y and 2x = y imply x = 42 and hence z = 0 = y. Hence
S ={]0, 0]}, the set consisting of the zero vector. This is always a subspace.

(c) Let S be the set of vectors [z, y] satisfying = 2y + 1. Then S doesn’t
contain the zero vector and consequently fails to be a vector subspace.

(d) Let S be the set of vectors [z, y] satisfying xy = 0. Then S is not
closed under addition of vectors. For example [1, 0] € S and [0, 1] € S, but
[1, 01+ [0, 1] =[1, 1] £ 5.

(e) Let S be the set of vectors [z, y] satisfying x > 0 and y > 0. Then S is
not closed under scalar multiplication. For example [1, 0] € S and —1 € R,
but (—=1)[1, 0] = [-1, 0] € S.

2. Let X, Y, Z be vectors in R". Then by Lemma 3.2.1
(X+Y, X+Z2, Y+2)C(X,Y, Z),

aseach of X +Y, X + Z,Y + Z is a linear combination of X, Y, Z.
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Also
1 1 1

1 1 1
-1 1 1
Z = 7(X+Y)+§(X+Z)+§(Y+Z),
SO
(X, Y, Z)C(X+Y, X+Z Y+ 2).
Hence
(X, Y, Z2)=(X+Y, X+Z Y+ 2).
1 0 1
0 1 1 Lo
3. Let X7 = NE Xy = 1 and X3 = e We have to decide if
2 2 3

X1, X9, X3 are linearly independent, that is if the equation xX; + yXs +
zX3 = 0 has only the trivial solution. This equation is equivalent to the
folowing homogeneous system

r+0y+z =
Ox+y+z =
r+y+z =
20 +2y + 32 =

o o o o

We reduce the coefficient matrix to reduced row—echelon form:

0 0

N = O =
LW =
OO O =
o~ O O

1 1
1 0
2 0

and consequently the system has only the trivial solution x =0, y =0, z =
0. Hence the given vectors are linearly independent.

4. The vectors

A —1 1
Xi=| 1], Xo=| )|, Xs3=| -1
—1 —1 A

31



are linearly dependent for precisely those values of A\ for which the equation
xX1+yXo+2X35 = 0 has a non—trivial solution. This equation is equivalent
to the system of homogeneous equations

A—y—z =
—TH+AYy—2z =
—r—y+Az =

Now the coeflicient determinant of this system is

A -1 —1
-1 A —1|(=A+1)2*N-2).
-1 -1 A

So the values of A which make X7, X5, X3 linearly independent are those A
satisfying A # —1 and X\ # 2.

5. Let A be the following matrix of rationals:

1 1 2 0 1
2 2 5 0 3
A= 0O 0 0 1 3
8 11 19 0 11
Then A has reduced row—echelon form

1 00 0 -1

01 00 O

B= 001 0 1

0001 3

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A
also form a basis for R(A).)

(b) The first four columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

r1 = s

Tro = 0

r3 = —Ts
T4 = —31‘5,
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with x5 arbitrary. Then

Is 1
0 0
X = —x5 | =x5 | —1 |,
—31‘5 -3
Is5 1

so [1, 0, —1, =3, 1]¢ is a basis for N(A).

6. In Section 1.6, problem 12, we found that the matrix

1 01 01
01 011
A= 1 11 10
00110
has reduced row—echelon form
1 00 1 1
01 0 11
B= 00110
00 0 00O

From B we read off the following:

(a) The three non-zero rows of B form a basis for R(A).
(b) The first three columns of A form a basis for C'(A).

(¢) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

Tl = —T4—T5=2T4+T5
Ty = —T4—T5=2T4+T5
T3 = —T4= T4,

with x4 and x5 arbitrary elements of Zo. Hence

T4+ 5 1 1

T4+ x5 1 1

X = X4 = X4 1 +x5| 0
T4 1 0

x5 0 1

Hence [1, 1, 1, 1, 0] and [1, 1, 0, 0, 1]* form a basis for N(A).
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7. Let A be the following matrix over Zs:

11 2 01 3

21 4 0 3 2

A= 000130
| 3 0 2 4 3 2|
We find that A has reduced row—echelon form B:
1 0 0 0 2 4]

01 0 0 4 4

B= 001 000

L0 0 0 1 3 0

From B we read off the following:

(a) The four rows of B form a basis for R(A). (Consequently the rows of
A also form a basis for R(A).

(b) The first four columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

T1 = —2x5—4xg = 3T5+ x4
To = —4dxs5—4xg = T5+ X6
z3 = 0

x4 = —3x5=2xs5,

where x5 and xg are arbitrary elements of Zs. Hence

3

_ o O O - =

O = N O

so [3,1,0,2,1,0]" and [1, 1, 0, 0, 0, 1]* form a basis for N(A).

8. Let F'={0, 1, a, b} be a field and let A be the following matrix over F":

A=

— Q
— o Q
— o o
IS S
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In Section 1.6, problem 17, we found that A had reduced row—echelon form

B =

S O =

0 00
1 0 b
0 1 1
From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A
also form a basis for R(A).

(b) The first three columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

r1 = 0
Tro = —bx4 = ba:4
T3 = —X4= Ty,

where x4 is an arbitrary element of F. Hence

X:x4

_ = o O

so [0, b, 1, 1]t is a basis for N(A).

9. Suppose that Xi,...,X,, form a basis for a subspace S. We have to

prove that
X17X1+X27"'7X1+".+Xm

also form a basis for S.
First we prove the independence of the family: Suppose

.CEle—i—xQ(Xl+X2)+"‘+$m(X1+”'+Xm):0.

Then
(r1+ 22+ -+ 2) X1+ -+ 2, X, = 0.

Then the linear independence of X, ..., X, gives

1 +xo+ -+ xym=0,...,2, =0,
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form which we deduce that 1 =0,...,z,, = 0.
Secondly we have to prove that every vector of S is expressible as a linear
combination of X1, X1 + Xo,..., X1+ -+ X,,. Suppose X € S. Then

X=a1 X1+ +anXmn.
We have to find z1,...,x,, such that

X = mXi+x(Xi+Xo)+ - an(Xi+ -+ X))

Then
a1 X1+ FapXpm = (21t 22+ -+ T0) X1+ 2 X
So if we can solve the system
1 +To+ "+ Ty =A1,...,Tym = O,

we are finished. Clearly these equations have the unique solution

1 =0a1 —az,...,Tm-1 = am — Am—-1, Tm = Qm-
a b c . . .
10. Let A = [ 111 If [a, b, ¢] is a multiple of [1, 1, 1], (that is,

a=b=c), then rank A = 1. For if
[a, b, ¢ =t[1, 1, 1],
then
R(A) = ([a, b, c], [1, 1, 1]) = (¢[1, 1, 1], [1, 1, 1]) = ([1, 1, 1]),

so [1, 1, 1] is a basis for R(A).

However if [a, b, ¢] is not a multiple of [1, 1, 1], (that is at least two
of a, b, ¢ are distinct), then the left—to-right test shows that [a, b, ¢] and
[1, 1, 1] are linearly independent and hence form a basis for R(A). Conse-
quently rank A = 2 in this case.

11. Let S be a subspace of F" with dimS = m. Also suppose that
X1,..., X, are vectors in S such that S = (Xi,...,X,,). We have to
prove that Xq,...,X,, form a basis for S; in other words, we must prove
that X,..., X,, are linearly independent.
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However if X,..., X,, were linearly dependent, then one of these vec-
tors would be a linear combination of the remaining vectors. Consequently
S would be spanned by m — 1 vectors. But there exist a family of m lin-
early independent vectors in S. Then by Theorem 3.3.2, we would have the
contradiction m < m — 1.

12. Let [z, y, 2] € S. Then = + 2y + 32 = 0. Hence # = —2y — 3z and

x —2y — 3z —2 -3
y | = Yy =Y 11 +=z 0
z z 0 1

Hence [—2, 1, 0] and [-3, 0, 1]* form a basis for S.

Next (—1) +2(—1)+3(1) =0, s0 [-1, -1, 1}t € S.

To find a basis for S which includes [—1, —1, 1]*, we note that [-2, 1, 0]’
is not a multiple of [—-1, —1, 1]*. Hence we have found a linearly independent
family of two vectors in S, a subspace of dimension equal to 2. Consequently
these two vectors form a basis for S.

13. Without loss of generality, suppose that X; = X5. Then we have the
non—trivial dependency relation:

1X, —|—(—1)X2—|—0X3+"'+0Xm = 0.

14. (a) Suppose that X, 11 is a linear combination of X1, ..., X,,. Then
(X1, oy Xy Xng1) = (X1, ..., Xon)

and hence
dim <X1, e ,Xm, Xm+1> = dim <X1, .. ,Xm>

(b) Suppose that X,,+1 is not a linear combination of Xi,..., X,,. If not
all of X1,...,X,, are zero, there will be a subfamily X,,,..., X, which is
a basis for (X71,..., X,,).

Then as X,,+1 is not a linear combination of X, ,..., X, it follows that
Xeyy-ooy Xe,y Xmy1 are linearly independent. Also

(X1, ooy Xy Xn1) = (Xeys oo Xy Ximt1)-
Consequently

dim<X1,...,Xm, Xm+1>:7’+1:dim<X1,...,Xm>+1.
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Our result can be rephrased in a form suitable for the second part of the
problem:
dim <X1, ce ,Xm, Xm+1> = dim <X1, - 7Xm>

if and only if X,,11 is a linear combination of Xi,..., X;,.
If X =[z1,...,2,)", then AX = B is equivalent to
B=x1Ag+ -+ 2.

So AX = B is soluble for X if and only if B is a linear combination of the
columns of A, that is B € C(A). However by the first part of this question,
B € C(A) if and only if dim C([A|B]) = dim C(A), that is, rank [4|B] =
rank A.

15. Let a1,...,a, be elements of F, not all zero. Let S denote the set of
vectors [z1,. .., %]t where x1, ..., z, satisfy

a1x1 + -+ apxy = 0.

Then S = N(A), where A is the row matrix [aj,...,a,]. Now rank A =1
as A # 0. So by the “rank + nullity” theorem, noting that the number of
columns of A equals n, we have

dim N(A) = nullity (A) =n —rank A =n — 1.

