SOLUTIONS TO PROBLEMS

ELEMENTARY

LINEAR ALGEBRA

K. R. MATTHEWS

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF QUEENSLAND

First Printing, 1991

CONTENTS

PROBLEMS 1.6 1
PROBLEMS 2.4 12
PROBLEMS 2.7 18
PROBLEMS 3.6 32
PROBLEMS 4.1 45
PROBLEMS 5.8 58
PROBLEMS 6.3 69
PROBLEMS 7.3 83
PROBLEMS 8.8 91

SECTION 1.6

2. (i) $\left[\begin{array}{lll}0 & 0 & 0 \\ 2 & 4 & 0\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{ccc}2 & 4 & 0 \\ 0 & 0 & 0\end{array}\right] R_{1} \rightarrow \frac{1}{2} R_{1}\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$;
(ii) $\left[\begin{array}{lll}0 & 1 & 3 \\ 1 & 2 & 4\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 3\end{array}\right] R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 3\end{array}\right]$;
(iii) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \begin{aligned} & R_{2} \rightarrow R_{2}-R_{1} \\ & R_{3} \rightarrow R_{3}-R_{1}\end{aligned}\left[\begin{array}{rrr}1 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & -1\end{array}\right]$
$\begin{gathered}R_{1} \rightarrow R_{1}+R_{3} \\ R_{3} \rightarrow-R_{3} \\ R_{2} \leftrightarrow R_{3}\end{gathered}\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right] \begin{gathered}R_{2} \rightarrow R_{2}+R_{3} \\ R_{3} \rightarrow-R_{3}\end{gathered}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] ;$
(iv) $\left[\begin{array}{rll}2 & 0 & 0 \\ 0 & 0 & 0 \\ -4 & 0 & 0\end{array}\right] \begin{gathered}R_{3} \rightarrow R_{3}+2 R_{1} \\ R_{1} \rightarrow \frac{1}{2} R_{1}\end{gathered}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
3. (a) $\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 2 & 3 & -1 & 8 \\ 1 & -1 & -1 & -8\end{array}\right] \begin{gathered}R_{2} \rightarrow R_{2}-2 R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{gathered}\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & -2 & -2 & -10\end{array}\right]$ $R_{1} \rightarrow R_{1}-R_{2}$
$R_{3} \rightarrow R_{3}+2 R_{2}$$\left[\begin{array}{rrrr}1 & 0 & 4 & -2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & -8 & -2\end{array}\right] R_{3} \rightarrow \frac{-1}{8} R_{3}\left[\begin{array}{rrrr}1 & 0 & 4 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 1 & \frac{1}{4}\end{array}\right]$
$\begin{aligned} & R_{1} \rightarrow R_{1}-4 R_{3} \\ & R_{2} \rightarrow R_{2}+3 R_{3}\end{aligned}\left[\begin{array}{cccc}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & \frac{19}{4} \\ 0 & 0 & 1 & \frac{1}{4}\end{array}\right]$.
The augmented matrix has been converted to reduced row-echelon form and we read off the unique solution $x=-3, y=\frac{19}{4}, z=\frac{1}{4}$.
(b) $\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 3 & -1 & 7 & 4 & 1 \\ -5 & 3 & -15 & -6 & 9\end{array}\right] \begin{aligned} & R_{2} \rightarrow R_{2}-3 R_{1} \\ & R_{3} \rightarrow R_{3}+5 R_{1}\end{aligned}\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 8 & -20 & 4 & 59\end{array}\right]$
$R_{3} \rightarrow R_{3}+2 R_{2}\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
From the last matrix we see that the original system is inconsistent.
(c) $\left[\begin{array}{rrrr}3 & -1 & 7 & 0 \\ 2 & -1 & 4 & \frac{1}{2} \\ 1 & -1 & 1 & 1 \\ 6 & -4 & 10 & 3\end{array}\right] \quad R_{1} \leftrightarrow R_{3}\left[\begin{array}{rrrr}1 & -1 & 1 & 1 \\ 2 & -1 & 4 & \frac{1}{2} \\ 3 & -1 & 7 & 0 \\ 6 & -4 & 10 & 3\end{array}\right]$
$\begin{aligned} & R_{2} \rightarrow R_{2}-2 R_{1} \\ & R_{3} \rightarrow R_{3}-3 R_{1} \\ & R_{4} \rightarrow R_{4}-6 R_{1}\end{aligned}\left[\begin{array}{rrrr}1 & -1 & 1 & 1 \\ 0 & 1 & 2 & \frac{-3}{2} \\ 0 & 2 & 4 & -3 \\ 0 & 2 & 4 & -3\end{array}\right] \begin{gathered}R_{1} \rightarrow R_{1}+R_{2} \\ R_{4} \rightarrow R_{4}-R_{3} \\ R_{3} \rightarrow R_{3}-2 R_{2}\end{gathered}\left[\begin{array}{cccc}1 & 0 & 3 & \frac{-1}{2} \\ 0 & 1 & 2 & \frac{-3}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
The augmented matrix has been converted to reduced row-echelon form and we read off the complete solution $x=-\frac{1}{2}-3 z, y=-\frac{3}{2}-2 z$, with z arbitrary.
4. $\left[\begin{array}{rrrc}2 & -1 & 3 & a \\ 3 & 1 & -5 & b \\ -5 & -5 & 21 & c\end{array}\right] R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{rrrc}2 & -1 & 3 & a \\ 1 & 2 & -8 & b-a \\ -5 & -5 & 21 & c\end{array}\right]$ $R_{1} \leftrightarrow R_{2}\left[\begin{array}{rrrc}1 & 2 & -8 & b-a \\ 2 & -1 & 3 & a \\ -5 & -5 & 21 & c\end{array}\right] \begin{aligned} & R_{2} \rightarrow R_{2}-2 R_{1} \\ & R_{3} \rightarrow R_{3}+5 R_{1}\end{aligned}\left[\begin{array}{rrrc}1 & 2 & -8 & b-a \\ 0 & -5 & 19 & -2 b+3 a \\ 0 & 5 & -19 & 5 b-5 a+c\end{array}\right]$
$R_{3} \rightarrow R_{3}+R_{2}$
$R_{2} \rightarrow \frac{-1}{5} R_{2}$$\left[\begin{array}{cccc}1 & 2 & -8 & b-a \\ 0 & 1 & \frac{-19}{5} & \frac{2 b-3 a}{5} \\ 0 & 0 & 0 & 3 b-2 a+c\end{array}\right]$
$R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{cccc}1 & 0 & \frac{-2}{5} & \frac{(b+a)}{5} \\ 0 & 1 & \frac{-19}{5} & \frac{2 b-3 a}{5} \\ 0 & 0 & 0 & 3 b-2 a+c\end{array}\right]$.
From the last matrix we see that the original system is inconsistent if $3 b-2 a+c \neq 0$. If $3 b-2 a+c=0$, the system is consistent and the solution is

$$
x=\frac{(b+a)}{5}+\frac{2}{5} z, y=\frac{(2 b-3 a)}{5}+\frac{19}{5} z
$$

where z is arbitrary.
5. $\left[\begin{array}{ccc}1 & 1 & 1 \\ t & 1 & t \\ 1+t & 2 & 3\end{array}\right] \begin{gathered}R_{2} \rightarrow R_{2}-t R_{1} \\ R_{3} \rightarrow R_{3}-(1+t) R_{1}\end{gathered}\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1-t & 0 \\ 0 & 1-t & 2-t\end{array}\right]$
$R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1-t & 0 \\ 0 & 0 & 2-t\end{array}\right]=B$.
Case 1. $\quad t \neq 2$. No solution.

Case 2. $\quad t=2 . B=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
We read off the unique solution $x=1, y=0$.
6. Method 1 .

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
-3 & 1 & 1 & 1 \\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}-R_{4} \\
R_{2} \rightarrow R_{2}-R_{4} \\
R_{3} \rightarrow R_{3}-R_{4}
\end{array}\left[\begin{array}{rrrr}
-4 & 0 & 0 & 4 \\
0 & -4 & 0 & 4 \\
0 & 0 & -4 & 4 \\
1 & 1 & 1 & -3
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 1 & -3
\end{array}\right] R_{4} \rightarrow R_{4}-R_{3}-R_{2}-R_{1}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Hence the given homogeneous system has complete solution

$$
x_{1}=x_{4}, x_{2}=x_{4}, x_{3}=x_{4}
$$

with x_{4} arbitrary.
Method 2. Write the system as

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=4 x_{1} \\
& x_{1}+x_{2}+x_{3}+x_{4}=4 x_{2} \\
& x_{1}+x_{2}+x_{3}+x_{4}=4 x_{3} \\
& x_{1}+x_{2}+x_{3}+x_{4}=4 x_{4}
\end{aligned}
$$

Then it is immediate that any solution must satisfy $x_{1}=x_{2}=x_{3}=x_{4}$. Conversely, if $x_{1}, x_{2}, x_{3}, x_{4}$ satisfy $x_{1}=x_{2}=x_{3}=x_{4}$, we get a solution. 7.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\lambda-3 & 1 \\
1 & \lambda-3
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc}
1 & \lambda-3 \\
\lambda-3 & 1
\end{array}\right]} \\
& \quad R_{2} \rightarrow R_{2}-(\lambda-3) R_{1}\left[\begin{array}{cc}
1 & \lambda-3 \\
0 & -\lambda^{2}+6 \lambda-8
\end{array}\right]=B
\end{aligned}
$$

Case 1: $-\lambda^{2}+6 \lambda-8 \neq 0$. That is $-(\lambda-2)(\lambda-4) \neq 0$ or $\lambda \neq 2,4$. Here B is row equivalent to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$:
$R_{2} \rightarrow \frac{1}{-\lambda^{2}+6 \lambda-8} R_{2}\left[\begin{array}{cc}1 & \lambda-3 \\ 0 & 1\end{array}\right] R_{1} \rightarrow R_{1}-(\lambda-3) R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Hence we get the trivial solution $x=0, y=0$.

Case 2: $\lambda=2$. Then $B=\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right]$ and the solution is $x=y$, with y arbitrary.
Case 3: $\lambda=4$. Then $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and the solution is $x=-y$, with y arbitrary.
8.

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
3 & 1 & 1 & 1 \\
5 & -1 & 1 & -1
\end{array}\right] R_{1} } & \rightarrow \frac{1}{3} R_{1}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
5 & -1 & 1 & -1
\end{array}\right] \\
R_{2} & \rightarrow R_{2}-5 R_{1}\left[\begin{array}{rrr}
1 & \frac{1}{3} & \frac{1}{3} \\
0 & -\frac{8}{3} & -\frac{1}{3} \\
-\frac{8}{3}
\end{array}\right] \\
R_{2} & \rightarrow \frac{-3}{8} R_{2}\left[\begin{array}{rrrr}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 1 & \frac{1}{4} & 1
\end{array}\right] \\
R_{1} & \rightarrow R_{1}-\frac{1}{3} R_{2}\left[\begin{array}{llll}
1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{1}{4} & 1
\end{array}\right] .
\end{aligned}
$$

Hence the solution of the associated homogeneous system is

$$
x_{1}=-\frac{1}{4} x_{3}, x_{2}=-\frac{1}{4} x_{3}-x_{4},
$$

with x_{3} and x_{4} arbitrary.
9.

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{cccc}
1-n & 1 & \cdots & 1 \\
1 & 1-n & \cdots & 1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] \begin{array}{c}
R_{1} \rightarrow R_{1}-R_{n} \\
R_{2} \rightarrow R_{2}-R_{n} \\
\vdots
\end{array} \begin{array}{ccc}
-n & 0 & \cdots \\
0 & n \\
R_{n-1} \rightarrow R_{n-1}-R_{n}
\end{array}\left[\begin{array}{ccc}
n \\
\vdots & \vdots & \cdots \\
1 & 1 & \cdots
\end{array}\right] \\
1-n
\end{array}\right] .\left[\begin{array}{cccc}
1 & 0 & \cdots & -1 \\
0 & 1 & \cdots & -1 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 1 & \cdots & -1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1-n
\end{array}\right] .
$$

The last matrix is in reduced row-echelon form.
Consequently the homogeneous system with coefficient matrix A has the solution

$$
x_{1}=x_{n}, x_{2}=x_{n}, \ldots, x_{n-1}=x_{n},
$$

with x_{n} arbitrary.
Alternatively, writing the system in the form

$$
\begin{aligned}
x_{1}+\cdots+x_{n} & =n x_{1} \\
x_{1}+\cdots+x_{n} & =n x_{2} \\
& \vdots \\
x_{1}+\cdots+x_{n} & =n x_{n}
\end{aligned}
$$

shows that any solution must satisfy $n x_{1}=n x_{2}=\cdots=n x_{n}$, so $x_{1}=x_{2}=$ $\cdots=x_{n}$. Conversely if $x_{1}=x_{n}, \ldots, x_{n-1}=x_{n}$, we see that x_{1}, \ldots, x_{n} is a solution.
10. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and assume that $a d-b c \neq 0$.

Case 1: $a \neq 0$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] R_{1} \rightarrow \frac{1}{a} R_{1}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
c & d
\end{array}\right] R_{2} \rightarrow R_{2}-c R_{1}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
0 & \frac{a d-b c}{a}
\end{array}\right]} \\
& R_{2} \rightarrow \frac{a}{a d-b c} R_{2}\left[\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right] R_{1} \rightarrow R_{1}-\frac{b}{a} R_{2}\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Case 2: $a=0$. Then $b c \neq 0$ and hence $c \neq 0$.

$$
A=\left[\begin{array}{ll}
0 & b \\
c & d
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{cc}
c & d \\
0 & b
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \frac{d}{c} \\
0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

So in both cases, A has reduced row-echelon form equal to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
11. We simplify the augmented matrix of the system using row operations:

$$
\left[\begin{array}{rrcc}
1 & 2 & -3 & 4 \\
3 & -1 & 5 & 2 \\
4 & 1 & a^{2}-14 & a+2
\end{array}\right] \begin{gathered}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1}
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & -7 & 14 & -10 \\
0 & -7 & a^{2}-2 & a-14
\end{array}\right]
$$

$$
\begin{gathered}
R_{3} \rightarrow R_{3}-R_{2} \\
R_{2} \rightarrow \frac{-1}{7} R_{2} \\
R_{1} \rightarrow R_{1}-2 R_{2}
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & 1 & -2 & \frac{10}{7} \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{cccc}
1 & 0 & 1 & \frac{8}{7} \\
0 & 1 & -2 & \frac{10}{7} \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right]
$$

Denote the last matrix by B.

Case 1: $a^{2}-16 \neq 0$. i.e. $a \neq \pm 4$. Then

$$
\begin{gathered}
R_{3} \rightarrow \frac{1}{a^{2}-16} R_{3} \\
R_{1} \rightarrow R_{1}-R_{3} \\
R_{2} \rightarrow R_{2}+2 R_{3}
\end{gathered}\left[\begin{array}{lllc}
1 & 0 & 0 & \frac{8 a+25}{7(a+4)} \\
0 & 1 & 0 & \frac{10 a+54}{7(a+4)} \\
0 & 0 & 1 & \frac{1}{a+4}
\end{array}\right]
$$

and we get the unique solution

$$
x=\frac{8 a+25}{7(a+4)}, y=\frac{10 a+54}{7(a+4)}, z=\frac{1}{a+4} .
$$

Case 2: $a=-4$. Then $B=\left[\begin{array}{rrrr}1 & 0 & 1 & \frac{8}{7} \\ 0 & 1 & -2 & \frac{10}{7} \\ 0 & 0 & 0 & -8\end{array}\right]$, so our system is inconsistent.
Case 3: $a=4$. Then $B=\left[\begin{array}{rrrr}1 & 0 & 1 & \frac{8}{7} \\ 0 & 1 & -2 & \frac{10}{7} \\ 0 & 0 & 0 & 0\end{array}\right]$. We read off that the system is consistent, with complete solution $x=\frac{8}{7}-z, y=\frac{10}{7}+2 z$, where z is arbitrary.
12. We reduce the augmented array of the system to reduced row-echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}+R_{1}\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

The last matrix is in reduced row-echelon form and we read off the solution of the corresponding homogeneous system:

$$
\begin{aligned}
& x_{1}=-x_{4}-x_{5}=x_{4}+x_{5} \\
& x_{2}=-x_{4}-x_{5}=x_{4}+x_{5} \\
& x_{3}=-x_{4}=x_{4},
\end{aligned}
$$

where x_{4} and x_{5} are arbitrary elements of \mathbb{Z}_{2}. Hence there are four solutions:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0	0	0	0	0
1	1	0	0	1
1	1	1	1	0
0	0	1	1	1

13. (a) We reduce the augmented matrix to reduced row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
4 & 1 & 4 & 1 \\
3 & 1 & 2 & 0
\end{array}\right] R_{1} \rightarrow 3 R_{1}\left[\begin{array}{llll}
1 & 3 & 4 & 2 \\
4 & 1 & 4 & 1 \\
3 & 1 & 2 & 0
\end{array}\right]} \\
\begin{array}{c}
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+2 R_{1}
\end{array}\left[\begin{array}{llll}
1 & 3 & 4 & 2 \\
0 & 4 & 3 & 3 \\
0 & 2 & 0 & 4
\end{array}\right] R_{2} \rightarrow 4 R_{2}\left[\begin{array}{llll}
1 & 3 & 4 & 2 \\
0 & 1 & 2 & 2 \\
0 & 2 & 0 & 4
\end{array}\right] \\
\begin{array}{l}
R_{1} \rightarrow R_{1}+2 R_{2} \\
R_{3} \rightarrow R_{3}+3 R_{2}
\end{array}\left[\begin{array}{llll}
1 & 0 & 3 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] \begin{array}{l}
\\
R_{1} \rightarrow R_{1}+2 R_{3} \\
R_{2} \rightarrow R_{2}+3 R_{3}
\end{array}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] .
\end{gathered}
$$

Consequently the system has the unique solution $x=1, y=2, z=0$.
(b) Again we reduce the augmented matrix to reduced row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
4 & 1 & 4 & 1 \\
1 & 1 & 0 & 3
\end{array}\right] R_{1} \leftrightarrow R_{3}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
4 & 1 & 4 & 1 \\
2 & 1 & 3 & 4
\end{array}\right]} \\
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+3 R_{1}
\end{gathered}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 2 & 4 & 4 \\
0 & 4 & 3 & 3
\end{array}\right] \quad R_{2} \rightarrow 3 R_{2}\left[\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 1 & 2 & 2 \\
0 & 4 & 3 & 3
\end{array}\right] .
$$

We read off the complete solution

$$
\begin{aligned}
& x=1-3 z=1+2 z \\
& y=2-2 z=2+3 z
\end{aligned}
$$

where z is an arbitrary element of \mathbb{Z}_{5}.
14. Suppose that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$ are solutions of the system of linear equations

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad 1 \leq i \leq m .
$$

Then

$$
\sum_{j=1}^{n} a_{i j} \alpha_{j}=b_{i} \quad \text { and } \quad \sum_{j=1}^{n} a_{i j} \beta_{j}=b_{i}
$$

for $1 \leq i \leq m$.
Let $\gamma_{i}=(1-t) \alpha_{i}+t \beta_{i}$ for $1 \leq i \leq m$. Then $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is a solution of the given system. For

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} \gamma_{j} & =\sum_{j=1}^{n} a_{i j}\left\{(1-t) \alpha_{j}+t \beta_{j}\right\} \\
& =\sum_{j=1}^{n} a_{i j}(1-t) \alpha_{j}+\sum_{j=1}^{n} a_{i j} t \beta_{j} \\
& =(1-t) b_{i}+t b_{i} \\
& =b_{i} .
\end{aligned}
$$

15. Suppose that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a solution of the system of linear equations

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad 1 \leq i \leq m \tag{1}
\end{equation*}
$$

Then the system can be rewritten as

$$
\sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n} a_{i j} \alpha_{j}, \quad 1 \leq i \leq m
$$

or equivalently

$$
\sum_{j=1}^{n} a_{i j}\left(x_{j}-\alpha_{j}\right)=0, \quad 1 \leq i \leq m
$$

So we have

$$
\sum_{j=1}^{n} a_{i j} y_{j}=0, \quad 1 \leq i \leq m
$$

where $x_{j}-\alpha_{j}=y_{j}$. Hence $x_{j}=\alpha_{j}+y_{j}, 1 \leq j \leq n$, where $\left(y_{1}, \ldots, y_{n}\right)$ is a solution of the associated homogeneous system. Conversely if $\left(y_{1}, \ldots, y_{n}\right)$
is a solution of the associated homogeneous system and $x_{j}=\alpha_{j}+y_{j}, 1 \leq$ $j \leq n$, then reversing the argument shows that $\left(x_{1}, \ldots, x_{n}\right)$ is a solution of the system 1 .
16. We simplify the augmented matrix using row operations, working towards row-echelon form:

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
a & 1 & 1 & 1 & b \\
3 & 2 & 0 & a & 1+a
\end{array}\right] \begin{array}{c}
\\
R_{2} \rightarrow R_{2}-a R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1-a & 1+a & 1-a & b-a \\
0 & -1 & 3 & a-3 & a-2
\end{array}\right]} \\
R_{2} \leftrightarrow R_{3} \\
R_{2} \rightarrow-R_{2}
\end{gathered}\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 3-a & 2-a \\
0 & 1-a & 1+a & 1-a & b-a
\end{array}\right] .
$$

Case 1: $a \neq 2$. Then $4-2 a \neq 0$ and

$$
B \rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 3-a & 2-a \\
0 & 0 & 1 & \frac{a-1}{2} & \frac{-a^{2}+2 a+b-2}{4-2 a}
\end{array}\right]
$$

Hence we can solve for x, y and z in terms of the arbitrary variable w.
Case 2: $a=2$. Then

$$
B=\left[\begin{array}{rrrcc}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & b-2
\end{array}\right]
$$

Hence there is no solution if $b \neq 2$. However if $b=2$, then

$$
B=\left[\begin{array}{rrrrr}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and we get the solution $x=1-2 z, y=3 z-w$, where w is arbitrary.
17. (a) We first prove that $1+1+1+1=0$. Observe that the elements

$$
1+0, \quad 1+1, \quad 1+a, \quad 1+b
$$

are distinct elements of F by virtue of the cancellation law for addition. For this law states that $1+x=1+y \Rightarrow x=y$ and hence $x \neq y \Rightarrow 1+x \neq 1+y$.

Hence the above four elements are just the elements $0,1, a, b$ in some order. Consequently

$$
\begin{aligned}
(1+0)+(1+1)+(1+a)+(1+b) & =0+1+a+b \\
(1+1+1+1)+(0+1+a+b) & =0+(0+1+a+b)
\end{aligned}
$$

so $1+1+1+1=0$ after cancellation.
Now $1+1+1+1=(1+1)(1+1)$, so we have $x^{2}=0$, where $x=1+1$. Hence $x=0$. Then $a+a=a(1+1)=a \cdot 0=0$.

Next $a+b=1$. For $a+b$ must be one of $0,1, a, b$. Clearly we can't have $a+b=a$ or b; also if $a+b=0$, then $a+b=a+a$ and hence $b=a$; hence $a+b=1$. Then

$$
a+1=a+(a+b)=(a+a)+b=0+b=b
$$

Similarly $b+1=a$. Consequently the addition table for F is

+	$0 \quad 1 \quad \mathrm{a}$ b			
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

We now find the multiplication table. First, $a b$ must be one of $1, a, b$; however we can't have $a b=a$ or b, so this leaves $a b=1$.

Next $a^{2}=b$. For a^{2} must be one of $1, a, b$; however $a^{2}=a \Rightarrow a=0$ or $a=1$; also

$$
a^{2}=1 \Rightarrow a^{2}-1=0 \Rightarrow(a-1)(a+1)=0 \Rightarrow(a-1)^{2}=0 \Rightarrow a=1
$$

hence $a^{2}=b$. Similarly $b^{2}=a$. Consequently the multiplication table for F is

\times	$\begin{array}{lllll}0 & 1 & \mathrm{a} & \mathrm{b}\end{array}$			
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

(b) We use the addition and multiplication tables for F :

$$
A=\left[\begin{array}{cccc}
1 & a & b & a \\
a & b & b & 1 \\
1 & 1 & 1 & a
\end{array}\right] \begin{gathered}
R_{2} \rightarrow R_{2}+a R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{gathered}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & 0 & a & a \\
0 & b & a & 0
\end{array}\right]
$$

$$
\begin{array}{r}
R_{2} \leftrightarrow R_{3}\left[\begin{array}{cccc}
1 & a & b & a \\
0 & b & a & 0 \\
0 & 0 & a & a
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow a R_{2} \\
R_{3} \rightarrow b R_{3}
\end{array}\left[\begin{array}{llll}
1 & a & b & a \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \\
R_{1} \leftrightarrow R_{1}+a R_{2}\left[\begin{array}{llll}
1 & 0 & a & a \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \begin{array}{l}
\\
R_{1} \rightarrow R_{1}+a R_{3} \\
R_{2} \rightarrow R_{2}+b R_{3}
\end{array}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{array}
$$

The last matrix is in reduced row-echelon form.

