
Chapter 8

THREE–DIMENSIONAL

GEOMETRY

8.1 Introduction

In this chapter we present a vector–algebra approach to three–dimensional
geometry. The aim is to present standard properties of lines and planes,
with minimum use of complicated three–dimensional diagrams such as those
involving similar triangles. We summarize the chapter:

Points are defined as ordered triples of real numbers and the distance

between points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) is defined by the
formula

P1P2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Directed line segments
-

AB are introduced as three–dimensional column
vectors: If A = (x1, y1, z1) and B = (x2, y2, z2), then

-
AB=





x2 − x1

y2 − y1

z2 − z1



 .

If P is a point, we let P =
-

OP and call P the position vector of P .
With suitable definitions of lines, parallel lines, there are important ge-

ometrical interpretations of equality, addition and scalar multiplication of
vectors.

(i) Equality of vectors: Suppose A, B, C, D are distinct points such that

no three are collinear. Then
-

AB=
-

CD if and only if
-

AB ‖
-

CD and
-

AC ‖
-

BD (See Figure 8.1.)
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Figure 8.1: Equality and addition of vectors.

(ii) Addition of vectors obeys the parallelogram law: Let A, B, C be non–
collinear. Then

-
AB +

-
AC=

-
AD,

where D is the point such that
-

AB ‖
-

CD and
-

AC ‖
-

BD. (See Fig-
ure 8.1.)

(iii) Scalar multiplication of vectors: Let
-

AP= t
-

AB, where A and B are
distinct points. Then P is on the line AB,

AP

AB
= |t|

and

(a) P = A if t = 0, P = B if t = 1;

(b) P is between A and B if 0 < t < 1;

(c) B is between A and P if 1 < t;

(d) A is between P and B if t < 0.

(See Figure 8.2.)
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Figure 8.2: Scalar multiplication of vectors.

The dot product X ·Y of vectors X =





a1

b1

c1



 and Y =





a2

b2

c2



, is defined

by

X · Y = a1a2 + b1b2 + c1c2.

The length ||X|| of a vector X is defined by

||X|| = (X · X)1/2

and the Cauchy–Schwarz inequality holds:

|X · Y | ≤ ||X|| · ||Y ||.

The triangle inequality for vector length now follows as a simple deduction:

||X + Y || ≤ ||X|| + ||Y ||.

Using the equation

AB = ||
-

AB ||,

we deduce the corresponding familiar triangle inequality for distance:

AB ≤ AC + CB.



152 CHAPTER 8. THREE–DIMENSIONAL GEOMETRY

The angle θ between two non–zero vectors X and Y is then defined by

cos θ =
X · Y

||X|| · ||Y || , 0 ≤ θ ≤ π.

This definition makes sense. For by the Cauchy–Schwarz inequality,

−1 ≤ X · Y
||X|| · ||Y || ≤ 1.

Vectors X and Y are said to be perpendicular or orthogonal if X ·Y = 0.
Vectors of unit length are called unit vectors. The vectors

i =





1
0
0



 , j =





0
1
0



 , k =





0
0
1





are unit vectors and every vector is a linear combination of i, j and k:





a
b
c



 = ai + bj + ck.

Non–zero vectors X and Y are parallel or proportional if the angle be-
tween X and Y equals 0 or π; equivalently if X = tY for some real number
t. Vectors X and Y are then said to have the same or opposite direction,
according as t > 0 or t < 0.

We are then led to study straight lines. If A and B are distinct points,
it is easy to show that AP + PB = AB holds if and only if

-
AP= t

-
AB, where 0 ≤ t ≤ 1.

A line is defined as a set consisting of all points P satisfying

P = P0 + tX, t ∈ R or equivalently
-

P0P= tX,

for some fixed point P0 and fixed non–zero vector X called a direction vector

for the line.
Equivalently, in terms of coordinates,

x = x0 + ta, y = y0 + tb, z = z0 + tc,

where P0 = (x0, y0, z0) and not all of a, b, c are zero.