16. (a) (Proof of Lemma 3.2.1) Suppose that each of Xi,..., X, is a linear
combination of Y7,...,Y;. Then

S
Xi=> a;Y;, (1<i<r).
j=1

Now let X = 2:21 x;X; be a linear combination of X4,...,X,. Then

X = zi(anYi+ -+ a15Y5)

+
+ xr(arlyl +---+ a?”SYS)
= Y1+ +ysYs,
where y; = a1;21+- - -+a,jz,. Hence X is a linear combination of Y1,...,Y,.

Another way of stating Lemma 3.2.1 is

(X1,..., X)) € (N1, Ys), (1)

38



if each of X1,..., X, is a linear combination of Yi,...,Y;.

(b) (Proof of Theorem 3.2.1) Suppose that each of X7,..., X, is a linear
combination of Y7,...,Ys and that each of Y7, ..., Y} is a linear combination
of Xi1,...,X,. Then by (a) equation (1) above

<X17"'7XT> c <Y1,"'7}/S>

and
(Y1,...,Ys) C(Xq,..., X,).

Hence
<X17"'7X7"> = <YiaaYS>

(c) (Proof of Corollary 3.2.1) Suppose that each of Z1,...,Z; is a linear
combination of X1,...,X,. Then each of X1,...,X,, Z1,...,Z; is a linear
combination of X1,...,X,.

Also each of X1, ..., X, is a linear combination of X1, ..., X,, Z1,..., Z,
so by Theorem 3.2.1

(X1, X, Z0,e o Z0) = (X1, X)),

(d) (Proof of Theorem 3.3.2) Let Y1,...,Ys be vectors in (Xy,...,X,)
and assume that s > r. We have to prove that Yi,..., Y, are linearly
dependent. So we consider the equation

Y1+ + Y, =0.
Now Y; = Z§:1 a;; X;, for 1 <i <s. Hence
Y1+ +aYs = m(anXy+ -+ a1 X)

_|_

+ xr(alel +-+ asrXr)-

= nXi+-+yuX, (1)
where y; = ay;71 + - -+ + as;75. However the homogeneous system

yl:07 T yT‘:O

has a non—trivial solution z1, ..., zs, as s > r and from (1), this results in a
non—trivial solution of the equation

Y1+ +aYs = 0.
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Hence Y1, ...,Y; are linearly dependent.

17. Let R and S be subspaces of F", with R C .S. We first prove
dim R < dim S.

Let X1,..., X, be abasis for R. Now by Theorem 3.5.2, because X1, ..., X,
form a linearly independent family lying in S, this family can be extended
to a basis X1,...,X,,...,Xs for S. Then

dimS = s >r =dimR.

Next suppose that dim R = dim S. Let Xi,..., X, be a basis for R. Then
because X1,..., X, form a linearly independent family in S and S is a sub-
space whose dimension is r, it follows from Theorem 3.4.3 that Xy,..., X,
form a basis for S. Then

S=(Xi,....,X,)=R.

18. Suppose that R and S are subspaces of F" with the property that RUS
is also a subspace of F. We have to prove that R C S or S C R. We argue
by contradiction: Suppose that R Z S and S € R. Then there exist vectors
u and v such that

ueRandu ¢S, veSandv¢R.

Consider the vector u+v. As we are assuming RU S is a subspace, RUS is
closed under addition. Hence u+v € RUS andsou+v € Roru+wv e S.
However if u + v € R, then v = (u 4+ v) — u € R, which is a contradiction;
similarly if u +v € S.

Hence we have derived a contradiction on the asumption that R ¢ S and
S ¢ R. Consequently at least one of these must be false. In other words
RCSorSCR.

19. Let X1,..., X, be a basis for S.
(i) First let
Yi = aunXi+--+a X,

Y, = anXi+--+a Xy,
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where A = [a;;] is non-singular. Then the above system of equations can
be solved for Xi,..., X, in terms of Y7,...,Y,. Consequently by Theorem
3.2.1

(Y1,...,Y,) =(Xy,...,X,) = S.

It follows from problem 11 that Y7,...,Y, is a basis for S.

(ii) We show that all bases for S are given by equations 2. So suppose
that Yi,...,Y, forms a basis for S. Then because X1i,..., X, form a basis
for S, we can express Y7,...,Y, in terms of Xi,..., X, as in 2, for some
matrix A = [a;;]. We show A is non-singular by demonstrating that the
linear independence of Y7,...,Y, implies that the rows of A are linearly
independent.

So assume

zilail, ..., a1 + -+ xplarr, ... ap] = [0,...,0].
Then on equating components, we have

anry +--+apx, = 0

ayrxy + -+ apry, = 0.
Hence

Y1+t Y, = zi(anXi++arXy) + o F (e X 4+ an Xo)
= (anzi+ - +amz) X1+ + (apz1 + - + aprzy) X
= 0X;+ - +0X,=0.

Then the linear independence of Y7, ...,Y, implies 1 =0,...,x, = 0.
(We mention that the last argument is reversible and provides an alter-
native proof of part (i).)
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P3

P

Section 4.1

1. We first prove that the area of a triangle P} P»Ps, where the points
are in anti—clockwise orientation, is given by the formula

: J

Area PPy, P; = AreaOP Py, + AreaOPy,P; — Area OP P
1 1 1

2 2 )

T T2
Yy Y2

T2 T3
Y2 Y3

T3 T
Ys W

Referring to the above diagram, we have

xr1 T2
Yy Y2

Tro X3
Y2 Y3

Ir1 I3
Yyt Y3

which gives the desired formula.

We now turn to the area of a quadrilateral. One possible configuration
occurs when the quadrilateral is convex as in figure (a) below. The interior
diagonal breaks the quadrilateral into two triangles Py P, P; and P P3P;.
Then

Area Py P, P3Py = Area Py PoP3 + Area P\ P3P,

{

1 X2
Y1 Y2

T2 T3
Y2 Y3

r3 I
Ys W

N | =
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P4 P3

P
P,
(a) (b) 4
Pl Pl
Py Py
+1{ Ir1 I3 Tr3 X4 T4 X1 }
2 Y1 Y3 Y3 Y4 Ya Y1
B 1{ T1 T2 To XT3 T3 T4 T4 T }
2l v v Y2 Y3 Ys Y4 (7T

after cancellation.

Another possible configuration for the quadrilateral occurs when it is not
convex, as in figure (b). The interior diagonal P, P, then gives two triangles
PP, Py and P, P3Py and we can proceed similarly as before.

2.
a+x b+y c+z a b c x Y z
A=|lz4+u y+v z+w |=|z4+u y+v z4+w |[+| z+u y+v z4+w
u+a v+b w+ec u+a v+b w+ec u+a v+b w+ec
Now
a b c a b c a b c
r+u y+v z4+w | = T Y z + U v w
u+a v+b w+c ut+a v+b w+Hec u+a v+b w+Hec
a b c a b c a b c a b c
= T Yy z |+l Yy z|+|lu v w|+|lu v w
U v ow a b c U vw a b c
a b c
= |z vy z
u v ow
Similarly
x Y z T Yy =z T Yy z a b c
r+u y+v z+w|=|luv v w|=—|a b c|=|x y =z
ut+a v+b w+Hec a b c u v w u v ow



n? n+1)2 (n+2)? ] C3—C35—Cq n? 2n+1 2n+3
3.l n+1)?2 n+2)? n+3)?2| Co—Co—Cy | (n+1)?2 2n+3 2n+5
(n+2)? (n+3)2 (n+4)? = (n+2)% 2n+5 2n+7
n? 2n+1 2
C3_>(_j3_c2 (n+1)2 2n+3 2
N (n+2)?2 2n+5 2
R3 — R3 — Ry n? 2n+1 2
Ry — Ry — Ry 2n+1 2 0|=-8.
= n+3 2 0
4. (a)
246 427 327 246 100 327 246 1 327
1014 543 443 | =| 1014 100 443 | =100| 1014 1 443
—342 721 621 —342 100 621 —342 1 621
246 1 327
= 100| 768 0 116 :100(1)‘ _ggg ;;Z ‘:29400000.
—588 0 294
(b)
1 2 3 4 1 2 3 4
-2 1 -4 3| |0 5 2 11
3 =4 -1 2| |0 —-10 —-10 -10
4 3 -2 -1 0 -5 —14 -17
5 2 11 5 2 11
= | =10 —=10 —10 |=-10] 1 1 1
-5 —14 -17 -5 —14 -17
5 -3 6 3 6
= 10/ 1 0 0 |==10(-1)| ¢ 4 |=900.
-5 -9 —12
1 0 —2 10 0 L 10
bodetA=|3 1 4]=13 110 =, " |=-I3
5 2 -3 5 2 7



Hence A is non—singular and

1 Cii Co1 O3
A_l = _713 adJ A= _713 012 022 032
Ciz3 Oy Cs3
6. (i)

2a 2b b—c

2b 2a a-+c R1_>§1+R2
a+b a+b b -
2 2 1

= (a+b)| 2b 2a a+c
a+b a+b b

2 1
—2(a+b)(a—b)'a+b b
(i)
b+c b c Oy — Oy — Cy
c cta a .
b a a+b o
c b 0
C3_>€3_Cl a c+a 2a
o b—a a 2a
c b 0
R3_>]j3_R2 2a| —a c+a 1 |=-2a
o b —c 0

C1— C1 —Cq

—-11 -4 2
— 29 7 —10
1 -2 1

20+2b 2b+2a b+a

2a a—+c
a-+b b
0 2 1

(a+b)| 2(b—a) 2a a+c

0 a+b b

' =—2(a+b)(a— b)z.

c b 0

—a c+a 1
b—a a 1

_IC) = 2a(c® + b?).

7. Suppose that the curve y = ax? + bz + ¢ passes through the points
(xla Z/l)’ (.%'2, y2)7 (1'3, y3>7 where Ty 7& xj le 7é ] Then

ax? 4 bry +c

ax3 +bro+c =
ax +brz+c =

The coefficient determinant is essentially a Vandermonde determinant:

2 om 1 3 23 2} 1
x% To 1 |=|x1 2 23 |=—| 21
23 x3 1 1 1 1 x?