Section 2.4

2. Suppose $B=\left[\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right]$ and that $A B=I_{2}$. Then

$$
\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-a+e & -b+f \\
c+e & d+f
\end{array}\right] .
$$

Hence

$$
\begin{gathered}
-a+e=1, \begin{array}{c}
-b+f=0 \\
c+e=0 \\
d+f=1
\end{array} \\
e=a+1 \\
c=-e=-(a+1), d=1-f=1-b \\
B=\left[\begin{array}{cc}
a & b \\
-a-1 & 1-b \\
a+1 & b
\end{array}\right]
\end{gathered}
$$

Next,

$$
(B A)^{2} B=(B A)(B A) B=B(A B)(A B)=B I_{2} I_{2}=B I_{2}=B .
$$

4. Let p_{n} denote the statement

$$
A^{n}=\frac{\left(3^{n}-1\right)}{2} A+\frac{\left(3-3^{n}\right)}{2} I_{2} .
$$

Then p_{1} asserts that $A=\frac{(3-1)}{2} A+\frac{(3-3)}{2} I_{2}$, which is true. So let $n \geq 1$ and assume p_{n}. Then from (1),

$$
\begin{aligned}
A^{n+1} & =A \cdot A^{n}=A\left\{\frac{\left(3^{n}-1\right)}{2} A+\frac{\left(3-3^{n}\right)}{2} I_{2}\right\}=\frac{\left(3^{n}-1\right)}{2} A^{2}+\frac{\left(3-3^{n}\right)}{2} A \\
& =\frac{\left(3^{n}-1\right)}{2}\left(4 A-3 I_{2}\right)+\frac{\left(3-3^{n}\right)}{2} A=\frac{\left(3^{n}-1\right) 4+\left(3-3^{n}\right)}{2} A+\frac{\left(3^{n}-1\right)(-3)}{2} I_{2} \\
& =\frac{\left(4 \cdot 3^{n}-3^{n}\right)-1}{2} A+\frac{\left(3-3^{n+1}\right)}{2} I_{2} \\
& =\frac{\left(3^{n+1}-1\right)}{2} A+\frac{\left(3-3^{n+1}\right)}{2} I_{2} .
\end{aligned}
$$

Hence p_{n+1} is true and the induction proceeds.
5. The equation $x_{n+1}=a x_{n}+b x_{n-1}$ is seen to be equivalent to

$$
\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{n} \\
x_{n-1}
\end{array}\right]
$$

or

$$
X_{n}=A X_{n-1},
$$

where $X_{n}=\left[\begin{array}{c}x_{n+1} \\ x_{n}\end{array}\right]$ and $A=\left[\begin{array}{cc}a & b \\ 1 & 0\end{array}\right]$. Then

$$
X_{n}=A^{n} X_{0}
$$

if $n \geq 1$. Hence by Question 3,

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right] } & =\left\{\frac{\left(3^{n}-1\right)}{2} A+\frac{\left(3-3^{n}\right)}{2} I_{2}\right\}\left[\begin{array}{l}
x_{1} \\
x_{0}
\end{array}\right] \\
& =\left\{\frac{\left(3^{n}-1\right)}{2}\left[\begin{array}{rr}
4 & -3 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
\frac{3-3^{n}}{2} & 0 \\
0 & \frac{3-3^{n}}{2}
\end{array}\right]\right\}\left[\begin{array}{l}
x_{1} \\
x_{0}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(3^{n}-1\right) 2+\frac{3-3^{n}}{2} & \frac{\left(3^{n}-1\right)(-3)}{2} \\
\frac{3^{n}-1}{2} & \frac{3-3^{n}}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{0}
\end{array}\right]
\end{aligned}
$$

Hence, equating the $(2,1)$ elements gives

$$
x_{n}=\frac{\left(3^{n}-1\right)}{2} x_{1}+\frac{\left(3-3^{n}\right)}{2} x_{0} \quad \text { if } n \geq 1
$$

7. Note: $\lambda_{1}+\lambda_{2}=a+d$ and $\lambda_{1} \lambda_{2}=a d-b c$.

Then

$$
\left.\begin{array}{rl}
\left(\lambda_{1}+\lambda_{2}\right) k_{n}-\lambda_{1} \lambda_{2} k_{n-1}= & \left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}^{n-1}+\lambda_{1}^{n-2} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-2}+\lambda_{2}^{n-1}\right) \\
& -\lambda_{1} \lambda_{2}\left(\lambda_{1}^{n-2}+\lambda_{1}^{n-3} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-3}+\lambda_{2}^{n-2}\right)
\end{array}\right) \quad \begin{aligned}
= & \left(\lambda_{1}^{n}+\lambda_{1}^{n-1} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-1}\right) \\
& +\left(\lambda_{1}^{n-1} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-1}+\lambda_{2}^{n}\right) \\
& -\left(\lambda_{1}^{n-1} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-1}\right) \\
= & \lambda_{1}^{n}+\lambda_{1}^{n-1} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-1}+\lambda_{2}^{n}=k_{n+1}
\end{aligned}
$$

If $\lambda_{1}=\lambda_{2}$, we see

$$
\begin{aligned}
k_{n} & =\lambda_{1}^{n-1}+\lambda_{1}^{n-2} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-2}+\lambda_{2}^{n-1} \\
& =\lambda_{1}^{n-1}+\lambda_{1}^{n-2} \lambda_{1}+\cdots+\lambda_{1} \lambda_{1}^{n-2}+\lambda_{1}^{n-1} \\
& =n \lambda_{1}^{n-1}
\end{aligned}
$$

If $\lambda_{1} \neq \lambda_{2}$, we see that

$$
\begin{aligned}
\left(\lambda_{1}-\lambda_{2}\right) k_{n}= & \left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}^{n-1}+\lambda_{1}^{n-2} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-2}+\lambda_{2}^{n-1}\right) \\
= & \lambda_{1}^{n}+\lambda_{1}^{n-1} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-1} \\
& -\left(\lambda_{1}^{n-1} \lambda_{2}+\cdots+\lambda_{1} \lambda_{2}^{n-1}+\lambda_{2}^{n}\right) \\
= & \lambda_{1}^{n}-\lambda_{2}^{n}
\end{aligned}
$$

Hence $k_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}$.
We have to prove

$$
A^{n}=k_{n} A-\lambda_{1} \lambda_{2} k_{n-1} I_{2}
$$

$$
\mathrm{n}=1
$$

$$
\begin{aligned}
A^{1}=A ; \text { also } k_{1} A-\lambda_{1} \lambda_{2} k_{0} I_{2} & =k_{1} A-\lambda_{1} \lambda_{2} 0 I_{2} \\
& =A
\end{aligned}
$$

Let $n \geq 1$ and assume equation $*$ holds. Then

$$
\begin{aligned}
A^{n+1}=A^{n} \cdot A & =\left(k_{n} A-\lambda_{1} \lambda_{2} k_{n-1} I_{2}\right) A \\
& =k_{n} A^{2}-\lambda_{1} \lambda_{2} k_{n-1} A
\end{aligned}
$$

Now $A^{2}=(a+d) A-(a d-b c) I_{2}=\left(\lambda_{1}+\lambda_{2}\right) A-\lambda_{1} \lambda_{2} I_{2}$. Hence

$$
\begin{aligned}
A^{n+1} & =k_{n}\left(\lambda_{1}+\lambda_{2}\right) A-\lambda_{1} \lambda_{2} I_{2}-\lambda_{1} \lambda_{2} k_{n-1} A \\
& =\left\{k_{n}\left(\lambda_{1}+\lambda_{2}\right)-\lambda_{1} \lambda_{2} k_{n-1}\right\} A-\lambda_{1} \lambda_{2} k_{n} I_{2} \\
& =k_{n+1} A-\lambda_{1} \lambda_{2} k_{n} I_{2}
\end{aligned}
$$

and the induction goes through.
8. Here λ_{1}, λ_{2} are the roots of the polynomial $x^{2}-2 x-3=(x-3)(x+1)$. So we can take $\lambda_{1}=3, \lambda_{2}=-1$. Then

$$
k_{n}=\frac{3^{n}-(-1)^{n}}{3-(-1)}=\frac{3^{n}+(-1)^{n+1}}{4}
$$

Hence

$$
\begin{aligned}
A^{n} & =\left\{\frac{3^{n}+(-1)^{n+1}}{4}\right\} A-(-3)\left\{\frac{3^{n-1}+(-1)^{n}}{4}\right\} I_{2} \\
& =\frac{3^{n}+(-1)^{n+1}}{4}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]+3\left\{\frac{3^{n-1}+(-1)^{n}}{4}\right\}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

which is equivalent to the stated result.
9. In terms of matrices, we have

$$
\begin{gathered}
{\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right] \text { for } n \geq 1 .} \\
{\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
F_{1} \\
F_{0}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right] .}
\end{gathered}
$$

Now λ_{1}, λ_{2} are the roots of the polynomial $x^{2}-x-1$ here.
Hence $\lambda_{1}=\frac{1+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{5}}{2}$ and

$$
\begin{aligned}
k_{n} & =\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\frac{1+\sqrt{5}}{2}-\left(\frac{1-\sqrt{5}}{2}\right)} \\
& =\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
A^{n} & =k_{n} A-\lambda_{1} \lambda_{2} k_{n-1} I_{2} \\
& =k_{n} A+k_{n-1} I_{2}
\end{aligned}
$$

So

$$
\begin{aligned}
{\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right] } & =\left(k_{n} A+k_{n-1} I_{2}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =k_{n}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+k_{n-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
k_{n}+k_{n-1} \\
k_{n}
\end{array}\right] .
\end{aligned}
$$

Hence

$$
F_{n}=k_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}}
$$

10. From Question 5, we know that

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & r \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Now by Question 7, with $A=\left[\begin{array}{ll}1 & r \\ 1 & 1\end{array}\right]$,

$$
\begin{aligned}
A^{n} & =k_{n} A-\lambda_{1} \lambda_{2} k_{n-1} I_{2} \\
& =k_{n} A-(1-r) k_{n-1} I_{2},
\end{aligned}
$$

where $\lambda_{1}=1+\sqrt{r}$ and $\lambda_{2}=1-\sqrt{r}$ are the roots of the polynomial $x^{2}-2 x+(1-r)$ and

$$
k_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{2 \sqrt{r}} .
$$

Hence

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] } & =\left(k_{n} A-(1-r) k_{n-1} I_{2}\right)\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left(\left[\begin{array}{cc}
k_{n} & k_{n} r \\
k_{n} & k_{n}
\end{array}\right]-\left[\begin{array}{cc}
(1-r) k_{n-1} & 0 \\
0 & (1-r) k_{n-1}
\end{array}\right]\right)\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left[\begin{array}{cc}
k_{n}-(1-r) k_{n-1} & k_{n} r \\
k_{n} & k_{n}-(1-r) k_{n-1}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left[\begin{array}{c}
a\left(k_{n}-(1-r) k_{n-1}\right)+b k_{n} r \\
a k_{n}+b\left(k_{n}-(1-r) k_{n-1}\right)
\end{array}\right] .
\end{aligned}
$$

Hence, in view of the fact that

$$
\frac{k_{n}}{k_{n-1}}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}^{n-1}-\lambda_{2}^{n-1}}=\frac{\lambda_{1}^{n}\left(1-\left\{\frac{\lambda_{2}}{\lambda_{1}}\right\}^{n}\right)}{\lambda_{1}^{n-1}\left(1-\left\{\frac{\lambda_{2}}{\lambda_{1}}\right\}^{n-1}\right)} \rightarrow \lambda_{1}, \quad \text { as } n \rightarrow \infty,
$$

we have

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] } & =\frac{a\left(k_{n}-(1-r) k_{n-1}\right)+b k_{n} r}{a k_{n}+b\left(k_{n}-(1-r) k_{n-1}\right)} \\
& =\frac{a\left(\frac{k_{n}}{k_{n-1}}-(1-r)\right)+b \frac{k_{n}}{k_{n-1} r}}{a \frac{k_{n}}{k_{n}-1}+b\left(\frac{k_{n}}{k_{n-1}}-(1-r)\right)} \\
& \rightarrow \frac{a\left(\lambda_{1}-(1-r)\right)+b \lambda_{1} r}{a \lambda_{1}+b\left(\lambda_{1}-(1-r)\right)} \\
& =\frac{a(\sqrt{r}+r)+b(1+\sqrt{r}) r}{a(1+\sqrt{r})+b(\sqrt{r}+r)} \\
& =\frac{\sqrt{r}\{a(1+\sqrt{r})+b(1+\sqrt{r}) \sqrt{r}\}}{a(1+\sqrt{r})+b(\sqrt{r}+r)} \\
& =\sqrt{r} .
\end{aligned}
$$

Section 2.7

1. $\left[A \mid I_{2}\right]=\left[\begin{array}{rr|rr}1 & 4 & 1 & 0 \\ -3 & 1 & 0 & 1\end{array}\right] \quad R_{2} \rightarrow R_{2}+3 R_{1}\left[\begin{array}{cc|cc}1 & 4 & 1 & 0 \\ 0 & 13 & 3 & 1\end{array}\right]$
$R_{2} \rightarrow \frac{1}{13} R_{2}\left[\begin{array}{ll|cc}1 & 4 & 1 & 0 \\ 0 & 1 & 3 / 13 & 1 / 13\end{array}\right] \quad R_{1} \rightarrow R_{1}-4 R_{2}\left[\begin{array}{ll|lr}1 & 0 & 1 / 13 & -4 / 13 \\ 0 & 1 & 3 / 13 & 1 / 13\end{array}\right]$.
Hence A is non-singular and $A^{-1}=\left[\begin{array}{rr}1 / 13 & -4 / 13 \\ 3 / 13 & 1 / 13\end{array}\right]$.
Moreover

$$
E_{12}(-4) E_{2}(1 / 13) E_{21}(3) A=I_{2}
$$

so

$$
A^{-1}=E_{12}(-4) E_{2}(1 / 13) E_{21}(3)
$$

Hence

$$
A=\left\{E_{21}(3)\right\}^{-1}\left\{E_{2}(1 / 13)\right\}^{-1}\left\{E_{12}(-4)\right\}^{-1}=E_{21}(-3) E_{2}(13) E_{12}(4)
$$

2. Let $D=\left[d_{i j}\right]$ be an $m \times m$ diagonal matrix and let $A=\left[a_{j k}\right]$ be an $m \times n$ matrix. Then

$$
(D A)_{i k}=\sum_{j=1}^{n} d_{i j} a_{j k}=d_{i i} a_{i k}
$$

as $d_{i j}=0$ if $i \neq j$. It follows that the i th row of $D A$ is obtained by multiplying the i th row of A by $d_{i i}$.

Similarly, post-multiplication of a matrix by a diagonal matrix D results in a matrix whose columns are those of A, multiplied by the respective diagonal elements of D.

In particular,

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)=\operatorname{diag}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

as the left-hand side can be regarded as pre-multiplication of the matrix $\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ by the diagonal matrix $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$.

Finally, suppose that each of a_{1}, \ldots, a_{n} is non-zero. Then $a_{1}^{-1}, \ldots, a_{n}^{-1}$ all exist and we have

$$
\begin{aligned}
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \operatorname{diag}\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right) & =\operatorname{diag}\left(a_{1} a_{1}^{-1}, \ldots, a_{n} a_{n}^{-1}\right) \\
& =\operatorname{diag}(1, \ldots, 1)=I_{n}
\end{aligned}
$$

Hence $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is non-singular and its inverse is $\operatorname{diag}\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)$.

Next suppose that $a_{i}=0$. Then $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is row-equivalent to a matix containing a zero row and is hence singular.
3. $\left[A \mid I_{3}\right]=\left[\begin{array}{lll|lll}0 & 0 & 2 & 1 & 0 & 0 \\ 1 & 2 & 6 & 0 & 1 & 0 \\ 3 & 7 & 9 & 0 & 0 & 1\end{array}\right] \quad R_{1} \leftrightarrow R_{2}\left[\begin{array}{cccccc}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 3 & 7 & 9 & 0 & 0 & 1\end{array}\right]$ $R_{3} \rightarrow R_{3}-3 R_{1}\left[\begin{array}{rrrrrr}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -9 & 0 & -3 & 1\end{array}\right] \quad R_{2} \leftrightarrow R_{3}\left[\begin{array}{rrrrrr}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 1 & -9 & 0 & -3 & 1 \\ 0 & 0 & 2 & 1 & 0 & 0\end{array}\right]$
$R_{3} \rightarrow \frac{1}{2} R_{3}\left[\begin{array}{rrrrrr}1 & 2 & 6 & 0 & 1 & 0 \\ 0 & 1 & -9 & 0 & -3 & 1 \\ 0 & 0 & 1 & 1 / 2 & 0 & 0\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{rrrrrr}1 & 0 & 24 & 0 & 7 & -2 \\ 0 & 1 & -9 & 0 & -3 & 1 \\ 0 & 0 & 1 & 1 / 2 & 0 & 0\end{array}\right]$
$\begin{gathered}R_{1} \rightarrow R_{1}-24 R_{3} \\ R_{2} \rightarrow R_{2}+9 R_{3}\end{gathered}\left[\begin{array}{rrrrrr}1 & 0 & 0 & -12 & 7 & -2 \\ 0 & 1 & 0 & 9 / 2 & -3 & 1 \\ 0 & 0 & 1 & 1 / 2 & 0 & 0\end{array}\right]$.
Hence A is non-singular and $A^{-1}=\left[\begin{array}{rrr}-12 & 7 & -2 \\ 9 / 2 & -3 & 1 \\ 1 / 2 & 0 & 0\end{array}\right]$.
Also

$$
E_{23}(9) E_{13}(-24) E_{12}(-2) E_{3}(1 / 2) E_{23} E_{31}(-3) E_{12} A=I_{3}
$$

Hence

$$
A^{-1}=E_{23}(9) E_{13}(-24) E_{12}(-2) E_{3}(1 / 2) E_{23} E_{31}(-3) E_{12}
$$

so

$$
A=E_{12} E_{31}(3) E_{23} E_{3}(2) E_{12}(2) E_{13}(24) E_{23}(-9)
$$

4.

$A=\left[\begin{array}{rrr}1 & 2 & k \\ 3 & -1 & 1 \\ 5 & 3 & -5\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & k \\ 0 & -7 & 1-3 k \\ 0 & -7 & -5-5 k\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & k \\ 0 & -7 & 1-3 k \\ 0 & 0 & -6-2 k\end{array}\right]=B$.
Hence if $-6-2 k \neq 0$, i.e. if $k \neq-3$, we see that B can be reduced to I_{3} and hence A is non-singular.

If $k=-3$, then $B=\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & -7 & 10 \\ 0 & 0 & 0\end{array}\right]=B$ and consequently A is singular, as it is row-equivalent to a matrix containing a zero row.
5. $\quad E_{21}(2)\left[\begin{array}{rr}1 & 2 \\ -2 & -4\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$. Hence, as in the previous question, $\left[\begin{array}{rr}1 & 2 \\ -2 & -4\end{array}\right]$ is singular.
6. Starting from the equation $A^{2}-2 A+13 I_{2}=0$, we deduce

$$
A\left(A-2 I_{2}\right)=-13 I_{2}=\left(A-2 I_{2}\right) A
$$

Hence $A B=B A=I_{2}$, where $B=\frac{-1}{13}\left(A-2 I_{2}\right)$. Consequently A is nonsingular and $A^{-1}=B$.
7. We assume the equation $A^{3}=3 A^{2}-3 A+I_{3}$.

$$
\text { (ii) } \begin{aligned}
A^{4} & =A^{3} A=\left(3 A^{2}-3 A+I_{3}\right) A=3 A^{3}-3 A^{2}+A \\
& =3\left(3 A^{2}-3 A+I_{3}\right)-3 A^{2}+A=6 A^{2}-8 A+3 I_{3}
\end{aligned}
$$

(iii) $A^{3}-3 A^{2}+3 A=I_{3}$. Hence

$$
A\left(A^{2}-3 A+3 I_{3}\right)=I_{3}=\left(A^{2}-3 A+3 I_{3}\right) A
$$

Hence A is non-singular and

$$
\begin{aligned}
A^{-1} & =A^{2}-3 A+3 I_{3} \\
& =\left[\begin{array}{rrr}
-1 & -3 & 1 \\
2 & 4 & -1 \\
0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

8. (i) If $B^{3}=0$ then

$$
\begin{aligned}
\left(I_{n}-B\right)\left(I_{n}+B+B^{2}\right) & =I_{n}\left(I_{n}+B+B^{2}\right)-B\left(I_{n}+B+B^{2}\right) \\
& =\left(I_{n}+B+B^{2}\right)-\left(B+B^{2}+B^{3}\right) \\
& =I_{n}-B^{3}=I_{n}-0=I_{n}
\end{aligned}
$$

Similarly $\left(I_{n}+B+B^{2}\right)\left(I_{n}-B\right)=I_{n}$.
Hence $A=I_{n}-B$ is non-singular and $A^{-1}=I_{n}+B+B^{2}$.
It follows that the system $A X=b$ has the unique solution

$$
X=A^{-1} b=\left(I_{n}+B+B^{2}\right) b=b+B b+B^{2} b
$$

(ii) Let $B=\left[\begin{array}{lll}0 & r & s \\ 0 & 0 & t \\ 0 & 0 & 0\end{array}\right]$. Then $B^{2}=\left[\begin{array}{ccc}0 & 0 & r t \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $B^{3}=0$. Hence from the preceding question

$$
\begin{aligned}
\left(I_{3}-B\right)^{-1} & =I_{3}+B+B^{2} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & r & s \\
0 & 0 & t \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{llc}
0 & 0 & r t \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llc}
1 & r & s+r t \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

9. (i) Suppose that $A^{2}=0$. Then if A^{-1} exists, we deduce that $A^{-1}(A A)=$ $A^{-1} 0$, which gives $A=0$ and this is a contradiction, as the zero matrix is singular. We conclude that A does not have an inverse.
(ii). Suppose that $A^{2}=A$ and that A^{-1} exists. Then

$$
A^{-1}(A A)=A^{-1} A
$$

which gives $A=I_{n}$. Equivalently, if $A^{2}=A$ and $A \neq I_{n}$, then A does not have an inverse.
10. The system of linear equations

$$
\begin{aligned}
x+y-z & =a \\
z & =b \\
2 x+y+2 z & =c
\end{aligned}
$$

is equivalent to the matrix equation $A X=B$, where

$$
A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 1 \\
2 & 1 & 2
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

By Question $7, A^{-1}$ exists and hence the system has the unique solution

$$
X=\left[\begin{array}{rrr}
-1 & -3 & 1 \\
2 & 4 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
-a-3 b+c \\
2 a+4 b-c \\
b
\end{array}\right]
$$

Hence $x=-a-3 b+c, y=2 a+4 b-c, z=b$.
12.

$$
\begin{aligned}
A & =E_{3}(2) E_{14} E_{42}(3)=E_{3}(2) E_{14}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right] \\
& =E_{3}(2)\left[\begin{array}{llll}
0 & 3 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 3 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Also

$$
\begin{aligned}
A^{-1} & =\left(E_{3}(2) E_{14} E_{42}(3)\right)^{-1} \\
& =\left(E_{42}(3)\right)^{-1} E_{14}^{-1}\left(E_{3}(2)\right)^{-1} \\
& =E_{42}(-3) E_{14} E_{3}(1 / 2) \\
& =E_{42}(-3) E_{14}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =E_{42}(-3)\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
1 & -3 & 0 & 0
\end{array}\right]
\end{aligned}
$$

13. (All matrices in this question are over \mathbb{Z}_{2}.)
(a) $\left[\begin{array}{llll|llll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{llll|llll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{llll|llll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{llll|llll}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right]$

$$
\rightarrow\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Hence A is non-singular and

$$
A^{-1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

(b) $A=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right] \quad R_{4} \rightarrow R_{4}+R_{1}\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, so A is singular.
14.

$$
\begin{gathered}
\text { (a) }\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
R_{3} \rightarrow \frac{1}{2} R_{3} \\
R_{1} \rightarrow R_{1}-R_{3} \\
R_{2} \rightarrow R_{2}+R_{3} \\
R_{1} \leftrightarrow R_{3}
\end{array}\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 0 & 1 & 1 / 2 \\
0 & 1 & 1 & 1 & 0 & -1 / 2
\end{array}\right] \\
R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{lll|rrrr}
1 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 0 & 1 & 1 / 2 \\
0 & 0 & 1 & 1 & -1 & -1
\end{array}\right] .
\end{gathered}
$$

Hence A^{-1} exists and

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{rrr}
0 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
1 & -1 & -1
\end{array}\right] . \\
& \text { (b) }\left[\begin{array}{lll|lll}
2 & 2 & 4 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
R_{1} \rightarrow R_{1}-2 R_{2} \\
R_{1} \leftrightarrow R_{2} \\
R_{2} \leftrightarrow R_{3}
\end{array}\left[\begin{array}{lll|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 2 & 2 & 1 & -2 & 0
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-2 R_{2}\left[\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 & -2 & -2
\end{array}\right] \\
& R_{3} \rightarrow \frac{1}{2} R_{3}\left[\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 / 2 & -1 & -1
\end{array}\right]
\end{aligned}
$$

$$
R_{1} \rightarrow R_{1}-R_{3}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 / 2 & 2 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 / 2 & -1 & -1
\end{array}\right]
$$

Hence A^{-1} exists and

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{rrr}
-1 / 2 & 2 & 1 \\
0 & 0 & 1 \\
1 / 2 & -1 & -1
\end{array}\right] . \\
\text { (c) }\left[\begin{array}{rrr}
4 & 6 & -3 \\
0 & 0 & 7 \\
0 & 0 & 5
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow \frac{1}{7} R_{2} \\
R_{3} \rightarrow \frac{1}{5} R_{3}
\end{array}\left[\begin{array}{rrr}
4 & 6 & -3 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] .
\end{gathered} R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{rrr}
4 & 6 & -3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] . .
$$

Hence A is singular by virtue of the zero row.
(d) $\left[\begin{array}{rrr|rrr}2 & 0 & 0 & 1 & 0 & 0 \\ 0 & -5 & 0 & 0 & 1 & 0 \\ 0 & 0 & 7 & 0 & 0 & 1\end{array}\right] \begin{gathered}R_{1} \rightarrow \frac{1}{2} R_{1} \\ R_{2} \rightarrow \frac{-1}{5} R_{2} \\ R_{3} \rightarrow \frac{1}{7} R_{3}\end{gathered}\left[\begin{array}{lll|rrr}1 & 0 & 0 & 1 / 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 / 5 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 / 7\end{array}\right]$.