8.1. INTRODUCTION 153

There is then one and only one line passing passing through two distinct
points A and B. It consists of the points P satisfying

-
AP= t

-
AB,

where t is a real number.
The cross–product X×Y provides us with a vector which is perpendicular

to both X and Y . It is defined in terms of the components of X and Y :
Let X = a1i + b1j + c1k and Y = a2i + b2j + c2k. Then

X × Y = ai + bj + ck,

where

a =

∣

∣

∣

∣

b1 c1

b2 c2

∣

∣

∣

∣

, b = −
∣

∣

∣

∣

a1 c1

a2 c2

∣

∣

∣

∣

, c =

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

.

The cross–product enables us to derive elegant formulae for the distance
from a point to a line, the area of a triangle and the distance between two
skew lines.

Finally we turn to the geometrical concept of a plane in three–dimensional
space.

A plane is a set of points P satisfying an equation of the form

P = P0 + sX + tY, s, t ∈ R, (8.1)

where X and Y are non–zero, non–parallel vectors.
In terms of coordinates, equation 8.1 takes the form

x = x0 + sa1 + ta2

y = y0 + sb1 + tb2

z = z0 + sc1 + tc2,

where P0 = (x0, y0, z0).
There is then one and only one plane passing passing through three

non–collinear points A, B, C. It consists of the points P satisfying

-
AP= s

-
AB +t

-
AC,

where s and t are real numbers.
The cross–product enables us to derive a concise equation for the plane

through three non–collinear points A, B, C, namely

-
AP ·(

-
AB ×

-
AC) = 0.
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When expanded, this equation has the form

ax + by + cz = d,

where ai + bj + ck is a non–zero vector which is perpendicular to
-

P1P2 for
all points P1, P2 lying in the plane. Any vector with this property is said to
be a normal to the plane.

It is then easy to prove that two planes with non–parallel normal vectors
must intersect in a line.

We conclude the chapter by deriving a formula for the distance from a
point to a plane.

8.2 Three–dimensional space

DEFINITION 8.2.1 Three–dimensional space is the set E3 of ordered
triples (x, y, z), where x, y, z are real numbers. The triple (x, y, z) is called
a point P in E3 and we write P = (x, y, z). The numbers x, y, z are called,
respectively, the x, y, z coordinates of P .

The coordinate axes are the sets of points:

{(x, 0, 0)} (x–axis), {(0, y, 0)} (y–axis), {(0, 0, z)} (z–axis).

The only point common to all three axes is the origin O = (0, 0, 0).

The coordinate planes are the sets of points:

{(x, y, 0)} (xy–plane), {(0, y, z)} (yz–plane), {(x, 0, z)} (xz–plane).

The positive octant consists of the points (x, y, z), where x > 0, y >
0, z > 0.

We think of the points (x, y, z) with z > 0 as lying above the xy–plane,
and those with z < 0 as lying beneath the xy–plane. A point P = (x, y, z)
will be represented as in Figure 8.3. The point illustrated lies in the positive
octant.

DEFINITION 8.2.2 The distance P1P2 between points P1 = (x1, y1, z1)
and P2 = (x2, y2, z2) is defined by the formula

P1P2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

For example, if P = (x, y, z),

OP =
√

x2 + y2 + z2.
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DEFINITION 8.2.3 If A = (x1, y1, z1) and B = (x2, y2, z2) we define

the symbol
-

AB to be the column vector

-
AB=





x2 − x1

y2 − y1

z2 − z1



 .

We let P =
-

OP and call P the position vector of P .

The components of
-

AB are the coordinates of B when the axes are
translated to A as origin of coordinates.

We think of
-

AB as being represented by the directed line segment from
A to B and think of it as an arrow whose tail is at A and whose head is at
B. (See Figure 8.4.)

Some mathematicians think of
-

AB as representing the translation of
space which takes A into B.