45
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Hence the coefficient determinant is non—zero and by Cramer’s rule, there
is a unique solution for a, b, c.

1 1 -1
8. Let A=detA=|2 3 k |. Then
1 £k 3
Cs - Cs+C L 0 1 k+2
A= P I e k42 —‘ ‘
ComCo=Cr || oy 4 k-1 4

= 4—(k—1)(k+2) =k —k—6)=—(k+3)(k—2).

Hence det A =0 if and only if k = -3 or k = 2.
Consequently if k£ # —3 and k # 2, then det A # 0 and the given system

rT+y—z =
20 4+3y+kz = 3
r+ky+3z =2

has a unique solution. We consider the cases k = —3 and k = 2 separately.
k=-3:
1 1 -1 1 1 1 -1 1
AM=|2 3 -3 3 %:i}__f’l 0 1 -1 1
1 -3 3 2 3 Bl -4 41
1 1 -1
R3 — R3 + 4Ry 01 -1 ,
00 065
from which we read off inconsistency.
k=2:
1 1 -1 1 11 -1 1
AM=1]2 3 23 RRE:R;__Q? 01 41
12 32 L RO B I |
1 0 =5 0
Rs — R3s — Ry 01 4 1
00 00
We read off the complete solution x = 5z, y = 1 — 4z, where z is arbitrary.
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Finally we have to determine the solution for which z2 +y? + 22 is least.

B+t +22 = (52)? +(1—42)? + 22 =422 — 82+ 1

4 1 2\? 1 2\
= 4202 — —z+ —) =42 -7 —= |57
TR Y {(Z 21> TR (21)}
2\ 13
= 420 (z—=) + 2%,
{(Z 21) +882}

We see that the least value of 22 +y2+22 is 42x 23 = 13 and this occurs when

882 — 21

z = 2/21, with corresponding values z = 10/21 and y = 1 — 4 X % = 13/21.

1 -2 b
9. Let A= | a 0 2 |Dbethe coefficient determinant of the given system.

5 20
Then expanding along column 2 gives

a 2 1 b
A = 2 5 0‘—2 2‘-—20—2(2—@1))

= 2ab— 24 =2(ab— 12).

Hence A = 0 if and only if ab = 12. Hence if ab # 12, the given system has
a unique solution.
If ab = 12 we must argue with care:

1 -2 b 3 1 -2 b 3
AM = a 0 2 2| =10 20 2—ab 2—-3a
5 201 0 12 -5b —14
(1 -2 b 3 1 -2 b 3
—5b —7 —5p -7
- (01 5 F |—=|0 1 53 F
| 0 2a 2—ab 2-3a 0 0 125ab 6—32a
1 —2 b 3
= |0 1 3 F | =B
0 0 0 6—2a

I
= ‘

Hence if 6 — 2a # 0, i.e. a # 3, the system has no solution.
If a = 3 (and hence b = 4), then

1 -2 4 1 0 2/3 2/3
B=|0 1 F F|-=]01 F F
00 0 0 00 0 O



Consequently the complete solution of the system is x = —% + %z, Yy =
%7 + %z, where z is arbitrary. Hence there are infinitely many solutions.

10.

11 2 1 | Ry—Ri—2R |1 1 2 1
A _ |12 3 4 | Rs—Ry—2R; [0 1 1 3
“ |24 7 2+46| Re—Ry—R, |0 2 3 2t+4
2 2 6-t ¢ = 00 2—t t—2
11 3 11 3
2 3 g e T2 gy
0 2—¢t t—2 N 0 2—¢t t—2
1 2t—2 1 2t—2
= oy 1.5 ‘—(t—Q)‘ 1 ‘_(t—2)(2t—1).

Hence A =0 if and only if t =2 or ¢t = % Consequently the given matrix
B is non—singular if and only if t # 2 and t # %

11. Let A be a 3 x 3 matrix with det A # 0. Then
(i)
AadjA = (detA)ls (1)
(det A)det (adjA) = det(det A-I3) = (det A)>.
Hence, as det A # 0, dividing out by det A in the last equation gives
det (adj A) = (det A)%

(ii) . Also from equation (1)

1
= A) adjA=1
(detA ) ad) 5

so adj A is non—singular and

1
AT = ——A
(adjA) det A

Finally
A7 adj (A7) = (det AN I3
and multiplying both sides of the last equation by A gives

1
= A.
det A

adj (A™!) = A(det A1) I3
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12. Let A be a real 3 x 3 matrix satisfying A'A = I3. Then

(i) AH(A—13) = A'A— At =13 A
—(A' = I3) = — (A" - I}) = —(A - I3)".

Taking determinants of both sides then gives

det Aldet (A —1I3) = det(—(A—I3)")
det Adet (A —1I3) = (—1)3det (A — L)
= —det (A~ 1) (1).

(i) Also det AA" = det I3, so
det Aldet A =1 = (det A)2.

Hence det A = +1.
(iii) Suppose that det A = 1. Then equation (1) gives

det (A — Ig) = —det (A — Ig),

so (1 +1)det (A — I3) = 0 and hence det (A — I3) = 0.

13. Suppose that column 1 is a linear combination of the remaining columns:

A*l = xQA*Q + -+ wnA*n

Then
Toa12 + -+ Tpaln Q12 - Gl
Toagy + -+ TpQon Q22 - G2p
det A = . .
T20n2 + - -+ TpQpn An2 - App

Now det A is unchanged in value if we perform the operation

Ci—Cy—xCy — - —z2,Cy
0 a2 -+ am
0 ax --- a,
det A= . . ) . =0.
0 ap2 -+ apn
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Conversely, suppose that det A = 0. Then the homogeneous system AX =0
has a non-trivial solution X = [z1,...,z,]". So

1A+ F Ay = 0.

Suppose for example that z1 # 0. Then

A — <_w2> P <_w> A
T T

and the first column of A is a linear combination of the remaining columns.

14. Consider the system

—2x4+3y—2z = 1
r4+2y—z = 4
—2r—-y+z = -3
-2 3 -1 0 7 =3 7 _3
Let A = 1 2 -1 |=(1 2 -1 ——’3 _1’——25£0.
-2 -1 1 0 3 -1

Hence the system has a unique solution which can be calculated using
Cramer’s rule:

_Al _A2 _Ag
T = A Y= A z= A
where
1 3 —1
A = 4 2 —1|=—4,
-3 -1 1
—2 1 -1
Ay = 1 4 —1|=-6,
-2 -3 1
—2 3 1
Az = 1 2 4|=-8.
-2 -1 -3
Hencexzi—gzzy:}g:&z:}g:ll.

15. In Remark 4.0.4, take A = I,,. Then we deduce
(a) det Eij = -1,
(b) det E;(t) = t;
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(C) det Eij(t) =1.

Now suppose that B is a non—singular n X n matrix. Then we know that B
is a product of elementary row matrices:

B=E;---E,.
Consequently we have to prove that
det By --- EpA=detEy--- Epdet A.

We prove this by induction on m.
First the case m = 1. We have to prove det E1A = det £y det A if F is
an elementary row matrix. This follows form Remark 4.0.4:

(a) det FjjA = —det A = det E;; det A;
(b) det E;(t)A = tdet A = det E;(t) det A;
(c) det E;;(t)A = det A = det E;(t) det A.

Let m > 1 and assume the proposition holds for products of m elementary
row matrices. Then

det By - EmBEmiiA = det (E1- En)(Ems1A)

det (Eq -+ Ep) det (Epi1A)
det (Eq -+ Eyy)det Epyqq det A
= det((Ey-- - Ep)Ep+1)det A

and the induction goes through.

Hence det BA = det B det A if B is non—singular.

If B is singular, problem 26, Chapter 2.7 tells us that BA is also singlular.
However singular matrices have zero determinant, so

det B=0 detBA=0,

so the equation det BA = det B det A holds trivially in this case.
16.

a+b+c a+bd a a
a+b a+b+ec a a
a a a+b+c a+b
a a a+b a+b+c

o1



Ry —Ri—Ry | ¢ —c 0 0
Ry — Ry — R3 b b+c¢c —-b-—c b
R3s —R3— R4 | O 0 c e
= a a Cl—l—b (I+b+c
C 0 0 0
Co—Co+Cy | b 2b+c —b-—c b 2b+c —b—c b
=C 0 c —c
pry 0 0 C —C 2a a+b a+b+c
a 2a a+b a+b+ec

2b+c¢c —-b—c¢ —2b—c¢

T
Cg—>E’3+C'gc 0 . 0 _ 2 2b2—CiL—c 2a+b2bjc
- 2a a+b 2a+2b+c
= (20 + ) . -1 = c2(2b + ¢)(4a + 2b + ¢).
2a 2a+2b+c
1+wu U1 U1 U1
17. Let A = 2 1 e 42 . Then using the operation
us us 1+ us us
Uy Uy Uy 1+ uy
Ry — Ri+Ra+ R3s+ Ry
we have
t t t t
us 14 us U U2
A =
uz  uz  l+wus  ug
Uy Uy Uy 14+ uy

(where t = 1 4 uj + ug + us + uy)

1 1 1 1
_ uy 14+ ug U9 UL
—(1—|—U1+U2+U3+U4) us us 1+ us us
Uy Uy Uy 1+ uy
The last determinant equals
1 000
Cr=Ce=Cil 10 0
C3—C3—Cy | 2 =1.
Ch O | U 010
AT by 0 0001
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18. Suppose that A® = — A, that A € M,,«,,(F), where n is odd. Then

det A = det(—A)
det A = (—1)"det A= —det A.

Hence (14 1)det A =0 and consequently det A=0if 14+ 150 in F.
19.

1111 Cy—Cy—C5 | 1 0 0 0
r 1 1 1 o 03—>C3—CQ r 1l—r 0 0 _(1—’/“)3
rr 11| Co—Co—=Ci |7 0 1—r 0 -
ror or 1 = r 0 0 1—r
20.
1 a®2=bec a*| Ry - Ry— Ry | 1 a® — be a*

1 ®»—ca b*| Rs—R3—R; |0 b>—ca—a’®+bc b*—at
1 2—ab = 0 2—ab—a%2+bc *—at

B b2 —ca—a®+be b*—at
—ab—a®+bec *t—at
(b—a)
(c—a)
(b
(

C

b+a)+c(b—a) (b—a)(b+a)(b2—|—a2)'
c+a)+blc—a) (c—a)(c+a)(®+a?)
b+a+c) (b—a)(b+a)(b2+a2)’
ct+a+b) (c—a)lc+a)c®+a?)
b+a+c (b+a)?+a?)
cta+b (c+a)(®+a?)
1 (b+a)(b2+a2)‘
1 (c+a)(c®+a?)