Hence A^{-1} exists and $A^{-1}=\operatorname{diag}(1 / 2,-1 / 5,1 / 7)$.
(Of course this was also immediate from Question 2.)
(e) $\left[\begin{array}{llll|llll}1 & 2 & 4 & 6 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 1\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{llll|llll}1 & 0 & 0 & 6 & 1 & -2 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 1\end{array}\right]$

$$
\begin{gathered}
R_{2} \rightarrow R_{2}-2 R_{3}
\end{gathered}\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 6 & 1 & -2 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & 1 & -2 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Hence A^{-1} exists and

$$
A^{-1}=\left[\begin{array}{rrrr}
1 & -2 & 0 & -3 \\
0 & 1 & -2 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 / 2
\end{array}\right]
$$

(f)

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
5 & 7 & 9
\end{array}\right] \begin{aligned}
& R_{2} \rightarrow R_{2}-4 R_{1} \\
& R_{3} \rightarrow R_{3}-5 R_{1}
\end{aligned}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -3 & -6
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right] .
$$

Hence A is singular by virtue of the zero row.
15. Suppose that A is non-singular. Then

$$
A A^{-1}=I_{n}=A^{-1} A .
$$

Taking transposes throughout gives

$$
\begin{aligned}
\left(A A^{-1}\right)^{t} & =I_{n}^{t}=\left(A^{-1} A\right)^{t} \\
\left(A^{-1}\right)^{t} A^{t} & =I_{n}=A^{t}\left(A^{-1}\right)^{t},
\end{aligned}
$$

so A^{t} is non-singular and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
16. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a d-b c=0$. Then the equation

$$
A^{2}-(a+d) A+(a d-b c) I_{2}=0
$$

reduces to $A^{2}-(a+d) A=0$ and hence $A^{2}=(a+d) A$. From the last equation, if A^{-1} exists, we deduce that $A=(a+d) I_{2}$, or

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a+d & 0 \\
0 & a+d
\end{array}\right] .
$$

Hence $a=a+d, b=0, c=0, d=a+d$ and $a=b=c=d=0$, which contradicts the assumption that A is non-singular.
17.
$A=\left[\begin{array}{rrr}1 & a & b \\ -a & 1 & c \\ -b & -c & 1\end{array}\right] \quad \begin{aligned} & R_{2} \rightarrow R_{2}+a R_{1} \\ & R_{3} \rightarrow R_{3}+b R_{1}\end{aligned}\left[\begin{array}{ccc}1 & a & b \\ 0 & 1+a^{2} & c+a b \\ 0 & a b-c & 1+b^{2}\end{array}\right]$

$$
R_{2} \rightarrow \frac{1}{1+a^{2}} R_{2}\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & \frac{c+a b}{1+a^{2}} \\
0 & a b-c & 1+b^{2}
\end{array}\right]
$$

$$
R_{3} \rightarrow R_{3}-(a b-c) R_{2}\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & \frac{c+a b}{1+a^{2}} \\
0 & 0 & 1+b^{2}+\frac{(c-a b)(c+a b)}{1+a^{2}}
\end{array}\right]=B .
$$

Now

$$
\begin{aligned}
1+b^{2}+\frac{(c-a b)(c+a b)}{1+a^{2}} & =1+b^{2}+\frac{c^{2}-(a b)^{2}}{1+a^{2}} \\
& =\frac{1+a^{2}+b^{2}+c^{2}}{1+a^{2}} \neq 0
\end{aligned}
$$

Hence B can be reduced to I_{3} using four more row operations and consequently A is non-singular.
18. The proposition is clearly true when $n=1$. So let $n \geq 1$ and assume $\left(P^{-1} A P\right)^{n}=P^{-1} A^{n} P$. Then

$$
\begin{aligned}
\left(P^{-1} A P\right)^{n+1} & =\left(P^{-1} A P\right)^{n}\left(P^{-1} A P\right) \\
& =\left(P^{-1} A^{n} P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A^{n}\left(P P^{-1}\right) A P \\
& =P^{-1} A^{n} I A P \\
& =P^{-1}\left(A^{n} A\right) P \\
& =P^{-1} A^{n+1} P
\end{aligned}
$$

and the induction goes through.
19. Let $A=\left[\begin{array}{ll}2 / 3 & 1 / 4 \\ 1 / 3 & 3 / 4\end{array}\right]$ and $P=\left[\begin{array}{rr}1 & 3 \\ -1 & 4\end{array}\right]$. Then $P^{-1}=\frac{1}{7}\left[\begin{array}{rr}4 & -3 \\ 1 & 1\end{array}\right]$.

We then verify that $P^{-1} A P=\left[\begin{array}{cc}5 / 12 & 0 \\ 0 & 1\end{array}\right]$. Then from the previous question,
$P^{-1} A^{n} P=\left(P^{-1} A P\right)^{n}=\left[\begin{array}{cc}5 / 12 & 0 \\ 0 & 1\end{array}\right]^{n}=\left[\begin{array}{cc}(5 / 12)^{n} & 0 \\ 0 & 1^{n}\end{array}\right]=\left[\begin{array}{cc}(5 / 12)^{n} & 0 \\ 0 & 1\end{array}\right]$.
Hence

$$
\begin{aligned}
A^{n} & =P\left[\begin{array}{cc}
(5 / 12)^{n} & 0 \\
0 & 1
\end{array}\right] P^{-1}=\left[\begin{array}{rr}
1 & 3 \\
-1 & 4
\end{array}\right]\left[\begin{array}{cc}
(5 / 12)^{n} & 0 \\
0 & 1
\end{array}\right] \frac{1}{7}\left[\begin{array}{rr}
4 & -3 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{rr}
(5 / 12)^{n} & 3 \\
-(5 / 12)^{n} & 4
\end{array}\right]\left[\begin{array}{rr}
4 & -3 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{cc}
4(5 / 12)^{n}+3 & (-3)(5 / 12)^{n}+3 \\
-4(5 / 12)^{n}+4 & 3(5 / 12)^{n}+4
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{ll}
3 & 3 \\
4 & 4
\end{array}\right]+\frac{1}{7}(5 / 12)^{n}\left[\begin{array}{rr}
4 & -3 \\
-4 & 3
\end{array}\right] .
\end{aligned}
$$

Notice that $A^{n} \rightarrow \frac{1}{7}\left[\begin{array}{ll}3 & 3 \\ 4 & 4\end{array}\right]$ as $n \rightarrow \infty$. This problem is a special case of a more general result about Markov matrices.
20. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix whose elements are non-negative real numbers satisfying

$$
a \geq 0, b \geq 0, c \geq 0, d \geq 0, a+c=1=b+d
$$

Also let $P=\left[\begin{array}{rr}b & 1 \\ c & -1\end{array}\right]$ and suppose that $A \neq I_{2}$.
(i) $\operatorname{det} P=-b-c=-(b+c)$. Now $b+c \geq 0$. Also if $b+c=0$, then we would have $b=c=0$ and hence $d=a=1$, resulting in $A=I_{2}$. Hence $\operatorname{det} P<0$ and P is non-singular.

Next,

$$
\begin{aligned}
P^{-1} A P & =\frac{-1}{b+c}\left[\begin{array}{rr}
-1 & -1 \\
-c & b
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
b & 1 \\
c & -1
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{cc}
-a-c & -b-d \\
-a c+b c & -c b+b d
\end{array}\right]\left[\begin{array}{rr}
b & 1 \\
c & -1
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{cc}
-1 & -1 \\
-a c+b c & -c b+b d
\end{array}\right]\left[\begin{array}{rr}
b & 1 \\
c & -1
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{cc}
-b-c & 0 \\
(-a c+b c) b+(-c b+b d) c & -a c+b c+c b-b d
\end{array}\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
-a c b+b^{2} c-c^{2} b+b d c & =-c b(a+c)+b c(b+d) \\
& =-c b+b c=0
\end{aligned}
$$

Also

$$
\begin{aligned}
-(a+d-1)(b+c) & =-a b-a c-d b-d c+b+c \\
& =-a c+b(1-a)+c(1-d)-b d \\
& =-a c+b c+c b-b d
\end{aligned}
$$

Hence

$$
P^{-1} A P=\frac{-1}{b+c}\left[\begin{array}{cc}
-(b+c) & 0 \\
0 & -(a+d-1)(b+c)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & a+d-1
\end{array}\right] .
$$

(ii) We next prove that if we impose the extra restriction that $A \neq\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $|a+d-1|<1$. This will then have the following consequence:

$$
\begin{aligned}
A & =P\left[\begin{array}{cc}
1 & 0 \\
0 & a+d-1
\end{array}\right] P^{-1} \\
A^{n} & =P\left[\begin{array}{lc}
1 & 0 \\
0 & a+d-1
\end{array}\right]^{n} P^{-1} \\
& =P\left[\begin{array}{ll}
1 & 0 \\
0 & (a+d-1)^{n}
\end{array}\right] P^{-1} \\
& \rightarrow P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1} \\
& =\left[\begin{array}{rr}
b & 1 \\
c & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \frac{-1}{b+c}\left[\begin{array}{rr}
-1 & -1 \\
-c & b
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{ll}
b & 0 \\
c & 0
\end{array}\right]\left[\begin{array}{rr}
-1 & -1 \\
-c & b
\end{array}\right] \\
& =\frac{-1}{b+c}\left[\begin{array}{ll}
-b & -b \\
-c & -c
\end{array}\right] \\
& =\frac{1}{b+c}\left[\begin{array}{ll}
b & b \\
c & c
\end{array}\right]
\end{aligned}
$$

where we have used the fact that $(a+d-1)^{n} \rightarrow 0$ as $n \rightarrow \infty$.
We first prove the inequality $|a+d-1| \leq 1$:

$$
\begin{aligned}
& a+d-1 \leq 1+d-1=d \leq 1 \\
& a+d-1 \geq 0+0-1=-1
\end{aligned}
$$

Next, if $a+d-1=1$, we have $a+d=2$; so $a=1=d$ and hence $c=0=b$, contradicting our assumption that $A \neq I_{2}$. Also if $a+d-1=-1$, then $a+d=0$; so $a=0=d$ and hence $c=1=b$ and hence $A=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$.
22. The system is inconsistent: We work towards reducing the augmented matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ll|r}
1 & 2 & 4 \\
1 & 1 & 5 \\
3 & 5 & 12
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}\left[\begin{array}{rr|r}
1 & 2 & 4 \\
0 & -1 & 1 \\
0 & -1 & 0
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{rr|r}
1 & 2 & 4 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

The last row reveals inconsistency.
The system in matrix form is $A X=B$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1 \\
3 & 5
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad B=\left[\begin{array}{c}
4 \\
5 \\
12
\end{array}\right]
$$

The normal equations are given by the matrix equation

$$
A^{t} A X=A^{t} B
$$

Now

$$
\begin{aligned}
& A^{t} A=\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 1 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1 \\
3 & 5
\end{array}\right]=\left[\begin{array}{ll}
11 & 18 \\
18 & 30
\end{array}\right] \\
& A^{t} B=\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 1 & 5
\end{array}\right]\left[\begin{array}{c}
4 \\
5 \\
12
\end{array}\right]=\left[\begin{array}{l}
45 \\
73
\end{array}\right] .
\end{aligned}
$$

Hence the normal equations are

$$
\begin{aligned}
& 11 x+18 y=45 \\
& 18 x+30 y=73
\end{aligned}
$$

These may be solved, for example, by Cramer's rule:

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{ll}
45 & 18 \\
73 & 30
\end{array}\right|}{\left|\begin{array}{ll}
11 & 18 \\
18 & 30
\end{array}\right|}=\frac{36}{6}=6 \\
& y=\frac{\left|\begin{array}{ll}
11 & 45 \\
18 & 73
\end{array}\right|}{\left|\begin{array}{ll}
11 & 18 \\
18 & 30
\end{array}\right|}=\frac{-7}{6} .
\end{aligned}
$$

23. Substituting the coordinates of the five points into the parabola equation gives the following equations:

$$
\begin{aligned}
a & =0 \\
a+b+c & =0 \\
a+2 b+4 c & =-1 \\
a+3 b+9 c & =4 \\
a+4 b+16 c & =8 .
\end{aligned}
$$

The associated normal equations are given by

$$
\left[\begin{array}{ccc}
5 & 10 & 30 \\
10 & 30 & 100 \\
30 & 100 & 354
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
11 \\
42 \\
160
\end{array}\right]
$$

which have the solution $a=1 / 5, b=-2, c=1$.
24. Suppose that A is symmetric, i.e. $A^{t}=A$ and that $A B$ is defined. Then

$$
\left(B^{t} A B\right)^{t}=B^{t} A^{t}\left(B^{t}\right)^{t}=B^{t} A B
$$

so $B^{t} A B$ is also symmetric.
25. Let A be $m \times n$ and B be $n \times m$, where $m>n$. Then the homogeneous system $B X=0$ has a non-trivial solution X_{0}, as the number of unknowns is greater than the number of equations. Then

$$
(A B) X_{0}=A\left(B X_{0}\right)=A 0=0
$$

and the $m \times m$ matrix $A B$ is therefore singular, as $X_{0} \neq 0$.
26. (i) Let B be a singular $n \times n$ matrix. Then $B X=0$ for some non-zero column vector X. Then $(A B) X=A(B X)=A 0=0$ and hence $A B$ is also singular.
(ii) Suppose A is a singular $n \times n$ matrix. Then A^{t} is also singular and hence by (i) so is $B^{t} A^{t}=(A B)^{t}$. Consequently $A B$ is also singular

Section 3.6

1. (a) Let S be the set of vectors $[x, y]$ satisfying $x=2 y$. Then S is a vector subspace of \mathbb{R}^{2}. For
(i) $[0,0] \in S$ as $x=2 y$ holds with $x=0$ and $y=0$.
(ii) S is closed under addition. For let $\left[x_{1}, y_{1}\right]$ and $\left[x_{2}, y_{2}\right]$ belong to S. Then $x_{1}=2 y_{1}$ and $x_{2}=2 y_{2}$. Hence

$$
x_{1}+x_{2}=2 y_{1}+2 y_{2}=2\left(y_{1}+y_{2}\right)
$$

and hence

$$
\left[x_{1}+x_{2}, y_{1}+y_{2}\right]=\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]
$$

belongs to S.
(iii) S is closed under scalar multiplication. For let $[x, y] \in S$ and $t \in \mathbb{R}$. Then $x=2 y$ and hence $t x=2(t y)$. Consequently

$$
[t x, t y]=t[x, y] \in S
$$

(b) Let S be the set of vectors $[x, y]$ satisfying $x=2 y$ and $2 x=y$. Then S is a subspace of \mathbb{R}^{2}. This can be proved in the same way as (a), or alternatively we see that $x=2 y$ and $2 x=y$ imply $x=4 x$ and hence $x=0=y$. Hence $S=\{[0,0]\}$, the set consisting of the zero vector. This is always a subspace.
(c) Let S be the set of vectors $[x, y]$ satisfying $x=2 y+1$. Then S doesn't contain the zero vector and consequently fails to be a vector subspace.
(d) Let S be the set of vectors $[x, y]$ satisfying $x y=0$. Then S is not closed under addition of vectors. For example $[1,0] \in S$ and $[0,1] \in S$, but $[1,0]+[0,1]=[1,1] \notin S$.
(e) Let S be the set of vectors $[x, y]$ satisfying $x \geq 0$ and $y \geq 0$. Then S is not closed under scalar multiplication. For example $[1,0] \in S$ and $-1 \in \mathbb{R}$, but $(-1)[1,0]=[-1,0] \notin S$.
2. Let X, Y, Z be vectors in \mathbb{R}^{n}. Then by Lemma 3.2.1

$$
\langle X+Y, X+Z, Y+Z\rangle \subseteq\langle X, Y, Z\rangle
$$

as each of $X+Y, X+Z, Y+Z$ is a linear combination of X, Y, Z.

Also

$$
\begin{aligned}
X & =\frac{1}{2}(X+Y)+\frac{1}{2}(X+Z)-\frac{1}{2}(Y+Z) \\
Y & =\frac{1}{2}(X+Y)-\frac{1}{2}(X+Z)+\frac{1}{2}(Y+Z) \\
Z & =\frac{-1}{2}(X+Y)+\frac{1}{2}(X+Z)+\frac{1}{2}(Y+Z)
\end{aligned}
$$

So

$$
\langle X, Y, Z\rangle \subseteq\langle X+Y, X+Z, Y+Z\rangle
$$

Hence

$$
\langle X, Y, Z\rangle=\langle X+Y, X+Z, Y+Z\rangle
$$

3. Let $X_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right], X_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right]$ and $X_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]$. We have to decide if
X_{1}, X_{2}, X_{3} are linearly independent, that is if the equation $x X_{1}+y X_{2}+$ $z X_{3}=0$ has only the trivial solution. This equation is equivalent to the folowing homogeneous system

$$
\begin{aligned}
x+0 y+z & =0 \\
0 x+y+z & =0 \\
x+y+z & =0 \\
2 x+2 y+3 z & =0
\end{aligned}
$$

We reduce the coefficient matrix to reduced row-echelon form:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
2 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and consequently the system has only the trivial solution $x=0, y=0, z=$ 0 . Hence the given vectors are linearly independent.
4. The vectors

$$
X_{1}=\left[\begin{array}{r}
\lambda \\
-1 \\
-1
\end{array}\right], \quad X_{2}=\left[\begin{array}{r}
-1 \\
\lambda \\
-1
\end{array}\right], \quad X_{3}=\left[\begin{array}{r}
-1 \\
-1 \\
\lambda
\end{array}\right]
$$

are linearly dependent for precisely those values of λ for which the equation $x X_{1}+y X_{2}+z X_{3}=0$ has a non-trivial solution. This equation is equivalent to the system of homogeneous equations

$$
\begin{aligned}
\lambda x-y-z & =0 \\
-x+\lambda y-z & =0 \\
-x-y+\lambda z & =0
\end{aligned}
$$

Now the coefficient determinant of this system is

$$
\left|\begin{array}{rrr}
\lambda & -1 & -1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end{array}\right|=(\lambda+1)^{2}(\lambda-2) .
$$

So the values of λ which make X_{1}, X_{2}, X_{3} linearly independent are those λ satisfying $\lambda \neq-1$ and $\lambda \neq 2$.
5. Let A be the following matrix of rationals:

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & 0 & 1 \\
2 & 2 & 5 & 0 & 3 \\
0 & 0 & 0 & 1 & 3 \\
8 & 11 & 19 & 0 & 11
\end{array}\right]
$$

Then A has reduced row-echelon form

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right] .
$$

From B we read off the following:
(a) The rows of B form a basis for $R(A)$. (Consequently the rows of A also form a basis for $R(A)$.)
(b) The first four columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$. From B we see that the solution is

$$
\begin{aligned}
& x_{1}=x_{5} \\
& x_{2}=0 \\
& x_{3}=-x_{5} \\
& x_{4}=-3 x_{5},
\end{aligned}
$$

with x_{5} arbitrary. Then

$$
X=\left[\begin{array}{r}
x_{5} \\
0 \\
-x_{5} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{5}\left[\begin{array}{r}
1 \\
0 \\
-1 \\
-3 \\
1
\end{array}\right],
$$

so $[1,0,-1,-3,1]^{t}$ is a basis for $N(A)$.
6. In Section 1.6, problem 12, we found that the matrix

$$
A=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

has reduced row-echelon form

$$
B=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From B we read off the following:
(a) The three non-zero rows of B form a basis for $R(A)$.
(b) The first three columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$. From B we see that the solution is

$$
\begin{aligned}
x_{1} & =-x_{4}-x_{5}=x_{4}+x_{5} \\
x_{2} & =-x_{4}-x_{5}=x_{4}+x_{5} \\
x_{3} & =-x_{4}=x_{4}
\end{aligned}
$$

with x_{4} and x_{5} arbitrary elements of \mathbb{Z}_{2}. Hence

$$
X=\left[\begin{array}{c}
x_{4}+x_{5} \\
x_{4}+x_{5} \\
x_{4} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{4}\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence $[1,1,1,1,0]^{t}$ and $[1,1,0,0,1]^{t}$ form a basis for $N(A)$.
7. Let A be the following matrix over \mathbb{Z}_{5} :

$$
A=\left[\begin{array}{llllll}
1 & 1 & 2 & 0 & 1 & 3 \\
2 & 1 & 4 & 0 & 3 & 2 \\
0 & 0 & 0 & 1 & 3 & 0 \\
3 & 0 & 2 & 4 & 3 & 2
\end{array}\right]
$$

We find that A has reduced row-echelon form B :

$$
B=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 2 & 4 \\
0 & 1 & 0 & 0 & 4 & 4 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 0
\end{array}\right]
$$

From B we read off the following:
(a) The four rows of B form a basis for $R(A)$. (Consequently the rows of A also form a basis for $R(A)$.
(b) The first four columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$.

From B we see that the solution is

$$
\begin{aligned}
& x_{1}=-2 x_{5}-4 x_{6}=3 x_{5}+x_{6} \\
& x_{2}=-4 x_{5}-4 x_{6}=x_{5}+x_{6} \\
& x_{3}=0 \\
& x_{4}=-3 x_{5}=2 x_{5}
\end{aligned}
$$

where x_{5} and x_{6} are arbitrary elements of \mathbb{Z}_{5}. Hence

$$
X=x_{5}\left[\begin{array}{l}
3 \\
1 \\
0 \\
2 \\
1 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

so $[3,1,0,2,1,0]^{t}$ and $[1,1,0,0,0,1]^{t}$ form a basis for $N(A)$.
8. Let $F=\{0,1, a, b\}$ be a field and let A be the following matrix over F :

$$
A=\left[\begin{array}{llll}
1 & a & b & a \\
a & b & b & 1 \\
1 & 1 & 1 & a
\end{array}\right]
$$

In Section 1.6, problem 17, we found that A had reduced row-echelon form

$$
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 1
\end{array}\right]
$$

From B we read off the following:
(a) The rows of B form a basis for $R(A)$. (Consequently the rows of A also form a basis for $R(A)$.
(b) The first three columns of A form a basis for $C(A)$.
(c) To find a basis for $N(A)$, we solve $A X=0$ and equivalently $B X=0$. From B we see that the solution is

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=-b x_{4}=b x_{4} \\
& x_{3}=-x_{4}=x_{4}
\end{aligned}
$$

where x_{4} is an arbitrary element of F. Hence

$$
X=x_{4}\left[\begin{array}{l}
0 \\
b \\
1 \\
1
\end{array}\right]
$$

so $[0, b, 1,1]^{t}$ is a basis for $N(A)$.
9. Suppose that X_{1}, \ldots, X_{m} form a basis for a subspace S. We have to prove that

$$
X_{1}, X_{1}+X_{2}, \ldots, X_{1}+\cdots+X_{m}
$$

also form a basis for S.
First we prove the independence of the family: Suppose

$$
x_{1} X_{1}+x_{2}\left(X_{1}+X_{2}\right)+\cdots+x_{m}\left(X_{1}+\cdots+X_{m}\right)=0
$$

Then

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right) X_{1}+\cdots+x_{m} X_{m}=0
$$

Then the linear independence of X_{1}, \ldots, X_{m} gives

$$
x_{1}+x_{2}+\cdots+x_{m}=0, \ldots, x_{m}=0
$$

form which we deduce that $x_{1}=0, \ldots, x_{m}=0$.
Secondly we have to prove that every vector of S is expressible as a linear combination of $X_{1}, X_{1}+X_{2}, \ldots, X_{1}+\cdots+X_{m}$. Suppose $X \in S$. Then

$$
X=a_{1} X_{1}+\cdots+a_{m} X_{m}
$$

We have to find x_{1}, \ldots, x_{m} such that

$$
\begin{aligned}
X & =x_{1} X_{1}+x_{2}\left(X_{1}+X_{2}\right)+\cdots+x_{m}\left(X_{1}+\cdots+X_{m}\right) \\
& =\left(x_{1}+x_{2}+\cdots+x_{m}\right) X_{1}+\cdots+x_{m} X_{m}
\end{aligned}
$$

Then

$$
a_{1} X_{1}+\cdots+a_{m} X_{m}=\left(x_{1}+x_{2}+\cdots+x_{m}\right) X_{1}+\cdots+x_{m} X_{m}
$$

So if we can solve the system

$$
x_{1}+x_{2}+\cdots+x_{m}=a_{1}, \ldots, x_{m}=a_{m}
$$

we are finished. Clearly these equations have the unique solution

$$
x_{1}=a_{1}-a_{2}, \ldots, x_{m-1}=a_{m}-a_{m-1}, x_{m}=a_{m}
$$

10. Let $A=\left[\begin{array}{ccc}a & b & c \\ 1 & 1 & 1\end{array}\right]$. If $[a, b, c]$ is a multiple of $[1,1,1]$, (that is, $a=b=c$), then $\operatorname{rank} A=1$. For if

$$
[a, b, c]=t[1,1,1]
$$

then

$$
R(A)=\langle[a, b, c],[1,1,1]\rangle=\langle t[1,1,1],[1,1,1]\rangle=\langle[1,1,1]\rangle
$$

so $[1,1,1]$ is a basis for $R(A)$.
However if $[a, b, c]$ is not a multiple of $[1,1,1]$, (that is at least two of a, b, c are distinct), then the left-to-right test shows that $[a, b, c]$ and $[1,1,1]$ are linearly independent and hence form a basis for $R(A)$. Consequently $\operatorname{rank} A=2$ in this case.
11. Let S be a subspace of F^{n} with $\operatorname{dim} S=m$. Also suppose that X_{1}, \ldots, X_{m} are vectors in S such that $S=\left\langle X_{1}, \ldots, X_{m}\right\rangle$. We have to prove that X_{1}, \ldots, X_{m} form a basis for S; in other words, we must prove that X_{1}, \ldots, X_{m} are linearly independent.

However if X_{1}, \ldots, X_{m} were linearly dependent, then one of these vectors would be a linear combination of the remaining vectors. Consequently S would be spanned by $m-1$ vectors. But there exist a family of m linearly independent vectors in S. Then by Theorem 3.3.2, we would have the contradiction $m \leq m-1$.
12. Let $[x, y, z]^{t} \in S$. Then $x+2 y+3 z=0$. Hence $x=-2 y-3 z$ and

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 y-3 z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right] .
$$

Hence $[-2,1,0]^{t}$ and $[-3,0,1]^{t}$ form a basis for S.
Next $(-1)+2(-1)+3(1)=0$, so $[-1,-1,1]^{t} \in S$.
To find a basis for S which includes $[-1,-1,1]^{t}$, we note that $[-2,1,0]^{t}$ is not a multiple of $[-1,-1,1]^{t}$. Hence we have found a linearly independent family of two vectors in S, a subspace of dimension equal to 2 . Consequently these two vectors form a basis for S.
13. Without loss of generality, suppose that $X_{1}=X_{2}$. Then we have the non-trivial dependency relation:

$$
1 X_{1}+(-1) X_{2}+0 X_{3}+\cdots+0 X_{m}=0
$$

14. (a) Suppose that X_{m+1} is a linear combination of X_{1}, \ldots, X_{m}. Then

$$
\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\left\langle X_{1}, \ldots, X_{m}\right\rangle
$$

and hence

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle
$$

(b) Suppose that X_{m+1} is not a linear combination of X_{1}, \ldots, X_{m}. If not all of X_{1}, \ldots, X_{m} are zero, there will be a subfamily $X_{c_{1}}, \ldots, X_{c_{r}}$ which is a basis for $\left\langle X_{1}, \ldots, X_{m}\right\rangle$.