The following simple properties of
-

AB are easily verified and correspond
to how we intuitively think of directed line segments:

(i)
-

AB= 0 ⇔ A = B;

(ii)
-

BA= −
-

AB;

(iii)
-

AB +
-

BC=
-

AC (the triangle law);

(iv)
-

BC=
-

AC −
-

AB= C − B;

(v) if X is a vector and A a point, there is exactly one point B such that
-

AB= X, namely that defined by B = A + X.

To derive properties of the distance function and the vector function
-

P1P2, we need to introduce the dot product of two vectors in R
3.

8.3 Dot product

DEFINITION 8.3.1 If X =





a1

b1

c1



 and Y =





a2

b2

c2



, then X · Y , the

dot product of X and Y , is defined by

X · Y = a1a2 + b1b2 + c1c2.
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The dot product has the following properties:

(i) X · (Y + Z) = X · Y + X · Z;

(ii) X · Y = Y · X;

(iii) (tX) · Y = t(X · Y );

(iv) X · X = a2 + b2 + c2 if X =





a
b
c



;

(v) X · Y = XtY ;

(vi) X · X = 0 if and only if X = 0.

The length of X is defined by

||X|| =
√

a2 + b2 + c2 = (X · X)1/2.

We see that ||P|| = OP and more generally ||
-

P1P2 || = P1P2, the
distance between P1 and P2.
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Vectors having unit length are called unit vectors.
The vectors

i =





1
0
0



 , j =





0
1
0



 , k =





0
0
1





are unit vectors. Every vector is a linear combination of i, j and k:




a
b
c



 = ai + bj + ck.

(See Figure 8.7.)
It is easy to prove that

||tX|| = |t| · ||X||,

if t is a real number. Hence if X is a non–zero vector, the vectors

± 1

||X||X

are unit vectors.

A useful property of the length of a vector is

||X ± Y ||2 = ||X||2 ± 2X · Y + ||Y ||2. (8.2)
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The following important property of the dot product is widely used in
mathematics:

THEOREM 8.3.1 (The Cauchy–Schwarz inequality)
If X and Y are vectors in R

3, then

|X · Y | ≤ ||X|| · ||Y ||. (8.3)

Moreover if X 6= 0 and Y 6= 0, then

X · Y = ||X|| · ||Y || ⇔ Y = tX, t > 0,

X · Y = −||X|| · ||Y || ⇔ Y = tX, t < 0.

Proof. If X = 0, then inequality 8.3 is trivially true. So assume X 6= 0.
Now if t is any real number, by equation 8.2,

0 ≤ ||tX − Y ||2 = ||tX||2 − 2(tX) · Y + ||Y ||2
= t2||X||2 − 2(X · Y )t + ||Y ||2
= at2 − 2bt + c,

where a = ||X||2 > 0, b = X · Y, c = ||Y ||2.
Hence

a(t2 − 2b

a
t +

c

a
) ≥ 0

(

t − b

a

)2

+
ca − b2

a2
≥ 0 .

Substituting t = b/a in the last inequality then gives

ac − b2

a2
≥ 0,

so
|b| ≤ √

ac =
√

a
√

c

and hence inequality 8.3 follows.
To discuss equality in the Cauchy–Schwarz inequality, assume X 6= 0

and Y 6= 0.
Then if X · Y = ||X|| · ||Y ||, we have for all t

||tX − Y ||2 = t2||X||2 − 2tX · Y + ||Y ||2
= t2||X||2 − 2t||X|| · ||Y || + ||Y ||2
= ||tX − Y ||2.



160 CHAPTER 8. THREE–DIMENSIONAL GEOMETRY

Taking t = ||X||/||Y || then gives ||tX − Y ||2 = 0 and hence tX − Y = 0.
Hence Y = tX, where t > 0. The case X · Y = −||X|| · ||Y || is proved
similarly.

COROLLARY 8.3.1 (The triangle inequality for vectors)
If X and Y are vectors, then

||X + Y || ≤ ||X|| + ||Y ||. (8.4)

Moreover if X 6= 0 and Y 6= 0, then equality occurs in inequality 8.4 if and
only if Y = tX, where t > 0.