A~ N SN

a)
a)
— (b-a)c—a)

= (b—a)(c—a)(a+b+c)

Finally

2 2
1 (b+a)(b +a)‘ = (¢ +ac +ca® +a®) — (b° + ab® + ba® + a®)

(c+a)(c® + a?)
= (=) +a(®—b*)+d*(c—b)
= (c=b)(P+cb+b*+alc+b) +a?)
= (c—b)(+cb+b*+ ac+ab+a?).
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Section 5.8

1.
(i) (=3414)(14—2i) = (=3)(14 —27) + (14 — 2i)
= {(—3)14 — (—3)(2i)} +(14) — i(29)
= (—42+6i) + (147 + 2) = —40 + 20s.
(i) 2+ 3 (24 3i)(1 + 440)
ii =
1—44 (1 —44)(1 4 440)
(24 3d) + (24 34)(44)
B 12 + 42
B —10+11i_—10+E.
B T TR T
1+ 2¢)> 1+ 4i + (2i)?
(iii) M - —l—z——l—(z)
1—1 1—1
 1+4i—-4  -3+4d
1= 11—
_ (B4 4 T4 T 1
B 2 S22 ‘
2. (i)
iz4+(2—-10)z2=32+2i < 2(i+2-10i—3)=2:
—2i
=& —1-9) =2 z2=
2( i)=2i<z 150
0 —=2i(1-9i) —18-2i —-9—i
B 1481 82 41
(ii) The coefficient determinant is
144 2—14 . . . . .
‘ 142 344" (1+49)B+i)—2—-i)(1+2i)=-24+1#0.
Hence Cramer’s rule applies: there is a unique solution given by
-3t 2—1
2421 3414 -3 —11i ,
z = - = — =—1+5¢
—241 —241
1447 =3
B 1+20 2+2 | —6+71 19-8i
v —2+i  —24i 5
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. , 1+4)100 -1
14+ (1 | 99 _ (—
+ (1 4d) + -+ (1 +14) Ati-1

(1+i)100—1

= — =—i{(1+4)"° -1},

Now (1 +i)? = 2i. Hence
(1 + i)lOO — (21)50 — 2502'50 — 250(_1)25 — _250'

Hence —i {(1+1)'% — 1} = —i(—2% — 1) = (250 + 1)i.
4. (i) Let 22 = —8 — 6i and write z=x+iy, where z and y are real. Then

22 =% —y? + 2zyi = —8 — 61,

so 22 — y?> = —8 and 22y = —6. Hence

—3\2
y= —3/215, $2 - () = _87

so 2% + 822 — 9 = 0. This is a quadratic in 2. Hence 22 = 1 or —9 and

consequently 22 = 1. Hence x = 1, y = —3 or z = —1 and y = 3. Hence
z=1—-3tor z=—-1+4 3.

(ii) 22 — (3 + 1)z + 4+ 3i = 0 has the solutions z = (3 +i & d)/2, where d is
any complex number satisfying

d?> = (3+i)* —4(4 + 3i) = —8 — 6i.
Hence by part (i) we can take d = 1 — 3i. Consequently

:3+ii(1_3i>:2—z‘ or 1+ 2. Y

z

(i) The number lies in the first quadrant of
the complex plane.

|4+ i =42+ 12 = V17.

Also Arg (4 + i) = a, where tana = 1/4
and 0 < o < 7/2. Hence o = tan ~1(1/4).
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(ii) The number lies in the third quadrant of

(iii)

6. (1) Let z = (1 +)(1+v3i) (V3 —

the complex plane.

‘—3_¢ -

Also Arg (=3-1) = —m + «, where tana =

%/% =1/3 and 0 < o < w/2. Hence o =
tan ~1(1/3).

The number lies in the second quadrant of
the complex plane.

| —1+2i| =+/(-1)2+22 = /5.

Also Arg (—142i) = m—«, where tana =
2 and 0 < @ < 7/2. Hence o = tan 2.

The number lies in the second quadrant of
the complex plane.

Also Arg (3 @2) =
tana = L %
Hence oo = /3.

_ - 1+ivE|
2

\/1—1-3—1

N =

T — «, where

:\/gand0<a<7r/2.

i). Then
11+ 4|1+ v/3i||V3 — 4

B

—3—1

— 1/12_‘_12\/12_‘_
V2V = 4v2.

Argz =

56

Arg (14i) 4+ Arg (1 +/3) + Arg (V3 —

V3 (V32 + (12

i) (mod 2m)



Il
\
_|_
\
|
\
|

Hence Arg z = -% and the polar decomposition of z is

12
51 51
2 =42 <C0812 —|—zsm12>

(ii) Let z = % Then

A+aPI0 -3 _ (VD2

‘Z‘: |(\/§+Z)’4 - 24

Argz = Arg(1+14)° + Arg(1 —+/3i)°> — Arg (V3 +i)*  (mod 27)
= B5Arg(1+41i)+ 5Arg (1 — V/3i) — 4Arg (V3 + 1)

5Z+5<_”>—4—_13”z Hr

3 6 12 12

T and the polar decomposition of z is

117 1171'
— 97/2 i .
z <cos T2 +1s 12 >

Hence Argz = 11

7. (i) Let z = 2(cos T +isin ) and w = 3(cos § +isin §). (Both of these
numbers are already in polar form.)

(a) zw = 6(cos (7 + §) +isin(F + §))
= 6(cos 2F + isin 37).

(b) & =3(cos(§ —5) +isin (5~ §)
2(cos &5 + isin 75).

—
o

S—

SHIS

w o g(cos(% 1) +isin(§ — 7))
%(COS( ) +isin (73 12 5))-

32 (cos (%” — 2—”) —|—is.in(%r — 2%))

32 1inm 1im
% (cos 5 +isin 5gr).

A
2
I %,\Nw

(a) (1+1i)%=2i, so
(1+0)'? = (20)% = 2%° = 64(4%) = 64(—1)> = —64.
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-1 -1 1
_Z

= —.73:7_ :—"
= =) 8- ST

8. (i) To solve the equation 2% = 1 4 v/3i, we write 1 4+ v/3i in modulus—
argument form:

14+V3i= 2(008% —l—ising).

Then the solutions are

T+ 2k T+ 2k
zk:\@<cos<3+27r>+isin<3+2ﬂ>>, k=0, 1.

L)
) -

= 4, we write ¢ in modulus—argument form:

Now k£ = 0 gives the solution

S

zozx/i(cosg—i—ising):\@(

SIS
+
&‘ -.

Clearly z1 = —2zp.

(ii) To solve the equation z*

. m L.
z:cos§—|—151n—.

2

Then the solutions are

T +2k T+ 2k
zk:cos<2—27r>+isin<2—2ﬂ>, k=0,1,2, 3.

T2k k
2 — s (T Ly
Nowcos( I )—c05(8+2),s0

Zk — COS 3 5 S1n 3 5

( 7T+,,7T)k( 7r+,,7r)

= — 1mn — — 1n —

cos2 78 5 cos8 18 3
-k

(cos = +isin —)
= 7 (COS — 7S1n — ).
8 8
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Geometrically, the solutions lie equi—spaced on the unit circle at arguments

St T Or T 137
=, —4T=—, —+3-=—.

LT
2 87 8 8" 8 2 8

T
8 8
Also z9 = —zp and z3 = —27.

3 = _8i, we rewrite the equation as

() -

(iii) To solve the equation z

Then
z —1+ V/3i —1—+/3i
—_— = 17 I — or .
—2i 2 2
Hence z = —2i, V3+4ior —/3+i.
Geometrically, the solutions lie equi-spaced on the circle |z| = 2, at

arguments

Tor 2 _5mom 2w 3w
6" 6 3 676 3 27

(iv) To solve z* = 2 — 2i, we write 2 — 2i in modulus-argument form:

9 — i = 93/2 (coszr—l—isinzr) .

Hence the solutions are

=T 42k =T 4 9k
2 = 2/8 cos <447T> +isin <447T> k=0,1,2,3

‘We see the solutions can also be written as

. -7 .. T
zZE = 23/8k (COS+lSID>

16 16
= 923/8;k <cos 1% — ¢sin 116) .

Geometrically, the solutions lie equi-spaced on the circle |z| = 2%/8, at ar-
guments

—T -7 71'77777 -7 71'71577'(' -7 T 237

6167216 16 "2 16 16 2 16°

Also z9 = —zp and z3 = —2;.
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241 —14+22 2 1 7 1
14+i —1+44i 1 B Bi=Re gy 4
. i . R3 — R3 — Ry X )
1+2¢ —-2417 141 1 -1 7
. 1 2 1 1 ¢+ 1
fio oz W00 00 i | Ry iRy |0 0 1
3T T 00 0 000
1 2 0
Ry — Ry — Ry 0 01
0 0 O
The last matrix is in reduced row—echelon form.
10. (i) Let p=1+1im and z = = + iy. Then
pz+pz = (I—im)(z+iy) + (I +im)(z —iy)
= (lz + liy — imx + my) + (lx — liy + imax + my)

= 2(lx +my).
Hence pz 4+ pz = 2n < la + my = n.

(ii) Let w be the complex number which results from reflecting the com-
plex number z in the line Iz + my = n. Then because p is perpendicular to
the given line, we have

w—z=1p, teR. (a)
Also the midpoint wT‘*'z of the segment joining w and z lies on the given line,
SO

p(w—2|—z>+p<w;—z) = n,
() o

Taking conjugates of equation (a) gives

w—Z = tp. (c)

Then substituting in (b), using (a) and (c), gives

_ (2w —1p n 2Z+1tp
=n
P A
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and hence
pw + pz =n.