Then as X_{m+1} is not a linear combination of $X_{c_{1}}, \ldots, X_{c_{r}}$, it follows that $X_{c_{1}}, \ldots, X_{c_{r}}, X_{m+1}$ are linearly independent. Also

$$
\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\left\langle X_{c_{1}}, \ldots, X_{c_{r}}, X_{m+1}\right\rangle
$$

Consequently

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=r+1=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle+1
$$

Our result can be rephrased in a form suitable for the second part of the problem:

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}, X_{m+1}\right\rangle=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle
$$

if and only if X_{m+1} is a linear combination of X_{1}, \ldots, X_{m}.
If $X=\left[x_{1}, \ldots, x_{n}\right]^{t}$, then $A X=B$ is equivalent to

$$
B=x_{1} A_{* 1}+\cdots+x_{n} A_{* n}
$$

So $A X=B$ is soluble for X if and only if B is a linear combination of the columns of A, that is $B \in C(A)$. However by the first part of this question, $B \in C(A)$ if and only if $\operatorname{dim} C([A \mid B])=\operatorname{dim} C(A)$, that is, $\operatorname{rank}[A \mid B]=$ rank A.
15. Let a_{1}, \ldots, a_{n} be elements of F, not all zero. Let S denote the set of vectors $\left[x_{1}, \ldots, x_{n}\right]^{t}$, where x_{1}, \ldots, x_{n} satisfy

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

Then $S=N(A)$, where A is the row matrix $\left[a_{1}, \ldots, a_{n}\right]$. Now $\operatorname{rank} A=1$ as $A \neq 0$. So by the "rank + nullity" theorem, noting that the number of columns of A equals n, we have

$$
\operatorname{dim} N(A)=\operatorname{nullity}(A)=n-\operatorname{rank} A=n-1
$$

16. (a) (Proof of Lemma 3.2.1) Suppose that each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s}. Then

$$
X_{i}=\sum_{j=1}^{s} a_{i j} Y_{j}, \quad(1 \leq i \leq r)
$$

Now let $X=\sum_{i=1}^{r} x_{i} X_{i}$ be a linear combination of X_{1}, \ldots, X_{r}. Then

$$
\begin{aligned}
X & =x_{1}\left(a_{11} Y_{1}+\cdots+a_{1 s} Y_{s}\right) \\
& +\cdots \\
& +x_{r}\left(a_{r 1} Y_{1}+\cdots+a_{r s} Y_{s}\right) \\
& =y_{1} Y_{1}+\cdots+y_{s} Y_{s}
\end{aligned}
$$

where $y_{j}=a_{1 j} x_{1}+\cdots+a_{r j} x_{r}$. Hence X is a linear combination of Y_{1}, \ldots, Y_{s}.
Another way of stating Lemma 3.2.1 is

$$
\begin{equation*}
\left\langle X_{1}, \ldots, X_{r}\right\rangle \subseteq\left\langle Y_{1}, \ldots, Y_{s}\right\rangle \tag{1}
\end{equation*}
$$

if each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s}.
(b) (Proof of Theorem 3.2.1) Suppose that each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s} and that each of Y_{1}, \ldots, Y_{s} is a linear combination of X_{1}, \ldots, X_{r}. Then by (a) equation (1) above

$$
\left\langle X_{1}, \ldots, X_{r}\right\rangle \subseteq\left\langle Y_{1}, \ldots, Y_{s}\right\rangle
$$

and

$$
\left\langle Y_{1}, \ldots, Y_{s}\right\rangle \subseteq\left\langle X_{1}, \ldots, X_{r}\right\rangle
$$

Hence

$$
\left\langle X_{1}, \ldots, X_{r}\right\rangle=\left\langle Y_{1}, \ldots, Y_{s}\right\rangle .
$$

(c) (Proof of Corollary 3.2.1) Suppose that each of Z_{1}, \ldots, Z_{t} is a linear combination of X_{1}, \ldots, X_{r}. Then each of $X_{1}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}$ is a linear combination of X_{1}, \ldots, X_{r}.

Also each of X_{1}, \ldots, X_{r} is a linear combination of $X_{1}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}$, so by Theorem 3.2.1

$$
\left\langle X_{1}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}\right\rangle=\left\langle X_{1}, \ldots, X_{r}\right\rangle .
$$

(d) (Proof of Theorem 3.3.2) Let Y_{1}, \ldots, Y_{s} be vectors in $\left\langle X_{1}, \ldots, X_{r}\right\rangle$ and assume that $s>r$. We have to prove that Y_{1}, \ldots, Y_{s} are linearly dependent. So we consider the equation

$$
x_{1} Y_{1}+\cdots+x_{s} Y_{s}=0 .
$$

Now $Y_{i}=\sum_{j=1}^{r} a_{i j} X_{j}$, for $1 \leq i \leq s$. Hence

$$
\begin{align*}
x_{1} Y_{1}+\cdots+x_{s} Y_{s} & =x_{1}\left(a_{11} X_{1}+\cdots+a_{1 r} X_{r}\right) \\
& +\cdots \\
& +x_{r}\left(a_{s 1} X_{1}+\cdots+a_{s r} X_{r}\right) . \\
& =y_{1} X_{1}+\cdots+y_{r} X_{r}, \quad(1) \tag{1}
\end{align*}
$$

where $y_{j}=a_{1 j} x_{1}+\cdots+a_{s j} x_{s}$. However the homogeneous system

$$
y_{1}=0, \cdots, y_{r}=0
$$

has a non-trivial solution x_{1}, \ldots, x_{s}, as $s>r$ and from (1), this results in a non-trivial solution of the equation

$$
x_{1} Y_{1}+\cdots+x_{s} Y_{s}=0 .
$$

Hence Y_{1}, \ldots, Y_{s} are linearly dependent.
17. Let R and S be subspaces of F^{n}, with $R \subseteq S$. We first prove

$$
\operatorname{dim} R \leq \operatorname{dim} S
$$

Let X_{1}, \ldots, X_{r} be a basis for R. Now by Theorem 3.5.2, because X_{1}, \ldots, X_{r} form a linearly independent family lying in S, this family can be extended to a basis $X_{1}, \ldots, X_{r}, \ldots, X_{s}$ for S. Then

$$
\operatorname{dim} S=s \geq r=\operatorname{dim} R
$$

Next suppose that $\operatorname{dim} R=\operatorname{dim} S$. Let X_{1}, \ldots, X_{r} be a basis for R. Then because X_{1}, \ldots, X_{r} form a linearly independent family in S and S is a subspace whose dimension is r, it follows from Theorem 3.4.3 that X_{1}, \ldots, X_{r} form a basis for S. Then

$$
S=\left\langle X_{1}, \ldots, X_{r}\right\rangle=R
$$

18. Suppose that R and S are subspaces of F^{n} with the property that $R \cup S$ is also a subspace of F^{n}. We have to prove that $R \subseteq S$ or $S \subseteq R$. We argue by contradiction: Suppose that $R \nsubseteq S$ and $S \nsubseteq R$. Then there exist vectors u and v such that

$$
u \in R \text { and } u \notin S, \quad v \in S \text { and } v \notin R
$$

Consider the vector $u+v$. As we are assuming $R \cup S$ is a subspace, $R \cup S$ is closed under addition. Hence $u+v \in R \cup S$ and so $u+v \in R$ or $u+v \in S$. However if $u+v \in R$, then $v=(u+v)-u \in R$, which is a contradiction; similarly if $u+v \in S$.

Hence we have derived a contradiction on the asumption that $R \nsubseteq S$ and $S \nsubseteq R$. Consequently at least one of these must be false. In other words $R \subseteq S$ or $S \subseteq R$.
19. Let X_{1}, \ldots, X_{r} be a basis for S.
(i) First let

$$
\begin{align*}
Y_{1} & =a_{11} X_{1}+\cdots+a_{1 r} X_{r} \\
& \vdots \tag{2}\\
Y_{r} & =a_{r 1} X_{1}+\cdots+a_{r r} X_{r}
\end{align*}
$$

where $A=\left[a_{i j}\right]$ is non-singular. Then the above system of equations can be solved for X_{1}, \ldots, X_{r} in terms of Y_{1}, \ldots, Y_{r}. Consequently by Theorem 3.2.1

$$
\left\langle Y_{1}, \ldots, Y_{r}\right\rangle=\left\langle X_{1}, \ldots, X_{r}\right\rangle=S
$$

It follows from problem 11 that Y_{1}, \ldots, Y_{r} is a basis for S.
(ii) We show that all bases for S are given by equations 2. So suppose that Y_{1}, \ldots, Y_{r} forms a basis for S. Then because X_{1}, \ldots, X_{r} form a basis for S, we can express Y_{1}, \ldots, Y_{r} in terms of X_{1}, \ldots, X_{r} as in 2 , for some matrix $A=\left[a_{i j}\right]$. We show A is non-singular by demonstrating that the linear independence of Y_{1}, \ldots, Y_{r} implies that the rows of A are linearly independent.

So assume

$$
x_{1}\left[a_{11}, \ldots, a_{1 r}\right]+\cdots+x_{r}\left[a_{r 1}, \ldots, a_{r r}\right]=[0, \ldots, 0] .
$$

Then on equating components, we have

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{r 1} x_{r} & =0 \\
& \vdots \\
a_{1 r} x_{1}+\cdots+a_{r r} x_{r} & =0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
x_{1} Y_{1}+\cdots+x_{r} Y_{r} & =x_{1}\left(a_{11} X_{1}+\cdots+a_{1 r} X_{r}\right)+\cdots+x_{r}\left(a_{r 1} X_{1}+\cdots+a_{r r} X_{r}\right) \\
& =\left(a_{11} x_{1}+\cdots+a_{r 1} x_{r}\right) X_{1}+\cdots+\left(a_{1 r} x_{1}+\cdots+a_{r r} x_{r}\right) X_{r} \\
& =0 X_{1}+\cdots+0 X_{r}=0 .
\end{aligned}
$$

Then the linear independence of Y_{1}, \ldots, Y_{r} implies $x_{1}=0, \ldots, x_{r}=0$.
(We mention that the last argument is reversible and provides an alternative proof of part (i).)

Section 4.1

1. We first prove that the area of a triangle $P_{1} P_{2} P_{3}$, where the points are in anti-clockwise orientation, is given by the formula

$$
\frac{1}{2}\left\{\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|+\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|+\left|\begin{array}{ll}
x_{3} & x_{1} \\
y_{3} & y_{1}
\end{array}\right|\right\}
$$

Referring to the above diagram, we have

$$
\begin{aligned}
\text { Area } P_{1} P_{2} P_{3} & =\text { Area } O P_{1} P_{2}+\text { Area } O P_{2} P_{3}-\operatorname{Area} O P_{1} P_{3} \\
& =\frac{1}{2}\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|+\frac{1}{2}\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|-\frac{1}{2}\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|,
\end{aligned}
$$

which gives the desired formula.
We now turn to the area of a quadrilateral. One possible configuration occurs when the quadrilateral is convex as in figure (a) below. The interior diagonal breaks the quadrilateral into two triangles $P_{1} P_{2} P_{3}$ and $P_{1} P_{3} P_{4}$. Then

$$
\text { Area } P_{1} P_{2} P_{3} P_{4}=\text { Area } P_{1} P_{2} P_{3}+\text { Area } P_{1} P_{3} P_{4}
$$

$$
=\frac{1}{2}\left\{\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|+\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|+\left|\begin{array}{ll}
x_{3} & x_{1} \\
y_{3} & y_{1}
\end{array}\right|\right\}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left\{\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|+\left|\begin{array}{ll}
x_{3} & x_{4} \\
y_{3} & y_{4}
\end{array}\right|+\left|\begin{array}{ll}
x_{4} & x_{1} \\
y_{4} & y_{1}
\end{array}\right|\right\} \\
= & \frac{1}{2}\left\{\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|+\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|+\left|\begin{array}{cc}
x_{3} & x_{4} \\
y_{3} & y_{4}
\end{array}\right|+\left|\begin{array}{ll}
x_{4} & x_{1} \\
y_{4} & y_{1}
\end{array}\right|\right\}
\end{aligned}
$$

after cancellation.
Another possible configuration for the quadrilateral occurs when it is not convex, as in figure (b). The interior diagonal $P_{2} P_{4}$ then gives two triangles $P_{1} P_{2} P_{4}$ and $P_{2} P_{3} P_{4}$ and we can proceed similarly as before.
2.

$$
\Delta=\left|\begin{array}{ccc}
a+x & b+y & c+z \\
x+u & y+v & z+w \\
u+a & v+b & w+c
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
x+u & y+v & z+w \\
u+a & v+b & w+c
\end{array}\right|+\left|\begin{array}{ccc}
x & y & z \\
x+u & y+v & z+w \\
u+a & v+b & w+c
\end{array}\right|
$$

Now

$$
\begin{array}{rl}
a & b \\
x+u & y+v \\
u+a & z+w \\
v+b & w+c
\end{array}\left|=\left|\begin{array}{ccc}
a & b & c \\
x & y & z \\
u+a & v+b & w+c
\end{array}\right|+\left|\begin{array}{cc}
a & b \\
u & v \\
u+a & v+b \\
w+c
\end{array}\right|\right.
$$

Similarly

$$
\left|\begin{array}{ccc}
x & y & z \\
x+u & y+v & z+w \\
u+a & v+b & w+c
\end{array}\right|=\left|\begin{array}{ccc}
x & y & z \\
u & v & w \\
a & b & c
\end{array}\right|=-\left|\begin{array}{ccc}
x & y & z \\
a & b & c \\
u & v & w
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
x & y & z \\
u & v & w
\end{array}\right|
$$

Hence $\Delta=2\left|\begin{array}{ccc}a & b & c \\ x & y & z \\ u & v & w\end{array}\right|$.
3. $\left|\begin{array}{ccc|c|ccc|}n^{2} & (n+1)^{2} & (n+2)^{2} & C_{3} \rightarrow C_{3}-C_{2} & n^{2} & 2 n+1 & 2 n+3 \\ (n+1)^{2} & (n+2)^{2} & (n+3)^{2} & C_{2} \rightarrow C_{2}-C_{1} & (n+1)^{2} & 2 n+3 & 2 n+5 \\ (n+2)^{2} & (n+3)^{2} & (n+4)^{2} & = & = & (n+2)^{2} & 2 n+5 \\ 2 n+7\end{array}\right|$

$$
\begin{array}{r}
\quad C_{3} \rightarrow C_{3}-C_{2} \\
= \\
\quad\left|\begin{array}{cccc}
n^{2} & 2 n+1 & 2 \\
(n+1)^{2} & 2 n+3 & 2 \\
(n+2)^{2} & 2 n+5 & 2
\end{array}\right| \\
R_{3} \rightarrow R_{3}-R_{2} \\
R_{2} \rightarrow R_{2}-R_{1} \\
=
\end{array}\left|\begin{array}{ccc|}
n^{2} & 2 n+1 & 2 \\
2 n+1 & 2 & 0 \\
2 n+3 & 2 & 0
\end{array}\right|=-8 .
$$

4. (a)

$$
\begin{aligned}
& \left|\begin{array}{rrr}
246 & 427 & 327 \\
1014 & 543 & 443 \\
-342 & 721 & 621
\end{array}\right|=\left|\begin{array}{rrr}
246 & 100 & 327 \\
1014 & 100 & 443 \\
-342 & 100 & 621
\end{array}\right|=100\left|\begin{array}{rrr}
246 & 1 & 327 \\
1014 & 1 & 443 \\
-342 & 1 & 621
\end{array}\right| \\
& =100\left|\begin{array}{rrr}
246 & 1 & 327 \\
768 & 0 & 116 \\
-588 & 0 & 294
\end{array}\right|=100(-1)\left|\begin{array}{rr}
768 & 116 \\
-588 & 294
\end{array}\right|=-29400000 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
-2 & 1 & -4 & 3 \\
3 & -4 & -1 & 2 \\
4 & 3 & -2 & -1
\end{array}\right|=\left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 5 & 2 & 11 \\
0 & -10 & -10 & -10 \\
0 & -5 & -14 & -17
\end{array}\right| \\
& =\left|\begin{array}{rrr}
5 & 2 & 11 \\
-10 & -10 & -10 \\
-5 & -14 & -17
\end{array}\right|=-10\left|\begin{array}{rrr}
5 & 2 & 11 \\
1 & 1 & 1 \\
-5 & -14 & -17
\end{array}\right| \\
& =-10\left|\begin{array}{rrr}
5 & -3 & 6 \\
1 & 0 & 0 \\
-5 & -9 & -12
\end{array}\right|=-10(-1)\left|\begin{array}{rr}
-3 & 6 \\
-9 & -12
\end{array}\right|=900 .
\end{aligned}
$$

5. $\operatorname{det} A=\left|\begin{array}{rrr}1 & 0 & -2 \\ 3 & 1 & 4 \\ 5 & 2 & -3\end{array}\right|=\left|\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 10 \\ 5 & 2 & 7\end{array}\right|=\left|\begin{array}{rr}1 & 10 \\ 2 & 7\end{array}\right|=-13$.

Hence A is non-singular and

$$
A^{-1}=\frac{1}{-13} \operatorname{adj} A=\frac{1}{-13}\left[\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right]=\frac{1}{-13}\left[\begin{array}{rrr}
-11 & -4 & 2 \\
29 & 7 & -10 \\
1 & -2 & 1
\end{array}\right]
$$

6. (i)

$$
\begin{gathered}
\left.\left|\begin{array}{ccc}
2 a & 2 b & b-c \\
2 b & 2 a & a+c \\
a+b & a+b & b
\end{array}\right| \begin{array}{cc}
R_{1} \rightarrow R_{1}+R_{2} \\
= & \left\lvert\, \begin{array}{cc}
2 a+2 b & 2 b+2 a \\
2 b & b+a \\
2 a & a+c \\
a+b & a+b
\end{array}\right. \\
=(a+b)
\end{array} \right\rvert\, \\
\left.=\begin{array}{ccc}
2 & 2 & 1 \\
2 b & 2 a & a+c \\
a+b & a+b & b
\end{array}\left|\begin{array}{c}
C_{1} \rightarrow C_{1}-C_{2} \\
=
\end{array}(a+b)\right| \begin{array}{ccc}
0 & 2 & 1 \\
2(b-a) & 2 a & a+c \\
0 & a+b & b
\end{array} \right\rvert\, \\
=2(a+b)(a-b)\left|\begin{array}{cc}
2 & 1 \\
a+b & b
\end{array}\right|=-2(a+b)(a-b)^{2} .
\end{gathered}
$$

(ii)

$$
\begin{array}{rl}
& \left.\begin{array}{ccc}
b+c & b & c \\
c & c+a & a \\
b & a & a+b
\end{array}\left|\begin{array}{c}
C_{1} \rightarrow C_{1}-C_{2} \\
=
\end{array}\right| \begin{array}{ccc}
c & b & c \\
-a & c+a & a \\
b-a & a & a+b
\end{array} \right\rvert\, \\
& = \\
C_{3} \rightarrow C_{3}-C_{1}\left|\begin{array}{ccc}
c & b & 0 \\
-a & c+a & 2 a \\
b-a & a & 2 a
\end{array}\right|=2 a\left|\begin{array}{ccc}
c & b & 0 \\
-a & c+a & 1 \\
b-a & a & 1
\end{array}\right| \\
\quad= \\
R_{3} \rightarrow R_{3}-R_{2} & 2 a\left|\begin{array}{ccc}
c & b & 0 \\
-a & c+a & 1 \\
b & -c & 0
\end{array}\right|=-2 a\left|\begin{array}{cc}
c & b \\
b & -c
\end{array}\right|=2 a\left(c^{2}+b^{2}\right) .
\end{array}
$$

7. Suppose that the curve $y=a x^{2}+b x+c$ passes through the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, where $x_{i} \neq x_{j}$ if $i \neq j$. Then

$$
\begin{aligned}
a x_{1}^{2}+b x_{1}+c & =y_{1} \\
a x_{2}^{2}+b x_{2}+c & =y_{2} \\
a x_{3}^{2}+b x_{3}+c & =y_{3} .
\end{aligned}
$$

The coefficient determinant is essentially a Vandermonde determinant:

$$
\left|\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=\left|\begin{array}{ccc}
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \\
x_{1} & x_{2} & x_{3} \\
1 & 1 & 1
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2}
\end{array}\right|=-\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)
$$

Hence the coefficient determinant is non-zero and by Cramer's rule, there is a unique solution for a, b, c.
8. Let $\Delta=\operatorname{det} A=\left|\begin{array}{rrr}1 & 1 & -1 \\ 2 & 3 & k \\ 1 & k & 3\end{array}\right|$. Then

$$
\begin{array}{rl}
\Delta=\quad & C_{3} \rightarrow C_{3}+C_{1} \\
& 1 \\
2 & 0 \\
2 & 1 \\
& k+2 \\
C_{2} \rightarrow C_{2}-C_{1} & 1
\end{array} k-1 \quad 4 .\left|\begin{array}{cc}
1 & k+2 \\
k-1 & 4
\end{array}\right| .
$$

Hence $\operatorname{det} A=0$ if and only if $k=-3$ or $k=2$.
Consequently if $k \neq-3$ and $k \neq 2$, then $\operatorname{det} A \neq 0$ and the given system

$$
\begin{array}{rll}
x+y-z & =1 \\
2 x+3 y+k z & = & 3 \\
x+k y+3 z & =2
\end{array}
$$

has a unique solution. We consider the cases $k=-3$ and $k=2$ separately. $k=-3$:

$$
\begin{gathered}
\left.A M=\left[\begin{array}{rrrr}
1 & 1 & -1 & 1 \\
2 & 3 & -3 & 3 \\
1 & -3 & 3 & 2
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \begin{array}{crrr}
1 & 1 & -1 & 1 \\
0 & 1 & -1 & 1 \\
0 & -4 & 4 & 1
\end{array}\right] \\
R_{3} \rightarrow R_{3}+4 R_{2}\left[\begin{array}{rrrr}
1 & 1 & -1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 5
\end{array}\right],
\end{gathered}
$$

from which we read off inconsistency.
$k=2$:

$$
\begin{gathered}
A M=\left[\begin{array}{rrrr}
1 & 1 & -1 & 1 \\
2 & 3 & 2 & 3 \\
1 & 2 & 3 & 2
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}\left[\begin{array}{rrrr}
1 & 1 & -1 & 1 \\
0 & 1 & 4 & 1 \\
0 & 1 & 4 & 1
\end{array}\right] \\
R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{rrrr}
1 & 0 & -5 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

We read off the complete solution $x=5 z, y=1-4 z$, where z is arbitrary.

Finally we have to determine the solution for which $x^{2}+y^{2}+z^{2}$ is least.

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =(5 z)^{2}+(1-4 z)^{2}+z^{2}=42 z^{2}-8 z+1 \\
& =42\left(z^{2}-\frac{4}{21} z+\frac{1}{42}\right)=42\left\{\left(z-\frac{2}{21}\right)^{2}+\frac{1}{42}-\left(\frac{2}{21}\right)^{2}\right\} \\
& =42\left\{\left(z-\frac{2}{21}\right)^{2}+\frac{13}{882}\right\}
\end{aligned}
$$

We see that the least value of $x^{2}+y^{2}+z^{2}$ is $42 \times \frac{13}{882}=\frac{13}{21}$ and this occurs when $z=2 / 21$, with corresponding values $x=10 / 21$ and $y=1-4 \times \frac{2}{21}=13 / 21$.
9. Let $\Delta=\left[\left.\begin{array}{rrr}1 & -2 & b \\ a & 0 & 2 \\ 5 & 2 & 0\end{array} \right\rvert\,\right.$ be the coefficient determinant of the given system.

Then expanding along column 2 gives

$$
\begin{aligned}
\Delta & =2\left|\begin{array}{rr}
a & 2 \\
5 & 0
\end{array}\right|-2\left|\begin{array}{cc}
1 & b \\
a & 2
\end{array}\right|=-20-2(2-a b) \\
& =2 a b-24=2(a b-12)
\end{aligned}
$$

Hence $\Delta=0$ if and only if $a b=12$. Hence if $a b \neq 12$, the given system has a unique solution.