Proof.

||X + Y ||2 = ||X||2 + 2X · Y + ||Y ||2
≤ ||X||2 + 2||X|| · ||Y || + ||Y ||2
= (||X|| + ||Y ||)2

and inequality 8.4 follows.

If ||X + Y || = ||X|| + ||Y ||, then the above proof shows that

X · Y = ||X|| · ||Y ||.

Hence if X 6= 0 and Y 6= 0, the first case of equality in the Cauchy–Schwarz
inequality shows that Y = tX with t > 0.

The triangle inequality for vectors gives rise to a corresponding inequality
for the distance function:

THEOREM 8.3.2 (The triangle inequality for distance)
If A, B, C are points, then

AC ≤ AB + BC. (8.5)

Moreover if B 6= A and B 6= C, then equality occurs in inequality 8.5 if and

only if
-

AB= r
-

AC, where 0 < r < 1.

Proof.

AC = ||
-

AC || = ||
-

AB +
-

BC ||
≤ ||

-
AB || + ||

-
BC ||

= AB + BC.
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Moreover if equality occurs in inequality 8.5 and B 6= A and B 6= C, then

X =
-

AB 6= 0 and Y =
-

BC 6= 0 and the equation AC = AB + BC becomes
||X + Y || = ||X|| + ||Y ||. Hence the case of equality in the vector triangle
inequality gives

Y =
-

BC= tX = t
-

AB, where t > 0.

Then

-
BC =

-
AC −

-
AB= t

-
AB

-
AC = (1 + t)

-
AB

-
AB = r

-
AC,

where r = 1/(t + 1) satisfies 0 < r < 1.

8.4 Lines

DEFINITION 8.4.1 A line in E3 is the set L(P0, X) consisting of all
points P satisfying

P = P0 + tX, t ∈ R or equivalently
-

P0P= tX, (8.6)

for some fixed point P0 and fixed non–zero vector X. (See Figure 8.8.)
Equivalently, in terms of coordinates, equation 8.6 becomes

x = x0 + ta, y = y0 + tb, z = z0 + tc,

where not all of a, b, c are zero.

The following familiar property of straight lines is easily verified.

THEOREM 8.4.1 If A and B are distinct points, there is one and only

one line containing A and B, namely L(A,
-

AB) or more explicitly the line

defined by
-

AP= t
-

AB, or equivalently, in terms of position vectors:

P = (1 − t)A + tB or P = A + t
-

AB . (8.7)

Equations 8.7 may be expressed in terms of coordinates: if A = (x1, y1, z1)
and B = (x2, y2, z2), then

x = (1 − t)x1 + tx2, y = (1 − t)y1 + ty2, z = (1 − t)z1 + tz2.
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There is an important geometric significance in the number t of the above
equation of the line through A and B. The proof is left as an exercise:

THEOREM 8.4.2 (Joachimsthal’s ratio formulae)
If t is the parameter occurring in theorem 8.4.1, then

(i) |t| =
AP

AB
; (ii)

∣

∣

∣

∣

t

1 − t

∣

∣

∣

∣

=
AP

PB
if P 6= B.

Also

(iii) P is between A and B if 0 < t < 1;

(iv) B is between A and P if 1 < t;

(v) A is between P and B if t < 0.

(See Figure 8.9.)
For example, t = 1

2
gives the mid–point P of the segment AB:

P =
1

2
(A + B).

EXAMPLE 8.4.1 L is the line AB, where A = (−4, 3, 1), B = (1, 1, 0);
M is the line CD, where C = (2, 0, 2), D = (−1, 3, −2); N is the line EF ,
where E = (1, 4, 7), F = (−4, −3, −13). Find which pairs of lines intersect
and also the points of intersection.