(iii) Let p = b —a and n = [b|> — |a|®. Then

z—al=|z-b & |z—a*>=]z-0
S (z—a)(z—a) = (z-0b)(z—0)
& (z—a)(z—7a) (z=b)(z—b)

& 27 —aZ — za + aa 2Z — bz — zb+ bb

sbh-a)z+0b-—a)z = |b]>—|a]?
& pz+pz = n.
Suppose z lies on the circle |Z=¢| and let w be the reflection of z in the

line pz + pz = n. Then by part (ii)
pw +pz =n.

Taking conjugates gives pw + pz = n and hence

(a)

Substituting for z in the circle equation, using (a) gives

n—pw

_ f,_a _ n—p?—]?a ' (b)
LﬁPW_b n — pw — pb
However
n—pa = |b?>—la*—(b—a)a
= bb—aa — ba+ aa
= b(b—a)=bp.

Similarly n — pb = ap. Consequently (b) simplifies to

A=

bh—
a—

gl| gl

I

ap — pw w—a

bp—pw‘ B

==

w—a
w—b

which gives ‘

>l
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11. Let a and b be distinct complex numbers and 0 < a < 7.
(i) When 2z; lies on the circular arc shown, it subtends a constant angle
«. This angle is given by Arg(z; —a) — Arg(z; — b). However

Arg (21_2) = Arg(z; —a) — Arg(z; — b) + 2k~
zZ1 —

= o+ 2km.
It follows that k =0, as 0 < a < 7w and —7 < Argf < 7. Hence
Arg (zl — a) =aq.
21 — b
Similarly if zo lies on the circular arc shown, then

zZ9 —Qa o _ _ _
Arg<22_b>— vy=—(r—a)=a—m.

Replacing o by m — «, we deduce that if z4 lies on the circular arc shown,

then
Arg <Z4a> =T —aq,
24— b

while if z3 lies on the circular arc shown, then

Arg (Zg — a) = —a.
Zg—b

The straight line through a and b has the equation

z=(1—-t)a+tb,
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where t is real. Then 0 < t < 1 describes the segment ab. Also

zZ—a t

2—b t—1

Hence Z=3 is real and negative if 2 is on the segment a, but is real and

positive if z is on the remaining part of the line, with corresponding values
z—a
Arg < ) =m, 0,
z—b

(ii) Case (a) Suppose z1, z2 and z3 are not collinear. Then these points
determine a circle. Now 2z and zo partition this circle into two arcs. If z3
and z4 lie on the same arc, then

Z3— 2 Z4— 2
Arg<3 1)—Arg<4 1>;
23 — 29 24 — 22
whereas if z3 and z4 lie on opposite arcs, then
z3— 2
Arg ( 3 1) =«
Z3 — 29
Z4— 2
Arg < 1 1) =a—T.
zZ4 — R9
Hence in both cases

Arg <23_Zl/24_21> = Arg <23_21> — Arg <Z4_Zl> (mod 27)

Z3 — 29 24 — 22 zZ3 — 29 Z4 — Z9

respectively.

and

= QOor .

In other words, the cross—ratio

23 —Z1 24 — 21

R3 T R2 24 — 22

is real.
(b) If 21, 22 and z3 are collinear, then again the cross-ratio is real.
The argument is reversible.

(iii) Assume that A, B, C, D are distinct points such that the cross-ratio

23 — k1 24 — %1
r =

%3 T 22 24— 22

is real. Now r cannot be 0 or 1. Then there are three cases:
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(i) o<r<1,
(ii) r < 0;
(iii) r > 1.

Case (i). Here |r|+ |1 —7| =1. So

+'1_ <Z4—21 ‘23—22>‘ -1

Z4 —R9 Z3 — 21
Multiplying both sides by the denominator |z4 — z3||z3 — 21| gives after
simplification

Z4 —R1 R3— X2

Z4 —R9 R3— X1

|Z4 — 21H2’3 —2’2’ + |2’2 — Z1HZ4 — 23| = ‘24 — ZzHZg — ,21|,

or

(a) AD.BC+AB-CD = BD - AC.
Case (ii). Here 1 + |r| = |1 — r|. This leads to the equation

(b) BD-AC+ AD-BC+ = AB - CD.
Case (iii). Here 1 + |1 — 7| = |r|. This leads to the equation
(¢) BD-AC+AB-CD = AD - BC.

Conversely if (a), (b) or (c) hold, then we can reverse the argument to deduce
that r is a complex number satisfying one of the equations

rl+ =l =1 1l == 1= =]

from which we deduce that r is real.
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Section 6.3
4 -3

1. Let A= [ 1 0 ] . Then A has characteristic equation A2 — 4\ +3 =0

or (A—3)(A—1) =0. Hence the eigenvalues of A are \; =3 and \y = 1.
A1 = 3. The corresponding eigenvectors satisfy (A — A\112) X =0, or

L=l

or equivalently x — 3y = 0. Hence

andwetakeXlz[:S}

Similarly for Ao = 1 we find the eigenvector X5 = [ 1 ]

3 1

Hence if P = [Xl‘XQ] = |: 11

} , then P is non—singular and

., [3 0
prar=[3 0],

Hence

o [3 07,
a=r[s Ve

and consequently

n o __ 3n 0 —1
v e300
31 301 1 -1
- 11 0o 1|2 -1 3
_ L3t 1 -1
20 3 1 -1 3
B 1 3n+1_1 _3n+1+3
~ 92| 3"—1 —3"+3
3n—1 3—3n
— A L.
g AT T
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3/5 4/5
2/5 1/5

A2 = —1/5, with corresponding eigenvectors

x=[2] wat m=] ],

Then if P = [X1|X3], P is non-singular and

2. Let A = [ ] . Then we find that the eigenvalues are \; = 1 and

-1 . 1 0 o 1 0 —1
P AP_[O _1/5] and A_P[O _1/5]P .
Hence

A" = P

2 -]

3. The given system of differential equations is equivalent to X = AX,

where

3 -2 x

4[] wa x2[7)
. 2 . . . .
The matrix P = { 51|12 non-singular matrix of eigenvectors corre-
sponding to eigenvalues A\; = —2 and Ay = 1. Then
-2 0
-1 i
pap=[ 2],

The substitution X = PY, where Y = [x1, y1]!, gives

: —2 0
y_{ Ol}y,
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or equivalently 1 = —2x; and 31 = 1.
Hence z1 = x1(0)e~2" and y; = y1(0)e’. To determine z1(0) and y1(0),
we note that

z1(0) | p-l z0) | _ 1 1 -1 31 |3
y1(0) | y©0) | 3| -5 2 22 | 7|
Hence 21 = 3e2 and y; = 7e!. Consequently

r=2x 41y =6e 2+ 7 and y=>5x 4y = 15e 2 4 Tel

4. Introducing the vector X,, = [ n ] , the system of recurrence relations

Yn
Tpy1 = 3Tn — Yn
Ynt1 = —Tn+ 3Yn,
becomes X, +1 = AX,,, where A = [ _? _Zl’> } Hence X,, = A" X, where
Xo=|,

To find A™ we can use the eigenvalue method. We get

gqn_ L[ 2+an 2n o4
2 — 4" 2" 44"
Hence
1[ on n
x, = L 2 +4 1
2| 2" —4" 2"+4” 2
ol 2rpar 4 202" —47)
22" —4r 42027 4 4)
1 3x2m—4qn (3 x 2 —4m)/2
) | 3 x 2" 44" (3x2m+4™)/2 |-

Hence z, = 1(3 x 2" —4") and y, = 3(3 x 2" +4").

a b
5.LetA—{c d

A1, A2 and corresponding eigenvectors X1, Xs. Also let P = [X;|X3].

] be a real or complex matrix with distinct eigenvalues

(a) The system of recurrence relations

Tnt1 = arp+byn
Yntl = CTyp+dyn
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has the solution
Tn n| Zo A1 0 _1>n [ xo ]
= A = (P P
[ Yn ] { Yo } ( [ 0 A ] Yo
A0 T
P 1 Pfl 0 :|
{ 0 Ay ] [ Yo
- AT 0 a
= bl |4 (5]

n
Ao

A3

BRI

(b) In matrix form, the system is X = AX, where X = [ ﬂ?j ] . We substitute

[X1]X5] [ ] = AlaX| + Ay 5Xo,

where

X = PY, where Y = [z1, 11]'. Then
X = PY = AX = A(PY),
SO

Y:(PlAP)Y:[)E)l Aoszﬂ

Hence 1 = A\1x1 and 41 = Aay1. Then

z1 =21(0)e™" and y1 = y1(0)e".

o =l )
ARaFAREE
Consequently z1(0) =  and 3, (0) = 8 and
HMERIFELE P

= aeMX + B X,

SO
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a b
6. Let A= [ e d
and X\ = a—1ib, with corresponding eigenvectors X = U+iV and X = U—iV,
where U and V are real vectors. Also let P be the real matrix defined by
P = [U|V]. Finally let a + ib = re*®, where r > 0 and 6 is real.

] be a real matrix with non—real eigenvalues A = a + b

(a) As X is an eigenvector corresponding to the eigenvalue A\, we have AX =
AX and hence

AU +iV) = (a+ib)(U +1iV)
AU +iAV = aU — bV +i(bU + aV).

Equating real and imaginary parts then gives
AU = aU—-bV
AV = bU +aV.

(b)

AP = A[U|V] = [AU|AV] = [aU—=bV |[pU+aV] = [U|V] [ _‘; 2 } = P[ a b

Hence, as P can be shown to be non—singular,

plap—| @
—b a |’

(The fact that P is non-singular is easily proved by showing the columns of
P are linearly independent: Assume xU + yV = 0, where x and y are real.
Then we find

(@ +iy) (U —iV) + (z — iy) (U +iV) = 0.

Consequently x+iy = 0 as U —4iV and U+:V are eigenvectors corresponding
to distinct eigenvalues a — ib and a + ib and are hence linearly independent.
Hence x =0 and y = 0.)

(¢) The system of recurrence relations

Tpy1 = aTp+ by,

Yn+1 = C-Tn"_dyn
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has solution
B
Yn Yo

_ p[_g H"p—l[

T

Y

_ P[ rcosf rsin&]
—rsinf rcosf

]

0

[5]
B

W[ cos® sind 1" [ a

= P [—sin& COSG] [ﬂ]

cosnf sinnf } { «o ]

—sinnf# cosné I}

acosnb + Bsinnd }

= UV [

= U] [ —asinnf + (§ cosnb

= 7" {(acosnb + Bsinnh)U + (—asinnf + Bcosnh)V}
= 1" {(cosnb)(aU + V) + (sinnd)(BU — aV)}.