If $a b=12$ we must argue with care:

$$
\left.\begin{array}{rl}
A M & =\left[\begin{array}{rrrr}
1 & -2 & b & 3 \\
a & 0 & 2 & 2 \\
5 & 2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & b & 3 \\
0 & 2 a & 2-a b & 2-3 a \\
0 & 12 & -5 b & -14
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & -2 & b & 3 \\
0 & 1 & \frac{-5 b}{12} & \frac{-7}{6} \\
0 & 2 a & 2-a b & 2-3 a
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & b \\
0 & 1 & \frac{-5 b}{12} \\
0 & 0 & \frac{12-a b}{6}
\end{array} \frac{\frac{-7}{6}}{3}\right.
\end{array}\right] .
$$

Hence if $6-2 a \neq 0$, i.e. $a \neq 3$, the system has no solution.
If $a=3$ (and hence $b=4$), then

$$
B=\left[\begin{array}{cccc}
1 & -2 & 4 & 3 \\
0 & 1 & \frac{-5}{3} & \frac{-7}{6} \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 2 / 3 & 2 / 3 \\
0 & 1 & \frac{-5}{3} & \frac{-7}{6} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Consequently the complete solution of the system is $x=-\frac{2}{3}+\frac{2}{3} z, y=$ $\frac{-7}{6}+\frac{5}{3} z$, where z is arbitrary. Hence there are infinitely many solutions.
10.

$$
\begin{aligned}
& \Delta=\left|\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 4 \\
2 & 4 & 7 & 2 t+6 \\
2 & 2 & 6-t & t
\end{array}\right| \begin{array}{c}
R_{4} \rightarrow R_{4}-2 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1} \\
R_{2} \rightarrow R_{2}-R_{1} \\
=
\end{array}\left|\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & 1 & 1 & 3 \\
0 & 2 & 3 & 2 t+4 \\
0 & 0 & 2-t & t-2
\end{array}\right| \\
&=\left|\begin{array}{ccc}
1 & 1 & 3 \\
2 & 3 & 2 t+4 \\
0 & 2-t & t-2
\end{array}\right| \begin{array}{r}
R_{2} \rightarrow R_{2}-2 R_{1}\left|\begin{array}{ccc}
1 & 1 & 3 \\
0 & 1 & 2 t-2 \\
0 & 2-t & t-2
\end{array}\right| \\
\end{array} \\
&=\left|\begin{array}{cc}
1 & 2 t-2 \\
2-t & t-2
\end{array}\right|=(t-2)\left|\begin{array}{cc}
1 & 2 t-2 \\
-1 & 1
\end{array}\right|=(t-2)(2 t-1) .
\end{aligned}
$$

Hence $\Delta=0$ if and only if $t=2$ or $t=\frac{1}{2}$. Consequently the given matrix B is non-singular if and only if $t \neq 2$ and $t \neq \frac{1}{2}$.
11. Let A be a 3×3 matrix with $\operatorname{det} A \neq 0$. Then
(i)

$$
\begin{aligned}
A \operatorname{adj} A & =(\operatorname{det} A) I_{3} \\
(\operatorname{det} A) \operatorname{det}(\operatorname{adj} A) & =\operatorname{det}\left(\operatorname{det} A \cdot I_{3}\right)=(\operatorname{det} A)^{3} .
\end{aligned}
$$

Hence, as $\operatorname{det} A \neq 0$, dividing out by $\operatorname{det} A$ in the last equation gives

$$
\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{2}
$$

(ii) . Also from equation (1)

$$
\left(\frac{1}{\operatorname{det} A} A\right) \text { adj } A=I_{3}
$$

so $\operatorname{adj} A$ is non-singular and

$$
(\operatorname{adj} A)^{-1}=\frac{1}{\operatorname{det} A} A
$$

Finally

$$
A^{-1} \operatorname{adj}\left(A^{-1}\right)=\left(\operatorname{det} A^{-1}\right) I_{3}
$$

and multiplying both sides of the last equation by A gives

$$
\operatorname{adj}\left(A^{-1}\right)=A\left(\operatorname{det} A^{-1}\right) I_{3}=\frac{1}{\operatorname{det} A} A
$$

12. Let A be a real 3×3 matrix satisfying $A^{t} A=I_{3}$. Then
(i) $A^{t}\left(A-I_{3}\right)=A^{t} A-A^{t}=I_{3}-A^{t}$
$=-\left(A^{t}-I_{3}\right)=-\left(A^{t}-I_{3}^{t}\right)=-\left(A-I_{3}\right)^{t}$.
Taking determinants of both sides then gives

$$
\begin{align*}
\operatorname{det} A^{t} \operatorname{det}\left(A-I_{3}\right) & =\operatorname{det}\left(-\left(A-I_{3}\right)^{t}\right) \\
\operatorname{det} A \operatorname{det}\left(A-I_{3}\right) & =(-1)^{3} \operatorname{det}\left(A-I_{3}\right)^{t} \\
& =-\operatorname{det}\left(A-I_{3}\right) \tag{1}
\end{align*}
$$

(ii) Also $\operatorname{det} A A^{t}=\operatorname{det} I_{3}$, so

$$
\operatorname{det} A^{t} \operatorname{det} A=1=(\operatorname{det} A)^{2} .
$$

Hence $\operatorname{det} A= \pm 1$.
(iii) Suppose that $\operatorname{det} A=1$. Then equation (1) gives

$$
\operatorname{det}\left(A-I_{3}\right)=-\operatorname{det}\left(A-I_{3}\right)
$$

so $(1+1) \operatorname{det}\left(A-I_{3}\right)=0$ and hence $\operatorname{det}\left(A-I_{3}\right)=0$.
13. Suppose that column 1 is a linear combination of the remaining columns:

$$
A_{* 1}=x_{2} A_{* 2}+\cdots+x_{n} A_{* n}
$$

Then

$$
\operatorname{det} A=\left|\begin{array}{cccc}
x_{2} a_{12}+\cdots+x_{n} a_{1 n} & a_{12} & \cdots & a_{1 n} \\
x_{2} a_{22}+\cdots+x_{n} a_{2 n} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{2} a_{n 2}+\cdots+x_{n} a_{n n} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| .
$$

Now $\operatorname{det} A$ is unchanged in value if we perform the operation

$$
\begin{aligned}
& C_{1} \rightarrow C_{1}-x_{2} C_{2}-\cdots-x_{n} C_{n}: \\
& \operatorname{det} A=\left|\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=0 .
\end{aligned}
$$

Conversely, suppose that $\operatorname{det} A=0$. Then the homogeneous system $A X=0$ has a non-trivial solution $X=\left[x_{1}, \ldots, x_{n}\right]^{t}$. So

$$
x_{1} A_{* 1}+\cdots+x_{n} A_{* n}=0
$$

Suppose for example that $x_{1} \neq 0$. Then

$$
A_{* 1}=\left(-\frac{x_{2}}{x_{1}}\right)+\cdots+\left(-\frac{x_{n}}{x_{1}}\right) A_{* n}
$$

and the first column of A is a linear combination of the remaining columns.
14. Consider the system

$$
\begin{array}{rlr}
-2 x+3 y-z & =1 \\
x+2 y-z & =4 \\
-2 x-y+z & =-3
\end{array}
$$

Let $\Delta=\left|\begin{array}{rrr}-2 & 3 & -1 \\ 1 & 2 & -1 \\ -2 & -1 & 1\end{array}\right|=\left|\begin{array}{lll}0 & 7 & -3 \\ 1 & 2 & -1 \\ 0 & 3 & -1\end{array}\right|=-\left|\begin{array}{ll}7 & -3 \\ 3 & -1\end{array}\right|=-2 \neq 0$.
Hence the system has a unique solution which can be calculated using Cramer's rule:

$$
x=\frac{\Delta_{1}}{\Delta}, \quad y=\frac{\Delta_{2}}{\Delta}, \quad z=\frac{\Delta_{3}}{\Delta}
$$

where

$$
\begin{aligned}
& \Delta_{1}=\left|\begin{array}{rrr}
1 & 3 & -1 \\
4 & 2 & -1 \\
-3 & -1 & 1
\end{array}\right|=-4, \\
& \Delta_{2}=\left|\begin{array}{rrr}
-2 & 1 & -1 \\
1 & 4 & -1 \\
-2 & -3 & 1
\end{array}\right|=-6, \\
& \Delta_{3}=\left|\begin{array}{rrr}
-2 & 3 & 1 \\
1 & 2 & 4 \\
-2 & -1 & -3
\end{array}\right|=-8 .
\end{aligned}
$$

Hence $x=\frac{-4}{-2}=2, y=\frac{-6}{-2}=3, z=\frac{-8}{-2}=4$.
15. In Remark 4.0.4, take $A=I_{n}$. Then we deduce
(a) $\operatorname{det} E_{i j}=-1$;
(b) $\operatorname{det} E_{i}(t)=t$;
(c) $\operatorname{det} E_{i j}(t)=1$.

Now suppose that B is a non-singular $n \times n$ matrix. Then we know that B is a product of elementary row matrices:

$$
B=E_{1} \cdots E_{m}
$$

Consequently we have to prove that

$$
\operatorname{det} E_{1} \cdots E_{m} A=\operatorname{det} E_{1} \cdots E_{m} \operatorname{det} A
$$

We prove this by induction on m.
First the case $m=1$. We have to prove $\operatorname{det} E_{1} A=\operatorname{det} E_{1} \operatorname{det} A$ if E_{1} is an elementary row matrix. This follows form Remark 4.0.4:
(a) $\operatorname{det} E_{i j} A=-\operatorname{det} A=\operatorname{det} E_{i j} \operatorname{det} A$;
(b) $\operatorname{det} E_{i}(t) A=t \operatorname{det} A=\operatorname{det} E_{i}(t) \operatorname{det} A$;
(c) $\operatorname{det} E_{i j}(t) A=\operatorname{det} A=\operatorname{det} E_{i j}(t) \operatorname{det} A$.

Let $m \geq 1$ and assume the proposition holds for products of m elementary row matrices. Then

$$
\begin{aligned}
\operatorname{det} E_{1} \cdots E_{m} E_{m+1} A & =\operatorname{det}\left(E_{1} \cdots E_{m}\right)\left(E_{m+1} A\right) \\
& =\operatorname{det}\left(E_{1} \cdots E_{m}\right) \operatorname{det}\left(E_{m+1} A\right) \\
& =\operatorname{det}\left(E_{1} \cdots E_{m}\right) \operatorname{det} E_{m+1} \operatorname{det} A \\
& =\operatorname{det}\left(\left(E_{1} \cdots E_{m}\right) E_{m+1}\right) \operatorname{det} A
\end{aligned}
$$

and the induction goes through.
Hence $\operatorname{det} B A=\operatorname{det} B \operatorname{det} A$ if B is non-singular.
If B is singular, problem 26, Chapter 2.7 tells us that $B A$ is also singlular. However singular matrices have zero determinant, so

$$
\operatorname{det} B=0 \quad \operatorname{det} B A=0
$$

so the equation $\operatorname{det} B A=\operatorname{det} B \operatorname{det} A$ holds trivially in this case.
16.

$$
\left|\begin{array}{cccc}
a+b+c & a+b & a & a \\
a+b & a+b+c & a & a \\
a & a & a+b+c & a+b \\
a & a & a+b & a+b+c
\end{array}\right|
$$

$$
\begin{aligned}
& \begin{array}{rl|cccc|}
R_{1} \rightarrow R_{1}-R_{2} & c & -c & 0 & 0 \\
R_{2} \rightarrow R_{2}-R_{3} & b & b+c & -b-c & -b \\
R_{3} \rightarrow R_{3}-R_{4} & 0 & 0 & c & -c \\
& = & a & a & a+b & a+b+c
\end{array} \\
& \begin{array}{c}
C_{2} \rightarrow C_{2}+C_{1}
\end{array}\left|\begin{array}{cccc}
c & 0 & 0 & 0 \\
b & 2 b+c & -b-c & -b \\
0 & 0 & c & -c \\
a & 2 a & a+b & a+b+c
\end{array}\right|=c\left|\begin{array}{ccc}
2 b+c & -b-c & -b \\
0 & c & -c \\
2 a & a+b & a+b+c
\end{array}\right| \\
& \underset{=}{C_{3} \rightarrow C_{3}+C_{2}} c\left|\begin{array}{ccc}
2 b+c & -b-c & -2 b-c \\
0 & c & 0 \\
2 a & a+b & 2 a+2 b+c
\end{array}\right|=c^{2}\left|\begin{array}{cc}
2 b+c & -2 b-c \\
2 a & 2 a+2 b+c
\end{array}\right| \\
& =c^{2}(2 b+c)\left|\begin{array}{cc}
1 & -1 \\
2 a & 2 a+2 b+c
\end{array}\right|=c^{2}(2 b+c)(4 a+2 b+c) \text {. }
\end{aligned}
$$

17. Let $\Delta=\left|\begin{array}{cccc}1+u_{1} & u_{1} & u_{1} & u_{1} \\ u_{2} & 1+u_{2} & u_{2} & u_{2} \\ u_{3} & u_{3} & 1+u_{3} & u_{3} \\ u_{4} & u_{4} & u_{4} & 1+u_{4}\end{array}\right|$. Then using the operation

$$
R_{1} \rightarrow R_{1}+R_{2}+R_{3}+R_{4}
$$

we have

$$
\Delta=\left|\begin{array}{cccc}
t & t & t & t \\
u_{2} & 1+u_{2} & u_{2} & u_{2} \\
u_{3} & u_{3} & 1+u_{3} & u_{3} \\
u_{4} & u_{4} & u_{4} & 1+u_{4}
\end{array}\right|
$$

$\left(\right.$ where $\left.t=1+u_{1}+u_{2}+u_{3}+u_{4}\right)$

$$
=\left(1+u_{1}+u_{2}+u_{3}+u_{4}\right)\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
u_{2} & 1+u_{2} & u_{2} & u_{2} \\
u_{3} & u_{3} & 1+u_{3} & u_{3} \\
u_{4} & u_{4} & u_{4} & 1+u_{4}
\end{array}\right|
$$

The last determinant equals

$$
\left.\begin{array}{l|cccc}
C_{2} \rightarrow C_{2}-C_{1} & 1 & 0 & 0 & 0 \\
C_{3} \rightarrow C_{3}-C_{1} & u_{2} & 1 & 0 & 0 \\
C_{4} \rightarrow C_{4}-C_{1} & 0 & 1 & 0 \\
u_{3} & 0 & 0 & 1
\end{array} \right\rvert\,=1 .
$$

18. Suppose that $A^{t}=-A$, that $A \in M_{n \times n}(F)$, where n is odd. Then

$$
\begin{aligned}
\operatorname{det} A^{t} & =\operatorname{det}(-A) \\
\operatorname{det} A & =(-1)^{n} \operatorname{det} A=-\operatorname{det} A
\end{aligned}
$$

Hence $(1+1) \operatorname{det} A=0$ and consequently $\operatorname{det} A=0$ if $1+1 \neq 0$ in F.
19.

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
r & 1 & 1 & 1 \\
r & r & 1 & 1 \\
r & r & r & 1
\end{array}\right|=\begin{gathered}
C_{4} \rightarrow C_{4}-C_{3} \\
C_{3} \rightarrow C_{3}-C_{2} \\
C_{2} \rightarrow C_{2}-C_{1}
\end{gathered}\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
r & 1-r & 0 & 0 \\
r & 0 & 1-r & 0 \\
r & 0 & 0 & 1-r
\end{array}\right|=(1-r)^{3} .
$$

20.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & a^{2}-b c & a^{4} \\
1 & b^{2}-c a & b^{4} \\
1 & c^{2}-a b & c^{4}
\end{array}\right| \begin{array}{c}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1} \\
=
\end{array}\left|\begin{array}{ccc}
1 & a^{2}-b c & a^{4} \\
0 & b^{2}-c a-a^{2}+b c & b^{4}-a^{4} \\
0 & c^{2}-a b-a^{2}+b c & c^{4}-a^{4}
\end{array}\right| \\
& \quad=\left|\begin{array}{cc}
b^{2}-c a-a^{2}+b c & b^{4}-a^{4} \\
c^{2}-a b-a^{2}+b c & c^{4}-a^{4}
\end{array}\right| \\
& \quad=\left|\begin{array}{ccc}
(b-a)(b+a)+c(b-a) & (b-a)(b+a)\left(b^{2}+a^{2}\right) \\
(c-a)(c+a)+b(c-a) & (c-a)(c+a)\left(c^{2}+a^{2}\right)
\end{array}\right| \\
& \quad=\left|\begin{array}{lll}
(b-a)(b+a+c) & (b-a)(b+a)\left(b^{2}+a^{2}\right) \\
(c-a)(c+a+b) & (c-a)(c+a)\left(c^{2}+a^{2}\right)
\end{array}\right| \\
& \\
& =(b-a)(c-a)\left|\begin{array}{cc}
b+a+c & (b+a)\left(b^{2}+a^{2}\right) \\
c+a+b & (c+a)\left(c^{2}+a^{2}\right)
\end{array}\right| \\
&
\end{aligned} \begin{aligned}
& =(b-a)(c-a)(a+b+c)\left|\begin{array}{cc}
1 & (b+a)\left(b^{2}+a^{2}\right) \\
1 & (c+a)\left(c^{2}+a^{2}\right)
\end{array}\right|
\end{aligned}
$$

Finally

$$
\begin{aligned}
\left|\begin{array}{cc}
1 & (b+a)\left(b^{2}+a^{2}\right) \\
1 & (c+a)\left(c^{2}+a^{2}\right)
\end{array}\right| & =\left(c^{3}+a c^{2}+c a^{2}+a^{3}\right)-\left(b^{3}+a b^{2}+b a^{2}+a^{3}\right) \\
& =\left(c^{3}-b^{3}\right)+a\left(c^{2}-b^{2}\right)+a^{2}(c-b) \\
& =(c-b)\left(c^{2}+c b+b^{2}+a(c+b)+a^{2}\right) \\
& =(c-b)\left(c^{2}+c b+b^{2}+a c+a b+a^{2}\right) .
\end{aligned}
$$

Section 5.8

1.

(i) $(-3+i)(14-2 i)=(-3)(14-2 i)+i(14-2 i)$

$$
=\{(-3) 14-(-3)(2 i)\}+i(14)-i(2 i)
$$

$$
=(-42+6 i)+(14 i+2)=-40+20 i
$$

$$
\text { (ii) } \frac{2+3 i}{1-4 i}=\frac{(2+3 i)(1+4 i)}{(1-4 i)(1+4 i)}
$$

$$
=\frac{((2+3 i)+(2+3 i)(4 i)}{1^{2}+4^{2}}
$$

$$
=\frac{-10+11 i}{17}=\frac{-10}{17}+\frac{11}{17} i .
$$

(iii) $\frac{(1+2 i)^{2}}{1-i}=\frac{1+4 i+(2 i)^{2}}{1-i}$

$$
\begin{aligned}
& =\frac{1+4 i-4}{1-i}=\frac{-3+4 i}{1-i} \\
& =\frac{(-3+4 i)(1+i)}{2}=\frac{-7+i}{2}=-\frac{7}{2}+\frac{1}{2} i .
\end{aligned}
$$

2. (i)

$$
\begin{aligned}
i z+(2-10 i) z=3 z+2 i & \Leftrightarrow z(i+2-10 i-3)=2 i \\
& \Leftrightarrow \Leftrightarrow z(-1-9 i)=2 i \Leftrightarrow z=\frac{-2 i}{1+9 i} \\
& =\frac{-2 i(1-9 i)}{1+81}=\frac{-18-2 i}{82}=\frac{-9-i}{41}
\end{aligned}
$$

(ii) The coefficient determinant is

$$
\left.\begin{array}{cc}
1+i & 2-i \\
1+2 i & 3+i
\end{array} \right\rvert\,=(1+i)(3+i)-(2-i)(1+2 i)=-2+i \neq 0
$$

Hence Cramer's rule applies: there is a unique solution given by

$$
\begin{aligned}
& z=\frac{\left|\begin{array}{cc}
-3 i & 2-i \\
2+2 i & 3+i
\end{array}\right|}{-2+i}=\frac{-3-11 i}{-2+i}=-1+5 i \\
& w=\frac{\left|\begin{array}{cc}
1+i & -3 i \\
1+2 i & 2+2 i
\end{array}\right|}{-2+i}=\frac{-6+7 i}{-2+i}=\frac{19-8 i}{5}
\end{aligned}
$$

3.

$$
\begin{aligned}
1+(1+i)+\cdots+(1+i)^{99} & =\frac{(1+i)^{100}-1}{(1+i)-1} \\
& =\frac{(1+i)^{100}-1}{i}=-i\left\{(1+i)^{100}-1\right\}
\end{aligned}
$$

Now $(1+i)^{2}=2 i$. Hence

$$
(1+i)^{100}=(2 i)^{50}=2^{50} i^{50}=2^{50}(-1)^{25}=-2^{50}
$$

Hence $-i\left\{(1+i)^{100}-1\right\}=-i\left(-2^{50}-1\right)=\left(2^{50}+1\right) i$.
4. (i) Let $z^{2}=-8-6 i$ and write $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, where x and y are real. Then

$$
z^{2}=x^{2}-y^{2}+2 x y i=-8-6 i
$$

so $x^{2}-y^{2}=-8$ and $2 x y=-6$. Hence

$$
y=-3 / x, \quad x^{2}-\left(\frac{-3}{x}\right)^{2}=-8
$$

so $x^{4}+8 x^{2}-9=0$. This is a quadratic in x^{2}. Hence $x^{2}=1$ or -9 and consequently $x^{2}=1$. Hence $x=1, y=-3$ or $x=-1$ and $y=3$. Hence $z=1-3 i$ or $z=-1+3 i$.
(ii) $z^{2}-(3+i) z+4+3 i=0$ has the solutions $z=(3+i \pm d) / 2$, where d is any complex number satisfying

$$
d^{2}=(3+i)^{2}-4(4+3 i)=-8-6 i
$$

Hence by part (i) we can take $d=1-3 i$. Consequently

$$
z=\frac{3+i \pm(1-3 i)}{2}=2-i \quad \text { or } \quad 1+2 i
$$

(i) The number lies in the first quadrant of the complex plane.

$$
|4+i|=\sqrt{4^{2}+1^{2}}=\sqrt{17}
$$

Also $\operatorname{Arg}(4+i)=\alpha$, where $\tan \alpha=1 / 4$ and $0<\alpha<\pi / 2$. Hence $\alpha=\tan ^{-1}(1 / 4)$.
(ii) The number lies in the third quadrant of the complex plane.

$$
\begin{aligned}
& \left|\frac{-3-i}{2}\right|=\frac{|-3-i|}{2} \\
= & \frac{1}{2} \sqrt{(-3)^{2}+(-1)^{2}}=\frac{1}{2} \sqrt{9+1}=\frac{\sqrt{10}}{2} .
\end{aligned}
$$

Also $\operatorname{Arg}\left(\frac{-3-i}{2}\right)=-\pi+\alpha$, where $\tan \alpha=$ $\frac{1}{2} / \frac{3}{2}=1 / 3$ and $0<\alpha<\pi / 2$. Hence $\alpha=$ $\tan ^{-1}(1 / 3)$.
(iii) The number lies in the second quadrant of the complex plane.

$$
|-1+2 i|=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
$$

Also $\operatorname{Arg}(-1+2 i)=\pi-\alpha$, where $\tan \alpha=$ 2 and $0<\alpha<\pi / 2$. Hence $\alpha=\tan ^{-1} 2$.
(iv) The number lies in the second quadrant of the complex plane.

$$
\begin{aligned}
& \left|\frac{-1+i \sqrt{3}}{2}\right|=\frac{|-1+i \sqrt{3}|}{2} \\
= & \frac{1}{2} \sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\frac{1}{2} \sqrt{1+3}=1
\end{aligned}
$$

Also $\operatorname{Arg}\left(\frac{-1}{2}+\frac{\sqrt{3}}{2} i\right)=\pi-\alpha$, where $\tan \alpha=\frac{\sqrt{3}}{2} / \frac{1}{2}=\sqrt{3}$ and $0<\alpha<\pi / 2$. Hence $\alpha=\pi / 3$.
6. (i) Let $z=(1+i)(1+\sqrt{3} i)(\sqrt{3}-i)$. Then

$$
\begin{aligned}
|z| & =|1+i\|1+\sqrt{3} i\| \sqrt{3}-i| \\
& =\sqrt{1^{2}+1^{2}} \sqrt{1^{2}+(\sqrt{3})^{2}} \sqrt{(\sqrt{3})^{2}+(-1)^{2}} \\
& =\sqrt{2} \sqrt{4} \sqrt{4}=4 \sqrt{2}
\end{aligned}
$$

$\operatorname{Arg} z \equiv \operatorname{Arg}(1+i)+\operatorname{Arg}(1+\sqrt{3})+\operatorname{Arg}(\sqrt{3}-i)(\bmod 2 \pi)$

$$
\equiv \frac{\pi}{4}+\frac{\pi}{3}-\frac{\pi}{6} \equiv \frac{5}{12} .
$$

Hence $\operatorname{Arg} z=\frac{5}{12}$ and the polar decomposition of z is

$$
z=4 \sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)
$$

(ii) Let $z=\frac{(1+i)^{5}(1-i \sqrt{3})^{5}}{(\sqrt{3}+i)^{4}}$. Then

$$
|z|=\frac{|(1+i)|^{5}|(1-i \sqrt{3})|^{5}}{|(\sqrt{3}+i)|^{4}}=\frac{(\sqrt{2})^{5} 2^{5}}{2^{4}}=2^{7 / 2}
$$

$$
\begin{aligned}
\operatorname{Arg} z & \equiv \operatorname{Arg}(1+i)^{5}+\operatorname{Arg}(1-\sqrt{3} i)^{5}-\operatorname{Arg}(\sqrt{3}+i)^{4} \quad(\bmod 2 \pi) \\
& \equiv 5 \operatorname{Arg}(1+i)+5 \operatorname{Arg}(1-\sqrt{3} i)-4 \operatorname{Arg}(\sqrt{3}+i) \\
& \equiv 5 \frac{\pi}{4}+5\left(\frac{-\pi}{3}\right)-4 \frac{\pi}{6} \equiv \frac{-13 \pi}{12} \equiv \frac{11 \pi}{12}
\end{aligned}
$$

Hence $\operatorname{Arg} z=\frac{11 \pi}{12}$ and the polar decomposition of z is

$$
z=2^{7 / 2}\left(\cos \frac{11 \pi}{12}+i \sin \frac{11 \pi}{12}\right)
$$

7. (i) Let $z=2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$ and $w=3\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$. (Both of these numbers are already in polar form.)
(a) $z w=6\left(\cos \left(\frac{\pi}{4}+\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{4}+\frac{\pi}{6}\right)\right)$

$$
=6\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)
$$

(b) $\frac{z}{w}=\frac{2}{3}\left(\cos \left(\frac{\pi}{4}-\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right)\right)$

$$
=\frac{2}{3}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right) .
$$

(c) $\frac{w}{z}=\frac{3}{2}\left(\cos \left(\frac{\pi}{6}-\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{6}-\frac{\pi}{4}\right)\right)$

$$
=\frac{3}{2}\left(\cos \left(\frac{-\pi}{12}\right)+i \sin \left(\frac{-\pi}{12}\right)\right)
$$

(d) $\frac{z^{5}}{w^{2}}=\frac{2^{5}}{3^{2}}\left(\cos \left(\frac{5 \pi}{4}-\frac{2 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{4}-\frac{2 \pi}{6}\right)\right)$

$$
=\frac{32}{9}\left(\cos \frac{11 \pi}{12}+i \sin \frac{11 \pi}{12}\right)
$$

(a) $(1+i)^{2}=2 i$, so

$$
(1+i)^{12}=(2 i)^{6}=2^{6} i^{6}=64\left(i^{2}\right)^{3}=64(-1)^{3}=-64
$$

(b) $\left(\frac{1-i}{\sqrt{2}}\right)^{2}=-i$, so

$$
\begin{aligned}
\left(\frac{1-i}{\sqrt{2}}\right)^{-6} & =\left(\left(\frac{1-i}{\sqrt{2}}\right)^{2}\right)^{-3} \\
& =(-i)^{-3}=\frac{-1}{i^{3}}=\frac{-1}{-i}=\frac{1}{i}=-i .
\end{aligned}
$$