Solution. In fact only L and N intersect, in the point (−2

3
, 5

3
, 1

3
). For

example, to determine if L and N meet, we start with vector equations for
L and N :

P = A + t
-

AB, Q = E + s
-

EF,

equate P and Q and solve for s and t:

(−4i + 3j + k) + t(5i − 2j − k) = (i + 4j + 7k) + s(−5i − 7j − 20k),

which on simplifying, gives

5t + 5s = 5

−2t + 7s = 1

−t + 20s = 6

This system has the unique solution t = 2

3
, s = 1

3
and this determines a

corresponding point P where the lines meet, namely P = (−2

3
, 5

3
, 1

3
).

The same method yields inconsistent systems when applied to the other
pairs of lines.



164 CHAPTER 8. THREE–DIMENSIONAL GEOMETRY

EXAMPLE 8.4.2 If A = (5, 0, 7) and B = (2, −3, 6), find the points P
on the line AB which satisfy AP/PB = 3.

Solution. Use the formulae

P = A + t
-

AB and

∣

∣

∣

∣

t

1 − t

∣

∣

∣

∣

=
AP

PB
= 3.

Then
t

1 − t
= 3 or − 3,

so t = 3

4
or t = 3

2
. The corresponding points are (11

4
, 9

4
, 25

4
) and (1

2
, 9

2
, 11

2
).

DEFINITION 8.4.2 Let X and Y be non–zero vectors. Then X is parallel

or proportional to Y if X = tY for some t ∈ R. We write X‖Y if X is parallel
to Y . If X = tY , we say that X and Y have the same or opposite direction,
according as t > 0 or t < 0.

DEFINITION 8.4.3 if A and B are distinct points on a line L, the non–

zero vector
-

AB is called a direction vector for L.

It is easy to prove that any two direction vectors for a line are parallel.

DEFINITION 8.4.4 Let L and M be lines having direction vectors X
and Y , respectively. Then L is parallel to M if X is parallel to Y . Clearly
any line is parallel to itself.

It is easy to prove that the line through a given point A and parallel to a

given line CD has an equation P = A + t
-

CD.

THEOREM 8.4.3 Let X = a1i + b1j + c1k and Y = a2i + b2j + c2k be
non–zero vectors. Then X is parallel to Y if and only if

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

=

∣

∣

∣

∣

b1 c1

b2 c2

∣

∣

∣

∣

=

∣

∣

∣

∣

a1 c1

a2 c2

∣

∣

∣

∣

= 0. (8.8)

Proof. The case of equality in the Cauchy–Schwarz inequality (theorem 8.3.1)
shows that X and Y are parallel if and only if

|X · Y | = ||X|| · ||Y ||.

Squaring gives the equivalent equality

(a1a2 + b1b2 + c1c2)
2 = (a2

1 + b2
1 + c2

1)(a
2
2 + b2

2 + c2
2),
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which simplifies to

(a1b2 − a2b1)
2 + (b1c2 − b2c1)

2 + (a1c2 − a2c1)
2 = 0,

which is equivalent to

a1b2 − a2b1 = 0, b1c2 − b2c1 = 0, a1c2 − a2c1 = 0,

which is equation 8.8.

Equality of geometrical vectors has a fundamental geometrical interpre-
tation:

THEOREM 8.4.4 Suppose A, B, C, D are distinct points such that no

three are collinear. Then
-

AB=
-

CD if and only if
-

AB ‖
-

CD and
-

AC ‖
-

BD
(See Figure 8.1.)

Proof. If
-

AB=
-

CD then

B − A = D − C,

C − A = D − B

and so
-

AC=
-

BD. Hence
-

AB ‖
-

CD and
-

AC ‖
-

BD.

Conversely, suppose that
-

AB ‖
-

CD and
-

AC ‖
-

BD. Then

-
AB= s

-
CD and

-
AC= t

-
BD,

or

B − A = s(D − C) and C − A = tD − B.

We have to prove s = 1 or equivalently, t = 1.
Now subtracting the second equation above from the first, gives

B − C = s(D − C) − t(D − B),

so

(1 − t)B = (1 − s)C + (s − t)D.