(d) The system of differential equations

— ar
7 = atby
d

d—':i = cx+dy

is attacked using the substitution X = PY, where Y = [z1, 11]*. Then

Y = (P 'AP)Y,

HEERH

Equating components gives

SO

1 = azri+bp

Y1 = —bxi+ayr.
Now let z = x1 4+ iy;. Then
=21+ = (aml + byl) + i(—b:m + ayl)
= (a—1ib)(x1 +iy1) = (a —ib)z.
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Hence
z = z(O)e(a*ib)t
x1+iy1 = (21(0) +iy1(0))e™(cos bt — isin bt).
Equating real and imaginary parts gives
r1 = e {21(0)cosbt + y1(0)sin bt}
y1 = e {y1(0)cosbt — x1(0)sinbt}.

Now if we define a and 3 by

[51- 3],

we see that o = z1(0) and 5 = y1(0). Then

MR
Y B Y1
B e (v cos bt + (3 sin bt)
= [OWV] [ e (B cos bt — asin bt) ]
= e"{(acosbt + Bsinbt)U + (B cosbt — asinbt)V'}
= e"{cosbt(aU + BV) +sinbt(BU — aV)}.

7. (The case of repeated eigenvalues.) Let A = [ (Z Z ] and suppose that

the characteristic polynomial of A, A2 — (a +d)\ + (ad — bc), has a repeated
root . Also assume that A # als.

(i)
M —(a+dA+(ad—be) = (A=)
= A —2a)+ o
Hence a + d = 2« and ad — be = o2 and
(a+d)? = 4(ad—bc),
a?+2ad+d®> = 4ad — 4be,

a? —2ad + d?> +4bc = 0,
(a—d)? +4bc = 0.
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(i)

Let B— A — aly. Then

B?=(A—-ah)? = A% -2aA+ d’I,
= A2 — (a+d)A+ (ad — be)Iy,

But by problem 3, chapter 2.4, A%2 — (a + d)A + (ad — bc)I; = 0, so
B?=0.

Now suppose that B # 0. Then BFE; # 0 or BEs # 0, as BE; is the
i—th column of B. Hence BXs # 0, where Xo = 4y or Xo = Fs.

Let X1 = BXs and P = [X1]|X3]. We prove P is non-singular by
demonstrating that X; and X are linearly independent.
Assume zX; + yX2 = 0. Then

xBXo+yXo = 0

B(xBX2+yX2) = B0=0
tB?’Xy +yBXy, = 0
20X +yBXs = 0
yBX, = 0.

Hence y = 0 as BX3 # 0. Hence xtBX2 = 0 and so z = 0.
Finally, BX; = B(BX2) = B2X5 =0, so (A — aly)X; = 0 and

AX1 = OéXl. (2)
Also
X1 = BX2 = (A - OéIQ)XQ = AXQ - OéXQ.
Hence
AXo = X1 + aXs. (3)
Then, using (2) and (3), we have
AP = A[X1|Xs] = [AX1]|AX.]
= [OéX1|X1 + Ong]
a 1
- x| g o
Hence
a 1
AP =P [ 0! ]
and hence
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8. The system of differential equations is equivalent to the single matrix

equation X = AX, where A = [ j _51; ]

The characteristic polynomial of A is A2 — 12X + 36 = (A — 6)2, so we
can use the previous question with o« = 6. Let

B:A%:{_i _;]

4 0
P = [X1]X3], we have

Then BXs = [ -2 ] ;A[O],ifXQ:[(l)]. Also let X; = BX5. Then if

1, [601
PAP_[OG.

I

Now make the change of variables X = PY, where Y = [ ] . Then

L 6 1
Y =(P AP)Y_[O 6]1/,

or equivalently 1 = 621 + y1 and 4 = 6y;.
Solving for y; gives y1 = y1(0)e. Consequently

T = 6x1 + yl(O)eﬁt.
Multiplying both side of this equation by e~% gives
d, _ —6t - _
%(e 6tr)) = e %% —6e %z =y (0)
e = y(0)t+e,
where c is a constant. Substituting ¢ = 0 gives ¢ = z1(0). Hence

e %z = y1(0)t 4 21(0)

and hence
21 = " (y1(0)t + 21(0)).
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However, since we are assuming z(0) = 1
o | = L]

1 0 -1 1

I [ —4 -2 ] [ 1

Hence 21 = €% (3t + 1) and y; = 3€5.
Finally, solving for x and v,

M

Hence z = €% (1 — 3t) and y = €% (6t + 1).

9. Let

1/2 1/2
1/4 1/4
1/4 1/4

A:

0
1/2
1/2

|

11
- —4| —6

y(0), we have

|

(a) We first determine the characteristic polynomial ch4(A).

B

A-1/2 —1/2 0
cha(\) = det(Mz—A)= —-1/4 AN—1/4 -1/2
—1/4 —1/4 A—1/2
S GO | T4 E BerviN v
({0
)

|

)_

1

8

|



5 1
_ 2 _ -
_.A<A 4+4>

_ MA—U<A—1>-

(b) Hence the characteristic polynomial has no repeated roots and we can
use Theorem 6.2.2 to find a non—singular matrix P such that

1
P~1AP = diag(1, 0, Z)'
We take P = [X|X2|X3], where X1, Xa, X3 are eigenvectors corresponding

to the respective eigenvalues 1, 0, %.
Finding X;: We have to solve (A — I3)X = 0. we have

~1/2  1/2 0 10 -1
A-I=| 1/4 =3/4 1/2|—=]0 1 -1
/4 1/4 —1/2 00 0

Hence the eigenspace consists of vectors X = [z, y, z|* satisfying z = 2 and
y = z, with z arbitrary. Hence

z 1
X=|z|=z|1
z 1

and we can take X1 = [1, 1, 1]%.
Finding X9: We solve AX = 0. We have

1/2 1/2 0 110
A=|1/4 1/4 1/2 | —- | 0 0 1
1/4 1/4 1)2 000
Hence the eigenspace consists of vectors X = [z, y, 2]' satisfying z = —y

and z = 0, with y arbitrary. Hence

—y -1
X = y | =vy 1
0 0
and we can take Xy = [—1, 1, 0]".
Finding X3: We solve (A — 1I5)X = 0. We have
1 1/4 1/2 0 1 0 2
A-—-Iz3=1[1/4 0 1/2 | —=]10 1 -1
1/4 1/4 1/4 00 0
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Hence the eigenspace consists of vectors X = [z, y, 2]' satisfying r = —22
and y = z, with z arbitrary. Hence

—2z -2
X: Z =z 1
0 0
and we can take X3 = [-2, 1, 1]
1 -1 -2
Hence we can take P = | 1 1 1
1 0 1
(c) A= Pdiag(1, 0, 1)P~! so A" = Pdiag(1, 0, )P~
Hence
1 -1 -2 1 0 0 1 1 1 1
A = 1 1 1 00 O 3 0 3 =3
1 0 1 00 4 -1 -1 2
r 2
[0 -5 11 1
10 4 -1 -1 2
r 2 2 4
[1+a l+a l-g
L 1-w 1-7 1+4
1 1 11 1 2 2 —4
= |tV |+ o2
111 ' -1 -1 2
10. Let
) 2 -2
A= 2 5 —2
-2 =2 )

(a) We first determine the characteristic polynomial ch4 ().

A-5 2 2 A—5 -2
ha)) = | =2 A—5 o | TemBstRo o0
25 2 A5 = 0 A

A-5 -2 2

- A=3)| -2 A-5 2

o 1 1
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A—5 =2 4
C3 — C3 — Oy = ()\—3) -2 A—D5 —A+7
0 1 0
A—5 4
—A=3 T, gy
—(A=3){(A=5)(=A+7)+8}
= —~(A=3)(=A?+5\+7\—35+38)
—( )
—( )
(

>/
OO

(—
= —(A=3)(=N 4121 -27)
= —(A=3)(=)A=3)(A-9)
= (A=32(A-9).

We have to find bases for each of the eigenspaces N(A—9I3) and N(A—3I3).
First we solve (A — 3I3)X = 0. We have

2 2 =2 11 -1
A—313= 2 2 2| =100 o0
-2 -2 2 00 O
Hence the eigenspace consists of vectors X = [z, y, 2| satisfying z = —y+2,
with y and z arbitrary. Hence
—Yy+z —1 1
X = Y =y 1 {+2z| 0|,
z 0 1
so X1 = [-1,1,0' and X5 = [1, 0, 1]* form a basis for the eigenspace
corresponding to the eigenvalue 3.
Next we solve (A —913)X = 0. We have
-4 2 =2 1 01
A—9I3= 2 4 -2 | —-|011
-2 -2 —4 000
Hence the eigenspace consists of vectors X = [z, y, 2]' satisfying 2 = —z
and y = —z, with z arbitrary. Hence
—Zz —1
X=|—-2|=2z| -1
z 1
and we can take X3 = [—1, —1, 1]* as a basis for the eigenspace correspond-

ing to the eigenvalue 9.
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Then Theorem 6.2.3 assures us that P = [X;|X2|X3] is non-singular and

PlAP =

S O W

0
3
0

o O O
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19 |
145
} X
ot S oS i X1
9 -4.5 1459 135
45
1o

Figure 1: (a): 22 — 87 + 8y + 8 = 0; (b): y* =122 +2y+25=0

Section 7.3

1. (i) 22 -8z +8y+8 = (z—4)2+8(y—1). So the equation x?—8x+8y+8 =0
becomes
234+ 8y1 =0 (1)

if we make a translation of axes z —4 =21, y— 1= y1.
However equation (1) can be written as a standard form

Yy = — s,

which represents a parabola with vertex at (4, 1). (See Figure 1(a).)

(i) y? — 120+ 2y + 25 = (y + 1)2 — 12(z — 2). Hence y? — 122+ 2y +25 =0
becomes
yi — 1221 =0 (2)

if we make a translation of axes x —2 =z, y+ 1 = y;.
However equation (2) can be written as a standard form

yi =12z,

which represents a parabola with vertex at (2, —1). (See Figure 1(b).)