8. (i) To solve the equation $z^{2}=1+\sqrt{3} i$, we write $1+\sqrt{3} i$ in modulusargument form:

$$
1+\sqrt{3} i=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
$$

Then the solutions are

$$
z_{k}=\sqrt{2}\left(\cos \left(\frac{\frac{\pi}{3}+2 k \pi}{2}\right)+i \sin \left(\frac{\frac{\pi}{3}+2 k \pi}{2}\right)\right), \quad k=0,1 .
$$

Now $k=0$ gives the solution

$$
z_{0}=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt{2}\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)=\frac{\sqrt{3}}{\sqrt{2}}+\frac{i}{\sqrt{2}} .
$$

Clearly $z_{1}=-z_{0}$.
(ii) To solve the equation $z^{4}=i$, we write i in modulus-argument form:

$$
i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}
$$

Then the solutions are

$$
z_{k}=\cos \left(\frac{\frac{\pi}{2}+2 k \pi}{4}\right)+i \sin \left(\frac{\frac{\pi}{2}+2 k \pi}{4}\right), \quad k=0,1,2,3 .
$$

Now $\cos \left(\frac{\pi}{2}+2 k \pi\right)=\cos \left(\frac{\pi}{8}+\frac{k \pi}{2}\right)$, so

$$
\begin{aligned}
z_{k} & =\cos \left(\frac{\pi}{8}+\frac{k \pi}{2}\right)+\sin \left(\frac{\pi}{8}+\frac{k \pi}{2}\right) \\
& =\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)^{k}\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right) \\
& =i^{k}\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right) .
\end{aligned}
$$

Geometrically, the solutions lie equi-spaced on the unit circle at arguments

$$
\frac{\pi}{8}, \frac{\pi}{8}+\frac{\pi}{2}=\frac{5 \pi}{8}, \frac{\pi}{8}+\pi=\frac{9 \pi}{8}, \frac{\pi}{8}+3 \frac{\pi}{2}=\frac{13 \pi}{8}
$$

Also $z_{2}=-z_{0}$ and $z_{3}=-z_{1}$.
(iii) To solve the equation $z^{3}=-8 i$, we rewrite the equation as

$$
\left(\frac{z}{-2 i}\right)^{3}=1
$$

Then

$$
\left(\frac{z}{-2 i}\right)=1, \quad \frac{-1+\sqrt{3} i}{2}, \quad \text { or } \quad \frac{-1-\sqrt{3} i}{2} .
$$

Hence $z=-2 i, \sqrt{3}+i$ or $-\sqrt{3}+i$.
Geometrically, the solutions lie equi-spaced on the circle $|z|=2$, at arguments

$$
\frac{\pi}{6}, \frac{\pi}{6}+\frac{2 \pi}{3}=\frac{5 \pi}{6}, \frac{\pi}{6}+2 \frac{2 \pi}{3}=\frac{3 \pi}{2} .
$$

(iv) To solve $z^{4}=2-2 i$, we write $2-2 i$ in modulus-argument form:

$$
2-2 i=2^{3 / 2}\left(\cos \frac{-\pi}{4}+i \sin \frac{-\pi}{4}\right)
$$

Hence the solutions are

$$
z_{k}=2^{3 / 8} \cos \left(\frac{\frac{-\pi}{4}+2 k \pi}{4}\right)+i \sin \left(\frac{\frac{-\pi}{4}+2 k \pi}{4}\right), \quad k=0,1,2,3 .
$$

We see the solutions can also be written as

$$
\begin{aligned}
z_{k} & =2^{3 / 8} i^{k}\left(\cos \frac{-\pi}{16}+i \sin \frac{-\pi}{16}\right) \\
& =2^{3 / 8} i^{k}\left(\cos \frac{\pi}{16}-i \sin \frac{\pi}{16}\right) .
\end{aligned}
$$

Geometrically, the solutions lie equi-spaced on the circle $|z|=2^{3 / 8}$, at arguments

$$
\frac{-\pi}{16}, \frac{-\pi}{16}+\frac{\pi}{2}=\frac{7 \pi}{16}, \frac{-\pi}{16}+2 \frac{\pi}{2}=\frac{15 \pi}{16}, \frac{-\pi}{16}+3 \frac{\pi}{2}=\frac{23 \pi}{16} .
$$

Also $z_{2}=-z_{0}$ and $z_{3}=-z_{1}$.
9.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2+i & -1+2 i & 2 \\
1+i & -1+i & 1 \\
1+2 i & -2+i & 1+i
\end{array}\right] \begin{array}{c}
R_{1} \rightarrow R_{1}-R_{2} \\
R_{3} \rightarrow R_{3}-R_{2}
\end{array}\left[\begin{array}{ccc}
1 & i & 1 \\
1+i & -1+i & 1 \\
i & -1 & i
\end{array}\right]} \\
\begin{array}{c}
R_{2} \rightarrow R_{2}-(1+i) R_{1} \\
R_{3} \rightarrow R_{3}-i R_{1}
\end{array}\left[\begin{array}{ccc}
1 & i & 1 \\
0 & 0 & -i \\
0 & 0 & 0
\end{array}\right] \quad R_{2} \rightarrow i R_{2}\left[\begin{array}{ccc}
1 & i & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{lll}
1 & i & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

The last matrix is in reduced row-echelon form.
10. (i) Let $p=l+i m$ and $z=x+i y$. Then

$$
\begin{aligned}
\bar{p} z+p \bar{z} & =(l-i m)(x+i y)+(l+i m)(x-i y) \\
& =(l x+l i y-i m x+m y)+(l x-l i y+i m x+m y) \\
& =2(l x+m y)
\end{aligned}
$$

Hence $\bar{p} z+p \bar{z}=2 n \Leftrightarrow l x+m y=n$.
(ii) Let w be the complex number which results from reflecting the complex number z in the line $l x+m y=n$. Then because p is perpendicular to the given line, we have

$$
\begin{equation*}
w-z=t p, \quad t \in \mathbb{R} \tag{a}
\end{equation*}
$$

Also the midpoint $\frac{w+z}{2}$ of the segment joining w and z lies on the given line, so

$$
\begin{align*}
\bar{p}\left(\frac{w+z}{2}\right)+p\left(\frac{\overline{w+z}}{2}\right) & =n \\
\bar{p}\left(\frac{w+z}{2}\right)+p\left(\frac{\bar{w}+\bar{z}}{2}\right) & =n \tag{b}
\end{align*}
$$

Taking conjugates of equation (a) gives

$$
\begin{equation*}
\bar{w}-\bar{z}=t \bar{p} \tag{c}
\end{equation*}
$$

Then substituting in (b), using (a) and (c), gives

$$
\bar{p}\left(\frac{2 w-t p}{2}\right)+p\left(\frac{2 \bar{z}+t \bar{p}}{2}\right)=n
$$

and hence

$$
\bar{p} w+p \bar{z}=n
$$

(iii) Let $p=b-a$ and $n=|b|^{2}-|a|^{2}$. Then

$$
\begin{aligned}
|z-a|=|z-b| & \Leftrightarrow|z-a|^{2}=|z-b|^{2} \\
\Leftrightarrow(z-a)(\overline{z-a}) & =(z-b)(\overline{z-b}) \\
\Leftrightarrow(z-a)(\bar{z}-\bar{a}) & =(z-b)(\bar{z}-\bar{b}) \\
\Leftrightarrow z \bar{z}-a \bar{z}-z \bar{a}+a \bar{a} & =z \bar{z}-b \bar{z}-z \bar{b}+b \bar{b} \\
\Leftrightarrow(\bar{b}-\bar{a}) z+(b-a) \bar{z} & =|b|^{2}-|a|^{2} \\
\Leftrightarrow \bar{p} z+p \bar{z} & =n .
\end{aligned}
$$

Suppose z lies on the circle $\left|\frac{z-a}{z-b}\right|$ and let w be the reflection of z in the line $\bar{p} z+p \bar{z}=n$. Then by part (ii)

$$
\bar{p} w+p \bar{z}=n
$$

Taking conjugates gives $p \bar{w}+\bar{p} z=n$ and hence

$$
\begin{equation*}
z=\frac{n-p \bar{w}}{\bar{p}} \tag{a}
\end{equation*}
$$

Substituting for z in the circle equation, using (a) gives

$$
\begin{equation*}
\lambda=\left|\frac{\frac{n-p \bar{w}}{\bar{w}}-a}{\frac{n-p \bar{w}}{\bar{p}}-b}\right|=\left|\frac{n-p \bar{w}-\bar{p} a}{n-p \bar{w}-\bar{p} b}\right| . \tag{b}
\end{equation*}
$$

However

$$
\begin{aligned}
n-\bar{p} a & =|b|^{2}-|a|^{2}-(\bar{b}-\bar{a}) a \\
& =\bar{b} b-\bar{a} a-\bar{b} a+\bar{a} a \\
& =\bar{b}(b-a)=\bar{b} p
\end{aligned}
$$

Similarly $n-\bar{p} b=\bar{a} p$. Consequently (b) simplifies to

$$
\lambda=\left|\frac{\bar{b} p-p \bar{w}}{\bar{a} p-p \bar{w}}\right|=\left|\frac{\bar{b}-\bar{w}}{\bar{a}-\bar{w}}\right|=\left|\frac{w-b}{w-a}\right|
$$

which gives $\left|\frac{w-a}{w-b}\right|=\frac{1}{\lambda}$.

11. Let a and b be distinct complex numbers and $0<\alpha<\pi$.
(i) When z_{1} lies on the circular arc shown, it subtends a constant angle α. This angle is given by $\operatorname{Arg}\left(z_{1}-a\right)-\operatorname{Arg}\left(z_{1}-b\right)$. However

$$
\begin{aligned}
\operatorname{Arg}\left(\frac{z_{1}-a}{z_{1}-b}\right) & =\operatorname{Arg}\left(z_{1}-a\right)-\operatorname{Arg}\left(z_{1}-b\right)+2 k \pi \\
& =\alpha+2 k \pi
\end{aligned}
$$

It follows that $k=0$, as $0<\alpha<\pi$ and $-\pi<\operatorname{Arg} \theta \leq \pi$. Hence

$$
\operatorname{Arg}\left(\frac{z_{1}-a}{z_{1}-b}\right)=\alpha
$$

Similarly if z_{2} lies on the circular arc shown, then

$$
\operatorname{Arg}\left(\frac{z_{2}-a}{z_{2}-b}\right)=-\gamma=-(\pi-\alpha)=\alpha-\pi .
$$

Replacing α by $\pi-\alpha$, we deduce that if z_{4} lies on the circular arc shown, then

$$
\operatorname{Arg}\left(\frac{z_{4}-a}{z_{4}-b}\right)=\pi-\alpha
$$

while if z_{3} lies on the circular arc shown, then

$$
\operatorname{Arg}\left(\frac{z_{3}-a}{z_{3}-b}\right)=-\alpha
$$

The straight line through a and b has the equation

$$
z=(1-t) a+t b,
$$

where t is real. Then $0<t<1$ describes the segment $a b$. Also

$$
\frac{z-a}{z-b}=\frac{t}{t-1}
$$

Hence $\frac{z-a}{z-b}$ is real and negative if z is on the segment a, but is real and positive if z is on the remaining part of the line, with corresponding values

$$
\operatorname{Arg}\left(\frac{z-a}{z-b}\right)=\pi, 0
$$

respectively.
(ii) Case (a) Suppose z_{1}, z_{2} and z_{3} are not collinear. Then these points determine a circle. Now z_{1} and z_{2} partition this circle into two arcs. If z_{3} and z_{4} lie on the same arc, then

$$
\operatorname{Arg}\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)=\operatorname{Arg}\left(\frac{z_{4}-z_{1}}{z_{4}-z_{2}}\right)
$$

whereas if z_{3} and z_{4} lie on opposite arcs, then

$$
\operatorname{Arg}\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)=\alpha
$$

and

$$
\operatorname{Arg}\left(\frac{z_{4}-z_{1}}{z_{4}-z_{2}}\right)=\alpha-\pi
$$

Hence in both cases
$\begin{aligned} \operatorname{Arg}\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}} / \frac{z_{4}-z_{1}}{z_{4}-z_{2}}\right) & \equiv \operatorname{Arg}\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)-\operatorname{Arg}\left(\frac{z_{4}-z_{1}}{z_{4}-z_{2}}\right) \quad(\bmod 2 \pi) \\ & \equiv 0 \text { or } \pi .\end{aligned}$

$$
\equiv 0 \text { or } \pi
$$

In other words, the cross-ratio

$$
\frac{z_{3}-z_{1}}{z_{3}-z_{2}} / \frac{z_{4}-z_{1}}{z_{4}-z_{2}}
$$

is real.
(b) If z_{1}, z_{2} and z_{3} are collinear, then again the cross-ratio is real.

The argument is reversible.
(iii) Assume that A, B, C, D are distinct points such that the cross-ratio

$$
r=\frac{z_{3}-z_{1}}{z_{3}-z_{2}} / \frac{z_{4}-z_{1}}{z_{4}-z_{2}}
$$

is real. Now r cannot be 0 or 1 . Then there are three cases:
(i) $0<r<1$;
(ii) $r<0$;
(iii) $r>1$.

Case (i). Here $|r|+|1-r|=1$. So

$$
\left|\frac{z_{4}-z_{1}}{z_{4}-z_{2}} \cdot \frac{z_{3}-z_{2}}{z_{3}-z_{1}}\right|+\left|1-\left(\frac{z_{4}-z_{1}}{z_{4}-z_{2}} \cdot \frac{z_{3}-z_{2}}{z_{3}-z_{1}}\right)\right|=1 .
$$

Multiplying both sides by the denominator $\left|z_{4}-z_{2}\right|\left|z_{3}-z_{1}\right|$ gives after simplification

$$
\left|z_{4}-z_{1}\right|\left|z_{3}-z_{2}\right|+\left|z_{2}-z_{1}\right|\left|z_{4}-z_{3}\right|=\left|z_{4}-z_{2}\right|\left|z_{3}-z_{1}\right|,
$$

or
(a) $A D \cdot B C+A B \cdot C D=B D \cdot A C$.

Case (ii). Here $1+|r|=|1-r|$. This leads to the equation
(b) $B D \cdot A C+A D \cdot B C+=A B \cdot C D$.

Case (iii). Here $1+|1-r|=|r|$. This leads to the equation
(c) $B D \cdot A C+A B \cdot C D=A D \cdot B C$.

Conversely if (a), (b) or (c) hold, then we can reverse the argument to deduce that r is a complex number satisfying one of the equations

$$
|r|+|1-r|=1, \quad 1+|r|=|1-r|, \quad 1+|1-r|=|r|,
$$

from which we deduce that r is real.

Section 6.3

1. Let $A=\left[\begin{array}{rr}4 & -3 \\ 1 & 0\end{array}\right]$. Then A has characteristic equation $\lambda^{2}-4 \lambda+3=0$ or $(\lambda-3)(\lambda-1)=0$. Hence the eigenvalues of A are $\lambda_{1}=3$ and $\lambda_{2}=1$.
$\lambda_{1}=3$. The corresponding eigenvectors satisfy $\left(A-\lambda_{1} I_{2}\right) X=0$, or

$$
\left[\begin{array}{ll}
1 & -3 \\
1 & -3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

or equivalently $x-3 y=0$. Hence

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 y \\
y
\end{array}\right]=y\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

and we take $X_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
Similarly for $\lambda_{2}=1$ we find the eigenvector $X_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Hence if $P=\left[X_{1} \mid X_{2}\right]=\left[\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right]$, then P is non-singular and

$$
P^{-1} A P=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]
$$

Hence

$$
A=P\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] P^{-1}
$$

and consequently

$$
\begin{aligned}
A^{n} & =P\left[\begin{array}{cc}
3^{n} & 0 \\
0 & 1^{n}
\end{array}\right] P^{-1} \\
& =\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
3^{n} & 0 \\
0 & 1^{n}
\end{array}\right] \frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
3^{n+1} & 1 \\
3^{n} & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
3^{n+1}-1 & -3^{n+1}+3 \\
3^{n}-1 & -3^{n}+3
\end{array}\right] \\
& =\frac{3^{n}-1}{2} A+\frac{3-3^{n}}{2} I_{2}
\end{aligned}
$$

2. Let $A=\left[\begin{array}{ll}3 / 5 & 4 / 5 \\ 2 / 5 & 1 / 5\end{array}\right]$. Then we find that the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-1 / 5$, with corresponding eigenvectors

$$
X_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad \text { and } \quad X_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Then if $P=\left[X_{1} \mid X_{2}\right], P$ is non-singular and

$$
P^{-1} A P=\left[\begin{array}{cc}
1 & 0 \\
0 & -1 / 5
\end{array}\right] \quad \text { and } \quad A=P\left[\begin{array}{cc}
1 & 0 \\
0 & -1 / 5
\end{array}\right] P^{-1}
$$

Hence

$$
\begin{aligned}
A^{n} & =P\left[\begin{array}{lr}
1 & 0 \\
0 & (-1 / 5)^{n}
\end{array}\right] P^{-1} \\
& \rightarrow P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1} \\
& =\left[\begin{array}{rr}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
2 / 3 & 2 / 3 \\
1 / 3 & 1 / 3
\end{array}\right] .
\end{aligned}
$$

3. The given system of differential equations is equivalent to $\dot{X}=A X$, where

$$
A=\left[\begin{array}{ll}
3 & -2 \\
5 & -4
\end{array}\right] \quad \text { and } \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The matrix $P=\left[\begin{array}{ll}2 & 1 \\ 5 & 1\end{array}\right]$ is a non-singular matrix of eigenvectors corresponding to eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=1$. Then

$$
P^{-1} A P=\left[\begin{array}{rr}
-2 & 0 \\
0 & 1
\end{array}\right]
$$

The substitution $X=P Y$, where $Y=\left[x_{1}, y_{1}\right]^{t}$, gives

$$
\dot{Y}=\left[\begin{array}{rr}
-2 & 0 \\
0 & 1
\end{array}\right] Y
$$

or equivalently $\dot{x_{1}}=-2 x_{1}$ and $\dot{y_{1}}=y_{1}$.
Hence $x_{1}=x_{1}(0) e^{-2 t}$ and $y_{1}=y_{1}(0) e^{t}$. To determine $x_{1}(0)$ and $y_{1}(0)$, we note that

$$
\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=-\frac{1}{3}\left[\begin{array}{rr}
1 & -1 \\
-5 & 2
\end{array}\right]\left[\begin{array}{l}
13 \\
22
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right]
$$

Hence $x_{1}=3 e^{-2 t}$ and $y_{1}=7 e^{t}$. Consequently

$$
x=2 x_{1}+y_{1}=6 e^{-2 t}+7 e^{t} \quad \text { and } \quad y=5 x_{1}+y_{1}=15 e^{-2 t}+7 e^{t}
$$

4. Introducing the vector $X_{n}=\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right]$, the system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =3 x_{n}-y_{n} \\
y_{n+1} & =-x_{n}+3 y_{n}
\end{aligned}
$$

becomes $X_{n+1}=A X_{n}$, where $A=\left[\begin{array}{rr}3 & -1 \\ -1 & 3\end{array}\right]$. Hence $X_{n}=A^{n} X_{0}$, where $X_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

To find A^{n} we can use the eigenvalue method. We get

$$
A^{n}=\frac{1}{2}\left[\begin{array}{ll}
2^{n}+4^{n} & 2^{n}-4^{n} \\
2^{n}-4^{n} & 2^{n}+4^{n}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
X_{n} & =\frac{1}{2}\left[\begin{array}{ll}
2^{n}+4^{n} & 2^{n}-4^{n} \\
2^{n}-4^{n} & 2^{n}+4^{n}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{l}
2^{n}+4^{n}+2\left(2^{n}-4^{n}\right) \\
2^{n}-4^{n}+2\left(2^{n}+4^{n}\right)
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{l}
3 \times 2^{n}-4^{n} \\
3 \times 2^{n}+4^{n}
\end{array}\right]=\left[\begin{array}{c}
\left(3 \times 2^{n}-4^{n}\right) / 2 \\
\left(3 \times 2^{n}+4^{n}\right) / 2
\end{array}\right] .
\end{aligned}
$$

Hence $x_{n}=\frac{1}{2}\left(3 \times 2^{n}-4^{n}\right)$ and $y_{n}=\frac{1}{2}\left(3 \times 2^{n}+4^{n}\right)$.
5. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a real or complex matrix with distinct eigenvalues λ_{1}, λ_{2} and corresponding eigenvectors X_{1}, X_{2}. Also let $P=\left[X_{1} \mid X_{2}\right]$.
(a) The system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =a x_{n}+b y_{n} \\
y_{n+1} & =c x_{n}+d y_{n}
\end{aligned}
$$

has the solution

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] } & =A^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left(P\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] P^{-1}\right)^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =P\left[\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right] P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =\left[X_{1} \mid X_{2}\right]\left[\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \\
& =\left[X_{1} \mid X_{2}\right]\left[\begin{array}{c}
\lambda_{1}^{n} \alpha \\
\lambda_{2}^{n} \beta
\end{array}\right]=\lambda_{1}^{n} \alpha X_{1}+\lambda_{2}^{n} \beta X_{2}
\end{aligned}
$$

where

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

(b) In matrix form, the system is $\dot{X}=A X$, where $X=\left[\begin{array}{l}x \\ y\end{array}\right]$. We substitute $X=P Y$, where $Y=\left[x_{1}, y_{1}\right]^{t}$. Then

$$
\dot{X}=P \dot{Y}=A X=A(P Y)
$$

So

$$
\dot{Y}=\left(P^{-1} A P\right) Y=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1}
\end{array}\right] .
$$

Hence $\dot{x_{1}}=\lambda_{1} x_{1}$ and $\dot{y_{1}}=\lambda_{2} y_{1}$. Then

$$
x_{1}=x_{1}(0) e^{\lambda_{1} t} \quad \text { and } \quad y_{1}=y_{1}(0) e^{\lambda_{2} t}
$$

But

$$
\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=P\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right],
$$

So

$$
\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] .
$$

Consequently $x_{1}(0)=\alpha$ and $y_{1}(0)=\beta$ and

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[X_{1} \mid X_{2}\right]\left[\begin{array}{l}
\alpha e^{\lambda_{1} t} \\
\beta e^{\lambda_{2} t}
\end{array}\right] \\
& =\alpha e^{\lambda_{1} t} X_{1}+\beta e^{\lambda_{2} t} X_{2}
\end{aligned}
$$

6. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a real matrix with non-real eigenvalues $\lambda=a+i b$ and $\bar{\lambda}=a-i b$, with corresponding eigenvectors $X=U+i V$ and $\bar{X}=U-i V$, where U and V are real vectors. Also let P be the real matrix defined by $P=[U \mid V]$. Finally let $a+i b=r e^{i \theta}$, where $r>0$ and θ is real.
(a) As X is an eigenvector corresponding to the eigenvalue λ, we have $A X=$ λX and hence

$$
\begin{aligned}
A(U+i V) & =(a+i b)(U+i V) \\
A U+i A V & =a U-b V+i(b U+a V)
\end{aligned}
$$

Equating real and imaginary parts then gives

$$
\begin{aligned}
& A U=a U-b V \\
& A V=b U+a V
\end{aligned}
$$

(b)
$A P=A[U \mid V]=[A U \mid A V]=[a U-b V \mid b U+a V]=[U \mid V]\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]=P\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$.
Hence, as P can be shown to be non-singular,

$$
P^{-1} A P=\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]
$$

(The fact that P is non-singular is easily proved by showing the columns of P are linearly independent: Assume $x U+y V=0$, where x and y are real. Then we find

$$
(x+i y)(U-i V)+(x-i y)(U+i V)=0 .
$$

Consequently $x+i y=0$ as $U-i V$ and $U+i V$ are eigenvectors corresponding to distinct eigenvalues $a-i b$ and $a+i b$ and are hence linearly independent. Hence $x=0$ and $y=0$.)
(c) The system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =a x_{n}+b y_{n} \\
y_{n+1} & =c x_{n}+d y_{n}
\end{aligned}
$$

has solution

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] } & =A^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =P\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]^{n} P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =P\left[\begin{array}{cc}
r \cos \theta & r \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right]^{n}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& =P^{n}\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]^{n}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& =r^{n}[U \mid V]\left[\begin{array}{cc}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& =r^{n}[U \mid V]\left[\begin{array}{cc}
\alpha \cos n \theta+\beta \sin n \theta \\
-\alpha \sin n \theta+\beta \cos n \theta
\end{array}\right] \\
& =r^{n}\{(\alpha \cos n \theta+\beta \sin n \theta) U+(-\alpha \sin n \theta+\beta \cos n \theta) V\} \\
& =r^{n}\{(\cos n \theta)(\alpha U+\beta V)+(\sin n \theta)(\beta U-\alpha V)\}
\end{aligned}
$$

(d) The system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

is attacked using the substitution $X=P Y$, where $Y=\left[x_{1}, y_{1}\right]^{t}$. Then

$$
\dot{Y}=\left(P^{-1} A P\right) Y
$$

so

$$
\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{y_{1}}
\end{array}\right]=\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] .
$$

Equating components gives

$$
\begin{aligned}
\dot{x_{1}} & =a x_{1}+b y_{1} \\
\dot{y_{1}} & =-b x_{1}+a y_{1} .
\end{aligned}
$$

Now let $z=x_{1}+i y_{1}$. Then

$$
\begin{aligned}
\dot{z}=\dot{x_{1}}+i \dot{y_{1}} & =\left(a x_{1}+b y_{1}\right)+i\left(-b x_{1}+a y_{1}\right) \\
& =(a-i b)\left(x_{1}+i y_{1}\right)=(a-i b) z
\end{aligned}
$$

Hence

$$
\begin{aligned}
z & =z(0) e^{(a-i b) t} \\
x_{1}+i y_{1} & =\left(x_{1}(0)+i y_{1}(0)\right) e^{a t}(\cos b t-i \sin b t)
\end{aligned}
$$

Equating real and imaginary parts gives

$$
\begin{aligned}
x_{1} & =e^{a t}\left\{x_{1}(0) \cos b t+y_{1}(0) \sin b t\right\} \\
y_{1} & =e^{a t}\left\{y_{1}(0) \cos b t-x_{1}(0) \sin b t\right\}
\end{aligned}
$$

Now if we define α and β by

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]
$$

we see that $\alpha=x_{1}(0)$ and $\beta=y_{1}(0)$. Then

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \\
& =[U \mid V]\left[\begin{array}{c}
e^{a t}(\alpha \cos b t+\beta \sin b t) \\
e^{a t}(\beta \cos b t-\alpha \sin b t)
\end{array}\right] \\
& =e^{a t}\{(\alpha \cos b t+\beta \sin b t) U+(\beta \cos b t-\alpha \sin b t) V\} \\
& =e^{a t}\{\cos b t(\alpha U+\beta V)+\sin b t(\beta U-\alpha V)\}
\end{aligned}
$$

7. (The case of repeated eigenvalues.) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and suppose that the characteristic polynomial of $A, \lambda^{2}-(a+d) \lambda+(a d-b c)$, has a repeated root α. Also assume that $A \neq \alpha I_{2}$.
(i)

$$
\begin{aligned}
\lambda^{2}-(a+d) \lambda+(a d-b c) & =(\lambda-\alpha)^{2} \\
& =\lambda^{2}-2 \alpha \lambda+\alpha^{2}
\end{aligned}
$$

Hence $a+d=2 \alpha$ and $a d-b c=\alpha^{2}$ and

$$
\begin{aligned}
(a+d)^{2} & =4(a d-b c), \\
a^{2}+2 a d+d^{2} & =4 a d-4 b c, \\
a^{2}-2 a d+d^{2}+4 b c & =0, \\
(a-d)^{2}+4 b c & =0 .
\end{aligned}
$$

(ii) Let $B-A-\alpha I_{2}$. Then

$$
\begin{aligned}
B^{2}=\left(A-\alpha I_{2}\right)^{2} & =A^{2}-2 \alpha A+\alpha^{2} I_{2} \\
& =A^{2}-(a+d) A+(a d-b c) I_{2}
\end{aligned}
$$

But by problem 3 , chapter $2.4, A^{2}-(a+d) A+(a d-b c) I_{2}=0$, so $B^{2}=0$.
(iii) Now suppose that $B \neq 0$. Then $B E_{1} \neq 0$ or $B E_{2} \neq 0$, as $B E_{i}$ is the $i-$ th column of B. Hence $B X_{2} \neq 0$, where $X_{2}=E_{1}$ or $X_{2}=E_{2}$.
(iv) Let $X_{1}=B X_{2}$ and $P=\left[X_{1} \mid X_{2}\right]$. We prove P is non-singular by demonstrating that X_{1} and X_{2} are linearly independent.

Assume $x X_{1}+y X_{2}=0$. Then

$$
\begin{aligned}
x B X_{2}+y X_{2} & =0 \\
B\left(x B X_{2}+y X_{2}\right) & =B 0=0 \\
x B^{2} X_{2}+y B X_{2} & =0 \\
x 0 X_{2}+y B X_{2} & =0 \\
y B X_{2} & =0 .
\end{aligned}
$$

Hence $y=0$ as $B X_{2} \neq 0$. Hence $x B X_{2}=0$ and so $x=0$.
Finally, $B X_{1}=B\left(B X_{2}\right)=B^{2} X_{2}=0$, so $\left(A-\alpha I_{2}\right) X_{1}=0$ and

$$
\begin{equation*}
A X_{1}=\alpha X_{1} \tag{2}
\end{equation*}
$$

Also

$$
X_{1}=B X_{2}=\left(A-\alpha I_{2}\right) X_{2}=A X_{2}-\alpha X_{2}
$$

Hence

$$
\begin{equation*}
A X_{2}=X_{1}+\alpha X_{2} \tag{3}
\end{equation*}
$$

Then, using (2) and (3), we have

$$
\begin{aligned}
A P=A\left[X_{1} \mid X_{2}\right] & =\left[A X_{1} \mid A X_{2}\right] \\
& =\left[\alpha X_{1} \mid X_{1}+\alpha X_{2}\right] \\
& =\left[X_{1} \mid X_{2}\right]\left[\begin{array}{cc}
\alpha & 1 \\
0 & \alpha
\end{array}\right]
\end{aligned}
$$

Hence

$$
A P=P\left[\begin{array}{ll}
\alpha & 1 \\
0 & \alpha
\end{array}\right]
$$

and hence

$$
P^{-1} A P=\left[\begin{array}{cc}
\alpha & 1 \\
0 & \alpha
\end{array}\right]
$$

8. The system of differential equations is equivalent to the single matrix equation $\dot{X}=A X$, where $A=\left[\begin{array}{rr}4 & -1 \\ 4 & 8\end{array}\right]$.

The characteristic polynomial of A is $\lambda^{2}-12 \lambda+36=(\lambda-6)^{2}$, so we can use the previous question with $\alpha=6$. Let

$$
B=A-6 I_{2}=\left[\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right] .
$$

Then $B X_{2}=\left[\begin{array}{r}-2 \\ 4\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$, if $X_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Also let $X_{1}=B X_{2}$. Then if $P=\left[X_{1} \mid X_{2}\right]$, we have

$$
P^{-1} A P=\left[\begin{array}{ll}
6 & 1 \\
0 & 6
\end{array}\right] .
$$

Now make the change of variables $X=P Y$, where $Y=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$. Then

$$
\dot{Y}=\left(P^{-1} A P\right) Y=\left[\begin{array}{ll}
6 & 1 \\
0 & 6
\end{array}\right] Y,
$$

or equivalently $\dot{x_{1}}=6 x_{1}+y_{1}$ and $\dot{y_{1}}=6 y_{1}$.
Solving for y_{1} gives $y_{1}=y_{1}(0) e^{6 t}$. Consequently

$$
\dot{x_{1}}=6 x_{1}+y_{1}(0) e^{6 t} .
$$

Multiplying both side of this equation by $e^{-6 t}$ gives

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-6 t} x_{1}\right) & =e^{-6 t} \dot{x_{1}}-6 e^{-6 t} x_{1}=y_{1}(0) \\
e^{-6 t} x_{1} & =y_{1}(0) t+c,
\end{aligned}
$$

where c is a constant. Substituting $t=0$ gives $c=x_{1}(0)$. Hence

$$
e^{-6 t} x_{1}=y_{1}(0) t+x_{1}(0)
$$

and hence

$$
x_{1}=e^{6 t}\left(y_{1}(0) t+x_{1}(0)\right) .
$$

However, since we are assuming $x(0)=1=y(0)$, we have

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right] } & =P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right] \\
& =\frac{1}{-4}\left[\begin{array}{rr}
0 & -1 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{l}
-1 \\
-6
\end{array}\right]=\left[\begin{array}{l}
1 / 4 \\
3 / 2
\end{array}\right]
\end{aligned}
$$

Hence $x_{1}=e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right)$ and $y_{1}=\frac{3}{2} e^{6 t}$.
Finally, solving for x and y,

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{rl}
-2 & 1 \\
4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \\
& =\left[\begin{array}{rr}
-2 & 1 \\
4 & 0
\end{array}\right]\left[\begin{array}{c}
e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right) \\
\frac{3}{2} e^{6 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
(-2) e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right)+\frac{3}{2} e^{6 t} \\
4 e^{6 t}\left(\frac{3}{2} t+\frac{1}{4}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{6 t}(1-3 t) \\
e^{6 t}(6 t+1)
\end{array}\right] .
\end{aligned}
$$

Hence $x=e^{6 t}(1-3 t)$ and $y=e^{6 t}(6 t+1)$.
9. Let

$$
A=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right]
$$

(a) We first determine the characteristic polynomial $\operatorname{ch}_{A}(\lambda)$.

$$
\begin{aligned}
\operatorname{ch}_{A}(\lambda) & =\operatorname{det}\left(\lambda I_{3}-A\right)=\left|\begin{array}{rrr}
\lambda-1 / 2 & -1 / 2 & 0 \\
-1 / 4 & \lambda-1 / 4 & -1 / 2 \\
-1 / 4 & -1 / 4 & \lambda-1 / 2
\end{array}\right| \\
& =\left(\lambda-\frac{1}{2}\right)\left|\begin{array}{rr}
\lambda-1 / 4 & -1 / 2 \\
-1 / 4 & \lambda-1 / 2
\end{array}\right|+\frac{1}{2}\left|\begin{array}{rr}
-1 / 4 & -1 / 2 \\
-1 / 4 & \lambda-1 / 2
\end{array}\right| \\
& =\left(\lambda-\frac{1}{2}\right)\left\{\left(\lambda-\frac{1}{4}\right)\left(\lambda-\frac{1}{2}\right)-\frac{1}{8}\right\}+\frac{1}{2}\left\{\frac{-1}{4}\left(\lambda-\frac{1}{2}\right)-\frac{1}{8}\right\} \\
& =\left(\lambda-\frac{1}{2}\right)\left(\lambda^{2}-\frac{3 \lambda}{4}\right)-\frac{\lambda}{8} \\
& =\lambda\left\{\left(\lambda-\frac{1}{2}\right)\left(\lambda-\frac{3}{4}\right)-\frac{1}{8}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda\left(\lambda^{2}-\frac{5 \lambda}{4}+\frac{1}{4}\right) \\
& =\lambda(\lambda-1)\left(\lambda-\frac{1}{4}\right) .
\end{aligned}
$$

(b) Hence the characteristic polynomial has no repeated roots and we can use Theorem 6.2.2 to find a non-singular matrix P such that

$$
P^{-1} A P=\operatorname{diag}\left(1,0, \frac{1}{4}\right)
$$

We take $P=\left[X_{1}\left|X_{2}\right| X_{3}\right]$, where X_{1}, X_{2}, X_{3} are eigenvectors corresponding to the respective eigenvalues $1,0, \frac{1}{4}$.
Finding X_{1} : We have to solve $\left(A-I_{3}\right) X=0$. we have

$$
A-I_{3}=\left[\begin{array}{rrr}
-1 / 2 & 1 / 2 & 0 \\
1 / 4 & -3 / 4 & 1 / 2 \\
1 / 4 & 1 / 4 & -1 / 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=z$ and $y=z$, with z arbitrary. Hence

$$
X=\left[\begin{array}{l}
z \\
z \\
z
\end{array}\right]=z\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

and we can take $X_{1}=[1,1,1]^{t}$.
Finding X_{2} : We solve $A X=0$. We have

$$
A=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-y$ and $z=0$, with y arbitrary. Hence

$$
X=\left[\begin{array}{r}
-y \\
y \\
0
\end{array}\right]=y\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]
$$

and we can take $X_{2}=[-1,1,0]^{t}$.
Finding X_{3} : We solve $\left(A-\frac{1}{4} I_{3}\right) X=0$. We have

$$
A-\frac{1}{4} I_{3}=\left[\begin{array}{ccc}
1 / 4 & 1 / 2 & 0 \\
1 / 4 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-2 z$ and $y=z$, with z arbitrary. Hence

$$
X=\left[\begin{array}{r}
-2 z \\
z \\
0
\end{array}\right]=z\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]
$$

and we can take $X_{3}=[-2,1,1]^{t}$.
Hence we can take $P=\left[\begin{array}{rrr}1 & -1 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(c) $A=P \operatorname{diag}\left(1,0, \frac{1}{4}\right) P^{-1}$ so $A^{n}=P \operatorname{diag}\left(1,0, \frac{1}{4^{n}}\right) P^{-1}$.

Hence

$$
\begin{aligned}
A^{n} & =\left[\begin{array}{rrr}
1 & -1 & -2 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \frac{1}{4^{n}}
\end{array}\right] \frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 3 & -3 \\
-1 & -1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{rrr}
1 & 0 & -\frac{2}{4^{n}} \\
1 & 0 & \frac{1}{4^{n}} \\
1 & 0 & \frac{1}{4^{n}}
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 3 & -3 \\
-1 & -1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{lll}
1+\frac{2}{4^{n}} & 1+\frac{2}{4^{n}} & 1-\frac{4}{4^{n}} \\
1-\frac{1}{4^{n}} & 1-\frac{1}{4^{n}} & 1+\frac{2}{4^{n}} \\
1-\frac{1}{4^{n}} & 1-\frac{1}{4^{n}} & 1+\frac{2}{4^{n}}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{3 \cdot 4^{n}}\left[\begin{array}{rrr}
2 & 2 & -4 \\
-1 & -1 & 2 \\
-1 & -1 & 2
\end{array}\right] .
\end{aligned}
$$

10. Let

$$
A=\left[\begin{array}{rrr}
5 & 2 & -2 \\
2 & 5 & -2 \\
-2 & -2 & 5
\end{array}\right]
$$

(a) We first determine the characteristic polynomial $\operatorname{ch}_{A}(\lambda)$.

$$
\begin{aligned}
\operatorname{ch}_{A}(\lambda) & \left.=\left\lvert\, \begin{array}{ccc}
\lambda-5 & -2 & 2 \\
-2 & \lambda-5 & 2 \\
2 & 2 & \lambda-5
\end{array}\right.\right] \stackrel{R_{3} \rightarrow R_{3}+R_{2}}{=}\left|\begin{array}{ccc}
\lambda-5 & -2 & 2 \\
-2 & \lambda-5 & 2 \\
0 & \lambda-3 & \lambda-3
\end{array}\right| \\
& =(\lambda-3)\left|\begin{array}{ccc}
\lambda-5 & -2 & 2 \\
-2 & \lambda-5 & 2 \\
0 & 1 & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
C_{3} \rightarrow C_{3}-C_{2} & =(\lambda-3)\left|\begin{array}{ccc}
\lambda-5 & -2 & 4 \\
-2 & \lambda-5 & -\lambda+7 \\
0 & 1 & 0
\end{array}\right| \\
& =-(\lambda-3)\left|\begin{array}{cc}
\lambda-5 & 4 \\
-2 & -\lambda+7
\end{array}\right| \\
& =-(\lambda-3)\{(\lambda-5)(-\lambda+7)+8\} \\
& =-(\lambda-3)\left(-\lambda^{2}+5 \lambda+7 \lambda-35+8\right) \\
& =-(\lambda-3)\left(-\lambda^{2}+12 \lambda-27\right) \\
& =-(\lambda-3)(-1)(\lambda-3)(\lambda-9) \\
& =(\lambda-3)^{2}(\lambda-9) .
\end{aligned}
$$

We have to find bases for each of the eigenspaces $N\left(A-9 I_{3}\right)$ and $N\left(A-3 I_{3}\right)$.
First we solve $\left(A-3 I_{3}\right) X=0$. We have

$$
A-3 I_{3}=\left[\begin{array}{rrr}
2 & 2 & -2 \\
2 & 2 & -2 \\
-2 & -2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-y+z$, with y and z arbitrary. Hence

$$
X=\left[\begin{array}{c}
-y+z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

so $X_{1}=[-1,1,0]^{t}$ and $X_{2}=[1,0,1]^{t}$ form a basis for the eigenspace corresponding to the eigenvalue 3 .

Next we solve $\left(A-9 I_{3}\right) X=0$. We have

$$
A-9 I_{3}=\left[\begin{array}{rrr}
-4 & 2 & -2 \\
2 & -4 & -2 \\
-2 & -2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence the eigenspace consists of vectors $X=[x, y, z]^{t}$ satisfying $x=-z$ and $y=-z$, with z arbitrary. Hence

$$
X=\left[\begin{array}{r}
-z \\
-z \\
z
\end{array}\right]=z\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]
$$

and we can take $X_{3}=[-1,-1,1]^{t}$ as a basis for the eigenspace corresponding to the eigenvalue 9 .

Then Theorem 6.2.3 assures us that $P=\left[X_{1}\left|X_{2}\right| X_{3}\right]$ is non-singular and

$$
P^{-1} A P=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 9
\end{array}\right] .
$$

Figure 1: (a): $x^{2}-8 x+8 y+8=0 ; \quad$ (b): $y^{2}-12 x+2 y+25=0$

Section 7.3

1. (i) $x^{2}-8 x+8 y+8=(x-4)^{2}+8(y-1)$. So the equation $x^{2}-8 x+8 y+8=0$ becomes

$$
\begin{equation*}
x_{1}^{2}+8 y_{1}=0 \tag{1}
\end{equation*}
$$

if we make a translation of axes $x-4=x_{1}, y-1=y_{1}$.
However equation (1) can be written as a standard form

$$
y_{1}=-\frac{1}{8} x_{1}^{2}
$$

which represents a parabola with vertex at $(4,1)$. (See Figure 1(a).)
(ii) $y^{2}-12 x+2 y+25=(y+1)^{2}-12(x-2)$. Hence $y^{2}-12 x+2 y+25=0$ becomes

$$
\begin{equation*}
y_{1}^{2}-12 x_{1}=0 \tag{2}
\end{equation*}
$$

if we make a translation of axes $x-2=x_{1}, y+1=y_{1}$.
However equation (2) can be written as a standard form

$$
y_{1}^{2}=12 x_{1}
$$

which represents a parabola with vertex at $(2,-1)$. (See Figure 1(b).)
2. $4 x y-3 y^{2}=X^{t} A X$, where $A=\left[\begin{array}{rr}0 & 2 \\ 2 & -3\end{array}\right]$ and $X=\left[\begin{array}{l}x \\ y\end{array}\right]$. The eigenvalues of A are the roots of $\lambda^{2}+3 \lambda-4=0$, namely $\lambda_{1}=-4$ and $\lambda_{2}=1$.

The eigenvectors corresponding to an eigenvalue λ are the non-zero vectors $[x, y]^{t}$ satisfying

$$
\left[\begin{array}{cc}
0-\lambda & 2 \\
2 & -3-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\lambda_{1}=-4$ gives equations

$$
\begin{array}{r}
4 x+2 y=0 \\
2 x+y=0
\end{array}
$$

which has the solution $y=-2 x$. Hence

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
x \\
-2 x
\end{array}\right]=x\left[\begin{array}{r}
1 \\
-2
\end{array}\right] .
$$

A corresponding unit eigenvector is $[1 / \sqrt{5},-2 / \sqrt{5}]^{t}$.
$\lambda_{2}=1$ gives equations

$$
\begin{array}{r}
-x+2 y=0 \\
2 x-4 y=0
\end{array}
$$

which has the solution $x=2 y$. Hence

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
2 y \\
y
\end{array}\right]=y\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

A corresponding unit eigenvector is $[2 / \sqrt{5}, 1 / \sqrt{5}]^{t}$.
Hence if

$$
P=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]
$$

then P is an orthogonal matrix. Also as $\operatorname{det} P=1, P$ is a proper orthogonal matrix and the equation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

represents a rotation to new x_{1}, y_{1} axes whose positive directions are given by the respective columns of P. Also

$$
P^{t} A P=\left[\begin{array}{rr}
-4 & 0 \\
0 & 1
\end{array}\right]
$$

Then $X^{t} A X=-4 x_{1}^{2}+y_{1}^{2}$ and the original equation $4 x y-3 y^{2}=8$ becomes $-4 x_{1}^{2}+y_{1}^{2}=8$, or the standard form

$$
\frac{-x_{1}^{2}}{2}+\frac{y_{1}^{2}}{8}=1
$$

which represents an hyperbola.
The asymptotes assist in drawing the curve. They are given by the equations

$$
\frac{-x_{1}^{2}}{2}+\frac{y_{1}^{2}}{8}=0, \quad \text { or } \quad y_{1}= \pm 2 x_{1}
$$

Now

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=P^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

SO

$$
x_{1}=\frac{x-2 y}{\sqrt{5}}, \quad y_{1}=\frac{2 x+y}{\sqrt{5}}
$$

Hence the asymptotes are

$$
\frac{2 x+y}{\sqrt{5}}= \pm 2\left(\frac{x-2 y}{\sqrt{5}}\right)
$$

which reduces to $y=0$ and $y=4 x / 3$. (See Figure 2(a).)
3. $8 x^{2}-4 x y+5 y^{2}=X^{t} A X$, where $A=\left[\begin{array}{rr}8 & -2 \\ -2 & 5\end{array}\right]$ and $X=\left[\begin{array}{l}x \\ y\end{array}\right]$. The eigenvalues of A are the roots of $\lambda^{2}-13 \lambda+36=0$, namely $\lambda_{1}=4$ and $\lambda_{2}=9$. Corresponding unit eigenvectors turn out to be $[1 / \sqrt{5}, 2 / \sqrt{5}]^{t}$ and $[-2 / \sqrt{5}, 1 / \sqrt{5}]^{t}$. Hence if

$$
P=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]
$$

then P is an orthogonal matrix. Also as $\operatorname{det} P=1, P$ is a proper orthogonal matrix and the equation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

represents a rotation to new x_{1}, y_{1} axes whose positive directions are given by the respective columns of P. Also

$$
P^{t} A P=\left[\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right]
$$

Figure 2: (a): $4 x y-3 y^{2}=8 ; \quad$ (b): $8 x^{2}-4 x y+5 y^{2}=36$

Then $X^{t} A X=4 x_{1}^{2}+9 y_{1}^{2}$ and the original equation $8 x^{2}-4 x y+5 y^{2}=36$ becomes $4 x_{1}^{2}+9 y_{1}^{2}=36$, or the standard form

$$
\frac{x_{1}^{2}}{9}+\frac{y_{1}^{2}}{4}=1
$$

which represents an ellipse as in Figure 2(b).
The axes of symmetry turn out to be $y=2 x$ and $x=-2 y$.
4. We give the sketch only for parts (i), (iii) and (iv). We give the working for (ii) only. See Figures 3(a) and 4(a) and 4(b), respectively.
(ii) We have to investigate the equation

$$
\begin{equation*}
5 x^{2}-4 x y+8 y^{2}+4 \sqrt{5} x-16 \sqrt{5} y+4=0 \tag{3}
\end{equation*}
$$

Here $5 x^{2}-4 x y+8 y^{2}=X^{t} A X$, where $A=\left[\begin{array}{rr}5 & -2 \\ -2 & 8\end{array}\right]$ and $X=\left[\begin{array}{l}x \\ y\end{array}\right]$.
The eigenvalues of A are the roots of $\lambda^{2}-13 \lambda+36=0$, namely $\lambda_{1}=9$ and $\lambda_{2}=4$. Corresponding unit eigenvectors turn out to be $[1 / \sqrt{5},-2 / \sqrt{5}]^{t}$ and $[2 / \sqrt{5}, 1 / \sqrt{5}]^{t}$. Hence if

$$
P=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]
$$

then P is an orthogonal matrix. Also as $\operatorname{det} P=1, P$ is a proper orthogonal matrix and the equation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

Figure 3: (a): $4 x^{2}-9 y^{2}-24 x-36 y-36=0$;
(b): $5 x^{2}-4 x y+8 y^{2}+$ $\sqrt{5} x-16 \sqrt{5} y+4=0$

Figure 4: (a): $4 x^{2}+y^{2}-4 x y-10 y-19=0 ; \quad$ (b): $77 x^{2}+78 x y-27 y^{2}+$ $70 x-30 y+29=0$
represents a rotation to new x_{1}, y_{1} axes whose positive directions are given by the respective columns of P. Also

$$
P^{t} A P=\left[\begin{array}{ll}
9 & 0 \\
0 & 4
\end{array}\right]
$$

Moreover

$$
5 x^{2}-4 x y+8 y^{2}=9 x_{1}^{2}+4 y_{1}^{2}
$$

To get the coefficients of x_{1} and y_{1} in the transformed form of equation (3), we have to use the rotation equations

$$
x=\frac{1}{\sqrt{5}}\left(x_{1}+2 y_{1}\right), \quad y=\frac{1}{\sqrt{5}}\left(-2 x_{1}+y_{1}\right) .
$$

Then equation (3) transforms to

$$
9 x_{1}^{2}+4 y_{1}^{2}+36 x_{1}-8 y_{1}+4=0
$$

or, on completing the square,

$$
9\left(x_{1}+2\right)^{2}+4\left(y_{1}-1\right)^{2}=36
$$

or in standard form

$$
\frac{x_{2}^{2}}{4}+\frac{y_{2}^{2}}{9}=1
$$

where $x_{2}=x_{1}+2$ and $y_{2}=y_{1}-1$. Thus we have an ellipse, centre $\left(x_{2}, y_{2}\right)=(0,0)$, or $\left(x_{1}, y_{1}\right)=(-2,1)$, or $(x, y)=(0, \sqrt{5})$.

The axes of symmetry are given by $x_{2}=0$ and $y_{2}=0$, or $x_{1}+2=0$ and $y_{1}-1=0$, or

$$
\frac{1}{\sqrt{5}}(x-2 y)+2=0 \quad \text { and } \quad \frac{1}{\sqrt{5}}(2 x+y)-1=0
$$

which reduce to $x-2 y+2 \sqrt{5}=0$ and $2 x+y-\sqrt{5}=0$. See Figure 3(b).
5. (i) Consider the equation

$$
\begin{gather*}
2 x^{2}+y^{2}+3 x y-5 x-4 y+3=0 . \tag{4}\\
\Delta=\left|\begin{array}{rrr}
2 & 3 / 2 & -5 / 2 \\
3 / 2 & 1 & -2 \\
-5 / 2 & -2 & 3
\end{array}\right|=8\left|\begin{array}{rrr}
4 & 3 & -5 \\
3 & 2 & -4 \\
-5 & -4 & 6
\end{array}\right|=8\left|\begin{array}{rrr}
1 & 1 & -1 \\
3 & 2 & -4 \\
-2 & -2 & 2
\end{array}\right|=0 .
\end{gather*}
$$

Let $x=x_{1}+\alpha, y=y_{1}+\beta$ and substitute in equation (4) to get
$2\left(x_{1}+\alpha\right)^{2}+\left(y_{1}+\beta\right)^{2}+3\left(x_{1}+\alpha\right)\left(y_{1}+\beta\right)-5\left(x_{1}+\alpha\right)-4\left(y_{1}+\beta\right)+3=0$
Then equating the coefficients of x_{1} and y_{1} to 0 gives

$$
\begin{aligned}
& 4 \alpha+3 \beta-5=0 \\
& 3 \alpha+2 \beta-4=0
\end{aligned}
$$

which has the unique solution $\alpha=2, \beta=-1$. Then equation (5) simplifies to

$$
2 x_{1}^{2}+y_{1}^{2}+3 x_{1} y_{1}=0=\left(2 x_{1}+y_{1}\right)\left(x_{1}+y_{1}\right) .
$$

So relative to the x_{1}, y_{1} coordinates, equation (4) describes two lines: $2 x_{1}+$ $y_{1}=0$ and $x_{1}+y_{1}=0$. In terms of the original x, y coordinates, these lines become $2(x-2)+(y+1)=0$ and $(x-2)+(y+1)=0$, i.e. $2 x+y-3=0$ and $x+y-1=0$, which intersect in the point

$$
(x, y)=(\alpha, \beta)=(2,-1)
$$

(ii) Consider the equation

$$
\begin{equation*}
9 x^{2}+y^{2}-6 x y+6 x-2 y+1=0 . \tag{6}
\end{equation*}
$$

Here

$$
\Delta=\left|\begin{array}{rrr}
9 & -3 & 3 \\
3 & 1 & -1 \\
3 & -1 & 1
\end{array}\right|=0,
$$

as column $3=-$ column 2 .
Let $x=x_{1}+\alpha, y=y_{1}+\beta$ and substitute in equation (6) to get $9\left(x_{1}+\alpha\right)^{2}+\left(y_{1}+\beta\right)^{2}-6\left(x_{1}+\alpha\right)\left(y_{1}+\beta\right)+6\left(x_{1}+\alpha\right)-2\left(y_{1}+\beta\right)+1=0$.