2. 4wy — 3y? = X'AX, where A = [g _g] and X = [;j] The
eigenvalues of A are the roots of A\ + 3\ — 4 = 0, namely \; = —4 and

Ay =1.
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The eigenvectors corresponding to an eigenvalue A are the non—zero vec-

tors [z, y]! satisfying
0—A 2 z | |0
2 —=3-) y| |0

A1 = —4 gives equations
4z + 2y
2r+y =
which has the solution y = —2z. Hence

T | T 1
y | | =2z | -2 |
A corresponding unit eigenvector is [1/v/5, —2/v/5]".

Ao =1 gives equations

—r+2y =
20 —4dy =

which has the solution x = 2y. Hence

MR MR

A corresponding unit eigenvector is [2/v/5, 1/1/5]".

Hence if ) )
P=| Y3 |
V5 V5

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal
matrix and the equation
M
Y Y1

represents a rotation to new x1, y; axes whose positive directions are given
by the respective columns of P. Also

MU
pap- 40,
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Then X!AX = —4z? + y? and the original equation 4zy — 3y = 8 becomes
—422 + y? = 8, or the standard form

;.T% + ﬁ =1
2 8 ’
which represents an hyperbola.
The asymptotes assist in drawing the curve. They are given by the
equations

.2 2
%—I—%ZO, or y; = +2x;.
Now
T T L =2 x
MR EEd ML
Al Yy VRV Yy
SO
T — 2y 2z +y
r1 =

Hence the asymptotes are

2 +y <:1: - 2y>
— 42 ,
V5 V5

which reduces to y = 0 and y = 42/3. (See Figure 2(a).)

8 =2
-2 5
eigenvalues of A are the roots of A2 — 13\ + 36 = 0, namely \; = 4 and
A2 = 9. Corresponding unit eigenvectors turn out to be [1/4/5, 2/v/5]" and
[—2/v/5, 1/4/5]t. Hence if

3. 8x2—4xy+5y2:XtAX,whereA:[ ]andX:[;C].The

1 -2
P=| Y V5,
VARV

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal
matrix and the equation
L ]-rln]
Y Y1

represents a rotation to new x1, y; axes whose positive directions are given
by the respective columns of P. Also

con 40
pap-[ 4 0],
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Figure 2: (a): 4zy — 3y? = 8; (b): 822 — 4xy + 5y = 36

Then X!AX = 422 + 9y? and the original equation 822 — 4xy + 5y% = 36
becomes 427 + 9y} = 36, or the standard form

which represents an ellipse as in Figure 2(b).
The axes of symmetry turn out to be y = 2x and =z = —2y.

4. We give the sketch only for parts (i), (iii) and (iv). We give the working
for (ii) only. See Figures 3(a) and 4(a) and 4(b), respectively.
(ii) We have to investigate the equation

522 — dzy + 8y + 4V5x — 16V5y + 4 = 0. (3)

Here 522 — 4zy + 8y? = X'AX, where A = [ _g _z] and X = [;]

The eigenvalues of A are the roots of A2 — 13\ + 36 = 0, namely A\; = 9 and
A2 = 4. Corresponding unit eigenvectors turn out to be [1/v/5, —2/+/5]* and
[2/v/5, 1/4/5]t. Hence if

12
P=| Y5 ¥,
VA

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal
matrix and the equation
M
) Y1
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Figure 3: (a): 42% — 9y? — 24z — 36y — 36 = 0;

V52 —16v5y +4 =0

(b): 52 — dxy + 8y? +

y ,yz
lg /
. 45
. p y
-9 48 /] 45 9
// -9 \\\‘Xz

Figure 4: (a): 422+ y? — 4zy — 10y — 19 = 0;

70 — 30y +29=0
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represents a rotation to new x1, y; axes whose positive directions are given
by the respective columns of P. Also

tan |90
PAP_[O4.

Moreover
5a? — day + 8y = 933% + 4y%.
To get the coefficients of z1 and y; in the transformed form of equation (3),

we have to use the rotation equations

1
r=—=(x1 + 2y1),

V5

Then equation (3) transforms to

1
Y= ﬁ(_%l +y1).
922 4 4y? + 3621 — Sy; +4 =0,
or, on completing the square,
9(z1 +2)* + 4(y1 — 1)* = 36,

or in standard form

RN
4 9 ’
where 9 = 1 + 2 and y3 = y3 — 1. Thus we have an ellipse, centre

(1'2, y2) = (07 0)7 or ($1, yl) = (_27 1)7 or (:B> y) = (07 \/5)
The axes of symmetry are given by o = 0 and y2 = 0, or 1 +2 = 0
and y1 —1 =0, or

1 1
—(rx—2y)+2=0 and —
N V5

which reduce to x — 2y 4+ 2v/5 = 0 and 22 4+ y — v/5 = 0. See Figure 3(b).

5. (i) Consider the equation

222 + 4% 4 3zy — br — 4y + 3 = 0. (4)
2 3/2 —5/2 4 3 -5 1 1 -1
A=| 3/2 1 —2|=8 3 2 —4|=8| 3 2 —4|=0.
—-5/2 -2 3 5 —4 6 —2 -2 2
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Let x = 21 + o, y = y1 + (3 and substitute in equation (4) to get
2(v1+a)?+ (1 +8)? +3(x1 + ) (1 +B) —5(z1+a) —4(1 +B)+3 =0 (5).
Then equating the coefficients of 1 and y; to 0 gives

da+38—-5 = 0
3a+26—-4 = 0,
which has the unique solution a = 2, § = —1. Then equation (5) simplifies

to
227 + 47 + 3z1y1 = 0 = (2z1 +y1) (21 + 1)

So relative to the x1, y; coordinates, equation (4) describes two lines: 21 +
y1 = 0 and 21 +y; = 0. In terms of the original z, y coordinates, these lines
become 2(x —2)+ (y+1)=0and (zr—2)+(y+1) =0,ie. 226 +y—3=0
and x + y — 1 = 0, which intersect in the point

(ii) Consider the equation

922 4+ y? — 6y + 62 — 2y +1=0. (6)

Here
9 -3 3
A=1|3 1 —-1|=0,
3 -1 1
as column 3 = — column 2.

Let = x1 + o, y = y1 + B and substitute in equation (6) to get
I(z1+ )+ (y1 4+ 8)> = 6(z1+a)(y1 + B) + 6(x1 + a) = 2(y1 + B) + 1 = 0.
Then equating the coefficients of 1 and y; to 0 gives

18a—68+6 =
—6a+268-2 = 0,

or equivalently —3a+ 3 —1 = 0. Take @« = 0 and 3 = 1. Then equation (6)
simplifies to

93:% + y% —6z1y1 =0 = (327 — y1)2. (7)
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In terms of z, y coordinates, equation (7) becomes
(Bzx—(y—1))>=0, or 3z —y+1=0.
(iii) Consider the equation
2 +dzy+ 42— —2y—2=0. (8)
Arguing as in the previous examples, we find that any translation
r=m+tao y=y+p

where 2a + 48 — 1 = 0 has the property that the coefficients of 1 and ¥
will be zero in the transformed version of equation (8). Take # = 0 and
a =1/2. Then (8) reduces to

9
o3 + 4wy + dyi — 1= 0,

or (z1+2y1)? = 3/2. Hence z1 +2y; = £3/2, with corresponding equations

r+2y=2 and x+2y=-1.
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Section 8.8

1. The given line has equations

r = 34+t(13—-3) =3+ 10t
= —24+t(3+2)=—-2+5t,
z = T4+t(—-8—7)=7-—15t.
The line meets the plane y = 0 in the point (z, 0, z), where 0 = —2 + 5¢, or
t = 2/5. The corresponding values for z and z are 7 and 1, respectively.

2. E=3(B+C),F=(1-t)A+(E, where

L_AF _ AP AF/FE 2
~ AE  AF+FE (AF/FE)+1 3

Hence

1 2 (1
F = _A+-(=(B
3 +3<2( +C)>

1 1
= —_A+-(B
3 +3( +C)

1

3. Let A= (2,1,4), B=(1,-1,2), C = (3, 3,6). Then we prove AC'=

t AB for some real t. We have

1 1
AC= |2 |, AB=| -2
2 )

Hence AC'= (—1) AB and consequently C is on the line AB. In fact A is
between C' and B, with AC = AB.

4. The points P on the line AB which satisfy AP = %PB are given by

P = A+t AB, where |t/(1 —t)| = 2/5. Hence t/(1 — t) = £2/5.
The equation ¢/(1 —t) = 2/5 gives t = 2/7 and hence

2 o[ 1 16/7
P=| 3|+-|4|=]|27
~1 5 3/7
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Hence P = (16/7, 29/7, 3/7).
The equation ¢/(1 —t) = —2/5 gives t = —2/3 and hence

27 ,[1 4/3
P=| 3| |4]= 1/3
~1 5 ~13/3

Hence P = (4/3, 1/3, —13/3).
5. An equation for Mis P = A +¢ EE’, which reduces to

r = 146t
= 2-3t
= 3+ Tt

An equation for NisQ=E + s EF, which reduces to

r = 1+4+9s
= -1
z = 8+43s.

To find if and where M and N intersect, we set P = (Q and attempt to solve
for s and t. We find the unique solution ¢ = 1, s = 2/3, proving that the
lines meet in the point

(x,y,2)=(146,2-3,3+7)=(7, —1, 10).

6. Let A= (-3,5,6), B=(-2,7,9), C=(2,1,7). Then
(i)
cos ZABC = (BA - BC)/(BA - BO),

where BA= [~1, —2, —3]' and BC= [4, —6, —2]'. Hence

—4+1246 14 1
V1456 V14VE6 2

Hence ZABC = 7 /3 radians or 60°.

cos LZABC =
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(i)
cos ZBAC = (AB - AC)/(AB - AC),

where AB=[1, 2, 3]' and AC= [5, —4, 1]*. Hence

5-8+3
V14+/42
Hence ZABC = m/2 radians or 90°.

cos Z/BAC = 0.

(i)
cos LACB = (CA - CB)/(CA-CB),
where C A= [—5, 4, —1]* and CB= [—4, 6, 2]'. Hence

20+24-2 42 /4
VA2V/56  VA2V56 /56

Hence ZACB = 7/6 radians or 30°.