Then equating the coefficients of x_{1} and y_{1} to 0 gives

$$
\begin{array}{r}
18 \alpha-6 \beta+6=0 \\
-6 \alpha+2 \beta-2=0
\end{array}
$$

or equivalently $-3 \alpha+\beta-1=0$. Take $\alpha=0$ and $\beta=1$. Then equation (6) simplifies to

$$
\begin{equation*}
9 x_{1}^{2}+y_{1}^{2}-6 x_{1} y_{1}=0=\left(3 x_{1}-y_{1}\right)^{2} . \tag{7}
\end{equation*}
$$

In terms of x, y coordinates, equation (7) becomes

$$
(3 x-(y-1))^{2}=0, \text { or } 3 x-y+1=0 .
$$

(iii) Consider the equation

$$
\begin{equation*}
x^{2}+4 x y+4 y^{2}-x-2 y-2=0 . \tag{8}
\end{equation*}
$$

Arguing as in the previous examples, we find that any translation

$$
x=x_{1}+\alpha, \quad y=y_{1}+\beta
$$

where $2 \alpha+4 \beta-1=0$ has the property that the coefficients of x_{1} and y_{1} will be zero in the transformed version of equation (8). Take $\beta=0$ and $\alpha=1 / 2$. Then (8) reduces to

$$
x_{1}^{2}+4 x_{1} y_{1}+4 y_{1}^{2}-\frac{9}{4}=0,
$$

or $\left(x_{1}+2 y_{1}\right)^{2}=3 / 2$. Hence $x_{1}+2 y_{1}= \pm 3 / 2$, with corresponding equations

$$
x+2 y=2 \quad \text { and } \quad x+2 y=-1 .
$$

Section 8.8

1. The given line has equations

$$
\begin{aligned}
x & =3+t(13-3)=3+10 t \\
y & =-2+t(3+2)=-2+5 t \\
z & =7+t(-8-7)=7-15 t
\end{aligned}
$$

The line meets the plane $y=0$ in the point $(x, 0, z)$, where $0=-2+5 t$, or $t=2 / 5$. The corresponding values for x and z are 7 and 1 , respectively.
2. $\mathbf{E}=\frac{1}{2}(\mathbf{B}+\mathbf{C}), \mathbf{F}=(1-t) \mathbf{A}+t \mathbf{E}$, where

$$
t=\frac{A F}{A E}=\frac{A F}{A F+F E}=\frac{A F / F E}{(A F / F E)+1}=\frac{2}{3}
$$

Hence

$$
\begin{aligned}
\mathbf{F} & =\frac{1}{3} \mathbf{A}+\frac{2}{3}\left(\frac{1}{2}(\mathbf{B}+\mathbf{C})\right) \\
& =\frac{1}{3} \mathbf{A}+\frac{1}{3}(\mathbf{B}+\mathbf{C}) \\
& =\frac{1}{3}(\mathbf{A}+\mathbf{B}+\mathbf{C})
\end{aligned}
$$

3. Let $A=(2,1,4), B=(1,-1,2), C=(3,3,6)$. Then we prove $\overrightarrow{A C}=$ $t \overrightarrow{A B}$ for some real t. We have

$$
\overrightarrow{A C}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \quad \overrightarrow{A B}=\left[\begin{array}{c}
-1 \\
-2 \\
-2
\end{array}\right]
$$

Hence $\overrightarrow{A C}=(-1) \overrightarrow{A B}$ and consequently C is on the line $A B$. In fact A is between C and B, with $A C=A B$.
4. The points P on the line $A B$ which satisfy $A P=\frac{2}{5} P B$ are given by $\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}$, where $|t /(1-t)|=2 / 5$. Hence $t /(1-t)= \pm 2 / 5$.

The equation $t /(1-t)=2 / 5$ gives $t=2 / 7$ and hence

$$
\mathbf{P}=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right]+\frac{2}{7}\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
16 / 7 \\
29 / 7 \\
3 / 7
\end{array}\right]
$$

Hence $P=(16 / 7,29 / 7,3 / 7)$.
The equation $t /(1-t)=-2 / 5$ gives $t=-2 / 3$ and hence

$$
\mathbf{P}=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right]-\frac{2}{3}\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 / 3 \\
1 / 3 \\
-13 / 3
\end{array}\right]
$$

Hence $P=(4 / 3,1 / 3,-13 / 3)$.
5. An equation for \mathcal{M} is $\mathbf{P}=\mathbf{A}+t \overrightarrow{B C}$, which reduces to

$$
\begin{aligned}
x & =1+6 t \\
y & =2-3 t \\
z & =3+7 t
\end{aligned}
$$

An equation for \mathcal{N} is $\mathbf{Q}=\mathbf{E}+s \overrightarrow{E F}$, which reduces to

$$
\begin{aligned}
x & =1+9 s \\
y & =-1 \\
z & =8+3 s
\end{aligned}
$$

To find if and where \mathcal{M} and \mathcal{N} intersect, we set $P=Q$ and attempt to solve for s and t. We find the unique solution $t=1, s=2 / 3$, proving that the lines meet in the point

$$
(x, y, z)=(1+6,2-3,3+7)=(7,-1,10)
$$

6. Let $A=(-3,5,6), B=(-2,7,9), C=(2,1,7)$. Then
(i)

$$
\cos \angle A B C=(\overrightarrow{B A} \cdot \overrightarrow{B C}) /(B A \cdot B C),
$$

where $\overrightarrow{B A}=[-1,-2,-3]^{t}$ and $\overrightarrow{B C}=[4,-6,-2]^{t}$. Hence

$$
\cos \angle A B C=\frac{-4+12+6}{\sqrt{14} \sqrt{56}}=\frac{14}{\sqrt{14} \sqrt{56}}=\frac{1}{2} .
$$

Hence $\angle A B C=\pi / 3$ radians or 60°.
(ii)

$$
\cos \angle B A C=(\overrightarrow{A B} \cdot \overrightarrow{A C}) /(A B \cdot A C)
$$

where $\overrightarrow{A B}=[1,2,3]^{t}$ and $\overrightarrow{A C}=[5,-4,1]^{t}$. Hence

$$
\cos \angle B A C=\frac{5-8+3}{\sqrt{14} \sqrt{42}}=0 .
$$

Hence $\angle A B C=\pi / 2$ radians or 90°.
(iii)

$$
\cos \angle A C B=(\overrightarrow{C A} \cdot \overrightarrow{C B}) /(C A \cdot C B)
$$

where $\overrightarrow{C A}=[-5,4,-1]^{t}$ and $\overrightarrow{C B}=[-4,6,2]^{t}$. Hence

$$
\cos \angle A C B=\frac{20+24-2}{\sqrt{42} \sqrt{56}}=\frac{42}{\sqrt{42} \sqrt{56}}=\frac{\sqrt{42}}{\sqrt{56}}=\frac{\sqrt{3}}{2} .
$$

Hence $\angle A C B=\pi / 6$ radians or 30°.
7. By Theorem 8.5.2, the closest point P on the line $A B$ to the origin O is given by $\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}$, where

$$
t=\frac{\overrightarrow{A O} \cdot \overrightarrow{A B}}{A B^{2}}=\frac{-\mathbf{A} \cdot \overrightarrow{A B}}{A B^{2}}
$$

Now

$$
\mathbf{A} \cdot \overrightarrow{A B}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=-2 .
$$

Hence $t=2 / 11$ and

$$
\mathbf{P}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right]+\frac{2}{11}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-16 / 11 \\
13 / 11 \\
35 / 11
\end{array}\right]
$$

and $P=(-16 / 11,13 / 11,35 / 11)$.
Consequently the shortest distance $O P$ is given by

$$
\sqrt{\left(\frac{-16}{11}\right)^{2}+\left(\frac{13}{11}\right)^{2}+\left(\frac{35}{11}\right)^{2}}=\frac{\sqrt{1650}}{11}=\frac{\sqrt{15 \times 11 \times 10}}{11}=\frac{\sqrt{150}}{\sqrt{11}} .
$$

Alternatively, we can calculate the distance $O P^{2}$, where P is an arbitrary point on the line $A B$ and then minimize $O P^{2}$:

$$
\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right]+t\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2+3 t \\
1+t \\
3+t
\end{array}\right]
$$

Hence

$$
\begin{aligned}
O P^{2} & =(-2+3 t)^{2}+(1+t)^{2}+(3+t)^{2} \\
& =11 t^{2}-4 t+14 \\
& =11\left(t^{2}-\frac{4}{11} t+\frac{14}{11}\right) \\
& =11\left(\left\{t-\frac{2}{11}\right\}^{2}+\frac{14}{11}-\frac{4}{121}\right) \\
& =11\left(\left\{t-\frac{2}{11}\right\}^{2}+\frac{150}{121}\right) .
\end{aligned}
$$

Consequently

$$
O P^{2} \geq 11 \times \frac{150}{121}
$$

for all t; moreover

$$
O P^{2}=11 \times \frac{150}{121}
$$

when $t=2 / 11$.
8. We first find parametric equations for \mathcal{N} by solving the equations

$$
\begin{aligned}
& x+y-2 z=1 \\
& x+3 y-z=4
\end{aligned}
$$

The augmented matrix is

$$
\left[\begin{array}{llll}
1 & 1 & -2 & 1 \\
1 & 3 & -1 & 4
\end{array}\right],
$$

which reduces to

$$
\left[\begin{array}{rrrr}
1 & 0 & -5 / 2 & -1 / 2 \\
0 & 1 & 1 / 2 & 3 / 2
\end{array}\right] .
$$

Hence $x=-\frac{1}{2}+\frac{5}{2} z, y=\frac{3}{2}-\frac{z}{2}$, with z arbitrary. Taking $z=0$ gives a point $A=\left(-\frac{1}{2}, \frac{3}{2}, 0\right)$, while $z=1$ gives a point $B=(2,1,1)$.

Hence if $C=(1,0,1)$, then the closest point on \mathcal{N} to C is given by $\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}$, where $t=(\overrightarrow{A C} \cdot \overrightarrow{A B}) / A B^{2}$.

Now

$$
\overrightarrow{A C}=\left[\begin{array}{c}
3 / 2 \\
-3 / 2 \\
1
\end{array}\right] \quad \text { and } \quad \overrightarrow{A B}=\left[\begin{array}{c}
5 / 2 \\
-1 / 2 \\
1
\end{array}\right]
$$

so

$$
t=\frac{\frac{3}{2} \times \frac{5}{2}+\frac{-3}{2} \times \frac{-1}{2}+1 \times 1}{\left(\frac{5}{2}\right)^{2}+\left(\frac{-1}{2}\right)^{2}+1^{2}}=\frac{11}{15} .
$$

Hence

$$
\mathbf{P}=\left[\begin{array}{r}
-1 / 2 \\
3 / 2 \\
0
\end{array}\right]+\frac{11}{15}\left[\begin{array}{c}
5 / 2 \\
-1 / 2 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 / 3 \\
17 / 15 \\
11 / 15
\end{array}\right]
$$

so $P=(4 / 3,17 / 15,11 / 15)$.
Also the shortest distance $P C$ is given by

$$
P C=\sqrt{\left(1-\frac{4}{3}\right)^{2}+\left(0-\frac{17}{15}\right)^{2}+\left(1-\frac{11}{15}\right)^{2}}=\frac{\sqrt{330}}{15}
$$

9. The intersection of the planes $x+y-2 z=4$ and $3 x-2 y+z=1$ is the line given by the equations

$$
x=\frac{9}{5}+\frac{3}{5} z, y=\frac{11}{5}+\frac{7}{5} z
$$

where z is arbitrary. Hence the line \mathcal{L} has a direction vector $[3 / 5,7 / 5,1]^{t}$ or the simpler $[3,7,5]^{t}$. Then any plane of the form $3 x+7 y+5 z=d$ will be perpendicualr to \mathcal{L}. The required plane has to pass through the point $(6,0,2)$, so this determines d :

$$
3 \times 6+7 \times 0+5 \times 2=d=28
$$

10. The length of the projection of the segment $A B$ onto the line $C D$ is given by the formula

$$
\frac{|\overrightarrow{C D} \cdot \overrightarrow{A B}|}{C D}
$$

Here $\overrightarrow{C D}=[-8,4,-1]^{t}$ and $\overrightarrow{A B}=[4,-4,3]^{t}$, so

$$
\begin{aligned}
\frac{|\overrightarrow{C D} \cdot \overrightarrow{A B}|}{C D} & =\frac{|(-8) \times 4+4 \times(-4)+(-1) \times 3|}{\sqrt{(-8)^{2}+4^{2}+(-1)^{2}}} \\
& =\frac{|-51|}{\sqrt{81}}=\frac{51}{9}=\frac{17}{3}
\end{aligned}
$$

11. A direction vector for \mathcal{L} is given by $\overrightarrow{B C}=[-5,-2,3]^{t}$. Hence the plane through A perpendicular to \mathcal{L} is given by

$$
-5 x-2 y+3 z=(-5) \times 3+(-2) \times(-1)+3 \times 2=-7
$$

The position vector \mathbf{P} of an arbitrary point P on \mathcal{L} is given by $\mathbf{P}=\mathbf{B}+t \overrightarrow{B C}$, or

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]+t\left[\begin{array}{r}
-5 \\
-2 \\
3
\end{array}\right]
$$

or equivalently $x=2-5 t, y=1-2 t, z=4+3 t$.
To find the intersection of line \mathcal{L} and the given plane, we substitute the expressions for x, y, z found in terms of t into the plane equation and solve the resulting linear equation for t :

$$
-5(2-5 t)-2(1-2 t)+3(4+3 t)=-7
$$

which gives $t=-7 / 38$. Hence $P=\left(\frac{111}{38}, \frac{52}{38}, \frac{131}{38}\right)$ and

$$
\begin{aligned}
A P & =\sqrt{\left(3-\frac{111}{38}\right)^{2}+\left(-1-\frac{52}{38}\right)^{2}+\left(2-\frac{131}{38}\right)^{2}} \\
& =\frac{\sqrt{11134}}{38}=\frac{\sqrt{293 \times 38}}{38}=\frac{\sqrt{293}}{\sqrt{38}}
\end{aligned}
$$

12. Let P be a point inside the triangle $A B C$. Then the line through P and parallel to $A C$ will meet the segments $A B$ and $B C$ in D and E, respectively. Then

$$
\begin{array}{ll}
\mathbf{P}=(1-r) \mathbf{D}+r \mathbf{E}, & 0<r<1 \\
\mathbf{D}=(1-s) \mathbf{B}+s \mathbf{A}, & 0<s<1 \\
\mathbf{E}=(1-t) \mathbf{B}+t \mathbf{C}, & 0<t<1
\end{array}
$$

Hence

$$
\begin{aligned}
\mathbf{P} & =(1-r)\{(1-s) \mathbf{B}+s \mathbf{A}\}+r\{(1-t) \mathbf{B}+t \mathbf{C}\} \\
& =(1-r) s \mathbf{A}+\{(1-r)(1-s)+r(1-t)\} \mathbf{B}+r t \mathbf{C} \\
& =\alpha \mathbf{A}+\beta \mathbf{B}+\gamma \mathbf{C}
\end{aligned}
$$

where

$$
\alpha=(1-r) s, \quad \beta=(1-r)(1-s)+r(1-t), \quad \gamma=r t
$$

Then $0<\alpha<1,0<\gamma<1,0<\beta<(1-r)+r=1$. Also

$$
\alpha+\beta+\gamma=(1-r) s+(1-r)(1-s)+r(1-t)+r t=1
$$

13. The line $A B$ is given by $\mathbf{P}=\mathbf{A}+t[3,4,5]^{t}$, or

$$
x=6+3 t, \quad y=-1+4 t, \quad z=11+5 t
$$

Then B is found by substituting these expressions in the plane equation

$$
3 x+4 y+5 z=10
$$

We find $t=-59 / 50$ and consequently

$$
B=\left(6-\frac{177}{50},-1-\frac{236}{50}, 11-\frac{295}{50}\right)=\left(\frac{123}{50}, \frac{-286}{50}, \frac{255}{50}\right) .
$$

Then

$$
\begin{aligned}
A B & =\|\overrightarrow{A B}\|=\left\|t\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]\right\| \\
& =|t| \sqrt{3^{2}+4^{2}+5^{2}}=\frac{59}{50} \times \sqrt{50}=\frac{59}{\sqrt{50}}
\end{aligned}
$$

14. Let $A=(-3,0,2), B=(6,1,4), C=(-5,1,0)$. Then the area of triangle $A B C$ is $\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|$. Now

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left[\begin{array}{l}
9 \\
1 \\
2
\end{array}\right] \times\left[\begin{array}{r}
-2 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-4 \\
14 \\
11
\end{array}\right]
$$

Hence $\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{333}$.
15. Let $A_{1}=(2,1,4), A_{2}=(1,-1,2), A_{3}=(4,-1,1)$. Then the point $P=(x, y, z)$ lies on the plane $A_{1} A_{2} A_{3}$ if and only if

$$
\overrightarrow{A_{1} P} \cdot\left({\overrightarrow{A_{1} A}}_{2} \times{\overrightarrow{A_{1}}}_{3}\right)=0
$$

or

$$
\left|\begin{array}{ccc}
x-2 & y-1 & z-4 \\
-1 & -2 & -2 \\
2 & -2 & -3
\end{array}\right|=2 x-7 y+6 z-21=0
$$

16. Non-parallel lines \mathcal{L} and \mathcal{M} in three dimensional space are given by equations

$$
\mathbf{P}=\mathbf{A}+s X, \quad \mathbf{Q}=\mathbf{B}+t Y
$$

(i) Suppose $\overrightarrow{P Q}$ is orthogonal to both X and Y. Now

$$
\overrightarrow{P Q}=\mathbf{Q}-\mathbf{P}=(\mathbf{B}+t Y)-(\mathbf{A}+s X)=\overrightarrow{A B}+t Y-s X
$$

Hence

$$
\begin{aligned}
& (\overrightarrow{A B}+t Y+s X) \cdot X=0 \\
& (\overrightarrow{A B}+t Y+s X) \cdot Y=0
\end{aligned}
$$

More explicitly

$$
\begin{aligned}
t(Y \cdot X)-s(X \cdot X) & =-\overrightarrow{A B} \cdot X \\
t(Y \cdot Y)-s(X \cdot Y) & =-\overrightarrow{A B} \cdot Y
\end{aligned}
$$

However the coefficient determinant of this system of linear equations in t and s is equal to

$$
\begin{aligned}
\left|\begin{array}{rr}
Y \cdot X & -X \cdot X \\
Y \cdot Y & -X \cdot Y
\end{array}\right| & =-(X \cdot Y)^{2}+(X \cdot X)(Y \cdot Y) \\
& =\|X \times Y\|^{2} \neq 0
\end{aligned}
$$

as $X \neq 0, Y \neq 0$ and X and Y are not proportional $(\mathcal{L}$ and \mathcal{M} are not parallel).
(ii) P and Q can be viewed as the projections of C and D onto the line $P Q$, where C and D are arbitrary points on the lines \mathcal{L} and \mathcal{M}, respectively. Hence by equation (8.14) of Theorem 8.5.3, we have

$$
P Q \leq C D
$$

Finally we derive a useful formula for $P Q$. Again by Theorem 8.5.3

$$
P Q=\frac{|\overrightarrow{A B} \cdot \overrightarrow{P Q}|}{P Q}=|\overrightarrow{A B} \cdot \hat{n}|
$$

where $\hat{n}=\frac{1}{P Q} \overrightarrow{P Q}$ is a unit vector which is orthogonal to X and Y. Hence

$$
\hat{n}=t(X \times Y),
$$

where $t= \pm 1 /\|X \times Y\|$. Hence

$$
P Q=\frac{|\overrightarrow{A B} \cdot(X \times Y)|}{\|X \times Y\|}
$$

17. We use the formula of the previous question.

Line \mathcal{L} has the equation $\mathbf{P}=\mathbf{A}+s X$, where

$$
X=\overrightarrow{A C}=\left[\begin{array}{r}
2 \\
-3 \\
3
\end{array}\right] .
$$

Line \mathcal{M} has the equation $\mathbf{Q}=\mathbf{B}+t Y$, where

$$
Y=\overrightarrow{B D}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Hence $X \times Y=[-6,1,5]^{t}$ and $\|X \times Y\|=\sqrt{62}$.

Hence the shortest distance between lines $A C$ and $B D$ is equal to

$$
\frac{|\overrightarrow{A B} \cdot(X \times Y)|}{\|X \times Y\|}=\frac{\left|\left[\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
-6 \\
1 \\
5
\end{array}\right]\right|}{\sqrt{62}}=\frac{3}{\sqrt{62}}
$$

18. Let E be the foot of the perpendicular from A_{4} to the plane $A_{1} A_{2} A_{3}$. Then

$$
\operatorname{vol} A_{1} A_{2} A_{3} A_{4}=\frac{1}{3}\left(\text { area } \Delta A_{1} A_{2} A_{3}\right) \cdot A_{4} E
$$

Now

$$
\text { area } \Delta A_{1} A_{2} A_{3}=\frac{1}{2}\left\|{\overrightarrow{A_{1}}}_{2} \times{\overrightarrow{A_{1}}}_{3}\right\|
$$

Also $A_{4} E$ is the length of the projection of $A_{1} A_{4}$ onto the line $A_{4} E$. (See figure above.)

Hence $A_{4} E=\left|{\overrightarrow{A_{1} A}}_{4} \cdot X\right|$, where X is a unit direction vector for the line $A_{4} E$. We can take

$$
X=\frac{\overrightarrow{A_{1} A_{2}} \times \overrightarrow{A_{1} \vec{A}_{3}}}{\left\|\overrightarrow{A_{1} \vec{A}_{2}} \times \overrightarrow{A_{1} \vec{A}_{3}}\right\|}
$$

Hence

$$
\begin{aligned}
\operatorname{vol} A_{1} A_{2} A_{3} A_{4} & =\frac{1}{6} \|{\overrightarrow{A_{1} A_{2}}}_{2} \times{\overrightarrow{A_{1}}}_{3}| | \frac{\left|\overrightarrow{A_{1} A_{4}} \cdot\left(\overrightarrow{A_{1} A_{2}} \times \overrightarrow{A_{1} A_{3}}\right)\right|}{| | \overrightarrow{A_{1} A_{2}} \times \overrightarrow{A_{1} A_{3}} \|} \\
& =\frac{1}{6}\left|\overrightarrow{A_{1} A_{4}} \cdot\left({\overrightarrow{A_{1} A_{2}}}_{2} \times \overrightarrow{A_{1}}{ }_{3}\right)\right|
\end{aligned}
$$

$$
=\frac{1}{6}\left|\left(\overrightarrow{A_{1} A_{2}} \times \overrightarrow{A_{1} A_{3}}\right) \cdot{\overrightarrow{A_{1} A}}_{4}\right| .
$$

19. We have $\overrightarrow{C B}=[1,4,-1]^{t}, \overrightarrow{C D}=[-3,3,0]^{t}, \overrightarrow{A D}=[3,0,3]^{t}$. Hence

$$
\overrightarrow{C B} \times \overrightarrow{C D}=3 \mathbf{i}+3 \mathbf{j}+15 \mathbf{k}
$$

so the vector $\mathbf{i}+\mathbf{j}+5 \mathbf{k}$ is perpendicular to the plane $B C D$.
Now the plane $B C D$ has equation $x+y+5 z=9$, as $B=(2,2,1)$ is on the plane.

Also the line through A normal to plane $B C D$ has equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]=(1+t)\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]
$$

Hence $x=1+t, y=1+t, z=5(1+t)$.
[We remark that this line meets plane $B C D$ in a point E which is given by a value of t found by solving

$$
(1+t)+(1+t)+5(5+5 t)=9
$$

So $t=-2 / 3$ and $E=(1 / 3,1 / 3,5 / 3)$.]
The distance from A to plane $B C D$ is

$$
\frac{|1 \times 1+1 \times 1+5 \times 5-9|}{1^{2}+1^{2}+5^{2}}=\frac{18}{\sqrt{27}}=2 \sqrt{3} .
$$

To find the distance between lines $A D$ and $B C$, we first note that
(a) The equation of $A D$ is

$$
\mathbf{P}=\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
1+3 t \\
1 \\
5+3 t
\end{array}\right]
$$

(b) The equation of $B C$ is

$$
\mathbf{Q}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]+s\left[\begin{array}{r}
1 \\
4 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2+s \\
2+4 s \\
1-s
\end{array}\right]
$$

Then $\overrightarrow{P Q}=[1+s-3 t, 1+4 s,-4-s-3 t]^{t}$ and we find s and t by solving the equations $\overrightarrow{P Q} \cdot \overrightarrow{A D}=0$ and $\overrightarrow{P Q} \cdot \overrightarrow{B C}=0$, or

$$
\begin{aligned}
(1+s-3 t) 3+(1+4 s) 0+(-4-s-3 t) 3 & =0 \\
(1+s-3 t)+4(1+4 s)-(-4-s-3 t) & =0 .
\end{aligned}
$$

Hence $t=-1 / 2=s$.
Correspondingly, $P=(-1 / 2,1,7 / 2)$ and $Q=(3 / 2,0,3 / 2)$.
Thus we have found the closest points P and Q on the respective lines $A D$ and $B C$. Finally the shortest distance between the lines is

$$
P Q=\|\overrightarrow{P Q}\|=3 .
$$