\)
[\
B

cos LZACB =

7. By Theorem 8.5.2, the closest point P on the line AB to the origin O is
given by P=A +1¢ ZB, where

|_AD-AB _ A 4D

AB? AB?
Now
-2 3
A- AB= 1 1 [ =-2
3 1
Hence t = 2/11 and
—2 ., [3 —16/11
P=| 1+ (1|=] 1/1
1 35/11

and P = (—16/11, 13/11,35/11).
Consequently the shortest distance OP is given by

~16 2+_ 13 2+_ 35\ V1650 IFx11x10 /150
11 11 1) 1 11 VST
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Alternatively, we can calculate the distance OP?, where P is an arbitrary
point on the line AB and then minimize OP?:

. -2 3 —2+3t
P=A+tAB= 1|+t 1] = 1+t
3 1 3+t
Hence
OP? = (=243t +(1+t)2+(3+1)?
= 112 —4t+ 14
- onfe-tip
- 11 11
212 14 4
= 11(<{t—= —
({ 11} T 121)
2312 150
= 11({t-—= .
({ 11} +121)
Consequently

150
OP? > 11 x —
=X 190

for all t; moreover
150

OP?> =11 x —
* 121

when t = 2/11.
8. We first find parametric equations for N by solving the equations

r4+y—2z =1
r+3y—z = 4.

The augmented matrix is
11 -2 1
1 3 -1 4}’

Rl

which reduces to

Hence x = —% + %z, Yy = % — 5, with 2z arbitrary. Taking z = 0 gives a point

A= (—%, %, 0), while z = 1 gives a point B = (2, 1, 1).
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Hence if C = (1, 0, 1), then the closest point on N to C is given by
P=A+tAB, where t = (Ié : XB’)/ABQ.

Now
3/2 5/2
AC=| -3/2 | and AB=| -1/2 |,
1 1
SO
t_gxg+g%«§+1x1_11
BT+ @ v B
Hence
~1/2 [ 82 4/3
P=| 3/2 |+ | -1/2|=|17/15 |,
0 1 11/15

so P =(4/3,17/15, 11/15).
Also the shortest distance PC' is given by

4\ 2 17\ 2 11\? /330
PC=4/(1-2 _ L 11— — ) =Y¥X222,
(o R (o R (R R

9. The intersection of the planes x +y — 2z =4 and 3x — 2y + 2z = 1 is the
line given by the equations

9,3 1,7
r = - =4 = — —2z
5750 YT 5 7Y

where z is arbitrary. Hence the line £ has a direction vector [3/5, 7/5, 1]
or the simpler [3, 7, 5]'. Then any plane of the form 3z + 7y + 52 = d will
be perpendicualr to £. The required plane has to pass through the point
(6, 0, 2), so this determines d:

3X6+7Tx0+5x2=d=28.

10. The length of the projection of the segment AB onto the line C'D is
given by the formula

|CD-AB |
cD
Here CD= [—8, 4, —1] and AB= [4, —4, 3], so
|CD-AB|  |(—8) x4+4x (—4) + (—1) x 3|
¢D V(=8)2 + 42 4 (—1)2
_l=sy st
R’ 9 37
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11. A direction vector for £ is given by BC= [—5, —2, 3]'. Hence the plane
through A perpendicular to £ is given by

—bx —2y+32=(-5)x3+(-2)x(-1)+3x2=-T.

The position vector P of an arbitrary point P on L is given by P = B+t Eé’,

x 2 -5
y |l =11+t -2 |,
z 4 3

or equivalently t =2 —5t, y =1 —2¢t, 2 = 4 + 3t.

To find the intersection of line £ and the given plane, we substitute the
expressions for z, y, z found in terms of ¢ into the plane equation and solve
the resulting linear equation for ¢:

—5(2—5t) —2(1 — 2t) + 3(4 + 3t) = T,

which gives t = —7/38. Hence P = (%, %, %) and

1112 52 2 1312
AP = - —1-= 92— —
o) (-2) +(-)
V11134 /293 x 38 /293
38 38 /38

12. Let P be a point inside the triangle ABC'. Then the line through P and
parallel to AC will meet the segments AB and BC in D and F, respectively.
Then

P = (1-rD+rE, 0<r<l,;
D (1—-s)B+sA, 0<s<l;
E = (1-¢)B+tC, 0<t<l.

Hence

P = 1-rn{1-5B+sA}+r{(1-t)B+tC}
1-rsA+{1-r)(1-s5)+r(1—1t)}B+rtC
aA + B ++C,
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where
a=1-r)s, B=1-r)1-5)+r(l—t), ~vy=rt
Then0<a<1l, 0<y<1,0<fB8<(1—7r)+r=1. Also

a+B8+y=0-r)s+(1—-r)(1—=98)+r(1—t)+rt=1.

13. The line AB is given by P = A +¢[3, 4, 5], or
r=6+3t y=-1+4t, z=11+45¢.
Then B is found by substituting these expressions in the plane equation
3r + 4y + 5z = 10.

We find t = —59/50 and consequently

1 2 295 123 —286 255
pe (om0 gy Y (1 e )

50 50 ° 50 50" 50 ' 50
Then
— 3
AB = [|[AB||=|[t]| 4 ||
5
59 59
= [t[V324+42452= — x V0= —.

14. Let A =(-3,0,2), B=(6,1,4), C = (=5,1,0). Then the area of
triangle ABC is 1|| AB x AC ||. Now

9 -2 —4
AB x AC= 1|1 | % 1| = 14
-2 11

Hence || AB x AC || = v/333.

15. Let A1 = (2,1,4), A2 = (1, —1, 2), A3 = (4, —1, 1). Then the point
P = (x, y, z) lies on the plane A;AyAs; if and only if

AP (A Ay x AjAz) =0,
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or
x—2 y—1 z—4

-1 -2 -2 |=22-Ty+62—-21=0.
2 —2 -3

16. Non—parallel lines £ and M in three dimensional space are given by
equations
P=A+s5X, Q=B+1tY.

(i) Suppose PQ is orthogonal to both X and Y. Now
PO=Q-P=B+1tY)— (A+sX)=AB +tY — sX.
Hence

(AB +tY +sX)-X = 0
(AB +tY +sX)-Y = 0.

More explicitly

tY -X)—s(X-X) = —AB-X
tY - Y)—s(X-Y) = —AB-Y.

However the coefficient determinant of this system of linear equations
in t and s is equal to

Y. X -X-X

Y.V -X.YV | _ —(X - Y)+(X-X)(Y-Y)
— X VIR £0,

as X #0, Y # 0 and X and Y are not proportional (£ and M are
not parallel).

(ii) P and @ can be viewed as the projections of C' and D onto the line PQ),
where C and D are arbitrary points on the lines £ and M, respectively.
Hence by equation (8.14) of Theorem 8.5.3, we have

PQ < CD.

Finally we derive a useful formula for PQ. Again by Theorem 8.5.3

| AB-PQ|  —
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X

—

where n = P—IQ PQ@ is a unit vector which is orthogonal to X and Y.
Hence
n=tXxY),

where t = +1/||X x Y||. Hence

| AB (X x Y)|
PQ =
1X = Y]

17. We use the formula of the previous question.
Line £ has the equation P = A + sX, where

2
X =AC=| -3
3

Line M has the equation Q = B +tY, where

1
Y=BD= |1
1

Hence X x Y =[-6, 1, 5] and || X x V|| = V62.

95



Hence the shortest distance between lines AC' and BD is equal to

0 —6
-2 - 1
| AB (X xY)| _ 1 5] 3
|1 X x Y| V62 V62

18. Let E be the foot of the perpendicular from A4 to the plane A;AsAs.
Then )
vol A1A2A3A4 = g( area AAlAQAg) . A4E.

Now ]
areaAAlAgAg = 5” MQ X Mzg H

Also A4FE is the length of the projection of A;A4 onto the line A4F. (See
figure above.)
Hence A4FE = | /E:L; -X|, where X is a unit direction vector for the line
AsE. We can take
ATAQ X ATA;),

X= 122 s
H A1A2 X A1A3 H

Hence

| AyAy (A1 Az x AiAs)]
|| AjAg x AjAs ||
1 — — —

= 8‘ A1A4 ‘(AlAQ X A1A3)|

vol Ay As A3Ay = %H A1 Ay x Ay A3 ||

96



1 — — —
6‘(141142 X AlAg)' A1A4 |

19. We have CB= [1, 4, —1], CD=[-3, 3, 0], AD=[3, 0, 3]'. Hence

CB x CD= 3i+ 3j + 15k,

so the vector i+ j + 5k is perpendicular to the plane BC'D.

Now the plane BC'D has equation z +y + 5z =9, as B = (2, 2, 1) is on
the plane.

Also the line through A normal to plane BC'D has equation

x 1 1 1
y|l=|1]|+t|1|=010+t)]|1
z 5 5 5

Hence x =1+t, y=1+1t, z=5(1+1).
[We remark that this line meets plane BC'D in a point E which is given
by a value of ¢ found by solving

(1+)+ (1+1) +5(5+5t) = 9.

Sot=—-2/3and E = (1/3,1/3,5/3).]
The distance from A to plane BCD is

MIx1+1x14+5x5—9| 18
= =2Vv3
12 412 1 52 Noxd V8

To find the distance between lines AD and BC, we first note that

(a) The equation of AD is

1 3 143t
P=|1|+tlo|=| 1 |[;
3 o+ 3t
(b) The equation of BC is
2 1 2+s
Q=] 2| +s 4 | = | 2+4s
1 —1 1—s



Then ?Q: [1+s—3t, 1+4s, —4 — s — 3t]" and we find s and ¢ by solving
the equations ?C) . AD=0 and ?62 .BC= 0, or

(14+s5—3t)3+(1+4s)0+ (-4 —s—31)3 =
(14+s—3t)+4(1+4s) —(—4—s—3t) =
Hence t = —1/2 = s.
Correspondingly, P = (—1/2, 1, 7/2) and Q = (3/2, 0, 3/2).

Thus we have found the closest points P and () on the respective lines
AD and BC'. Finally the shortest distance between the lines is

PQ=||PQI =3
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