If t 6= 1, then

B =
1 − s

1 − t
C +

s − t

1 − t
D

and B would lie on the line CD. Hence t = 1.
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8.5 The angle between two vectors

DEFINITION 8.5.1 Let X and Y be non–zero vectors. Then the angle

between X and Y is the unique value of θ defined by

cos θ =
X · Y

||X|| · ||Y || , 0 ≤ θ ≤ π.

REMARK 8.5.1 By Cauchy’s inequality, we have

−1 ≤ X · Y
||X|| · ||Y || ≤ 1,

so the above equation does define an angle θ.

In terms of components, if X = [a1, b1, c1]
t and Y = [a2, b2, c2]

t, then

cos θ =
a1a2 + b1b2 + c1c2

√

a2
1
+ b2

1
+ c2

1

√

a2
2
+ b2

2
+ c2

2

. (8.9)

The next result is the well-known cosine rule for a triangle.

THEOREM 8.5.1 (Cosine rule) If A, B, C are points with A 6= B and

A 6= C, then the angle θ between vectors
-

AB and
-

AC satifies

cos θ =
AB2 + AC2 − BC2

2AB · AC
, (8.10)

or equivalently

BC2 = AB2 + AC2 − 2AB · AC cos θ.

(See Figure 8.10.)

Proof. Let A = (x1, y1, z1), B = (x2, y2, z2), C = (x3, y3, z3). Then

-
AB = a1i + b1j + c1k
-

AC = a2i + b2j + c2k
-

BC = (a2 − a1)i + (b2 − b1)j + (c2 − c1)k,

where

ai = xi+1 − x1, bi = yi+1 − y1, ci = zi+1 − z1, i = 1, 2.
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Figure 8.10: The cosine rule for a triangle.

Now by equation 8.9,

cos θ =
a1a2 + b1b2 + c1c2

AB · AC
.

Also

AB2 + AC2 − BC2 = (a2
1 + b2

1 + c2
1) + (a2

2 + b2
2 + c2

2)

− ((a2 − a1)
2 + (b2 − b1)

2 + (c2 − c1)
2)

= 2a1a2 + 2b1b2 + c1c2.

Equation 8.10 now follows, since

-
AB ·

-
AC= a1a2 + b1b2 + c1c2.

EXAMPLE 8.5.1 Let A = (2, 1, 0), B = (3, 2, 0), C = (5, 0, 1). Find

the angle θ between vectors
-

AB and
-

AC.

Solution.

cos θ =

-
AB ·

-
AC

AB · AC
.

Now
-

AB= i + j and
-

AC= 3i − j + k.
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Figure 8.11: Pythagoras’ theorem for a right–angled triangle.

Hence

cos θ =
1 × 3 + 1 × (−1) + 0 × 1√

12 + 12 + 02
√

32 + (−1)2 + 12
=

2√
2
√

11
=

√
2√
11

.

Hence θ = cos−1
√

2√
11

.

DEFINITION 8.5.2 If X and Y are vectors satisfying X · Y = 0, we say
X is orthogonal or perpendicular to Y .

REMARK 8.5.2 If A, B, C are points forming a triangle and
-

AB is or-

thogonal to
-

AC, then the angle θ between
-

AB and
-

AC satisfies cos θ = 0
and hence θ = π

2
and the triangle is right–angled at A.

Then we have Pythagoras’ theorem:

BC2 = AB2 + AC2. (8.11)

We also note that BC ≥ AB and BC ≥ AC follow from equation 8.11. (See
Figure 8.11.)

EXAMPLE 8.5.2 Let A = (2, 9, 8), B = (6, 4, −2), C = (7, 15, 7). Show

that
-

AB and
-

AC are perpendicular and find the point D such that ABDC
forms a rectangle.
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Solution.

-
AB ·

-
AC= (4i − 5j − 10k) · (5i + 6j − k) = 20 − 30 + 10 = 0.

Hence
-

AB and
-

AC are perpendicular. Also, the required fourth point D
clearly has to satisfy the equation

-
BD=

-
AC, or equivalently D − B =

-
AC .

Hence

D = B+
-

AC= (6i + 4j − 2k) + (5i + 6j − k) = 11i + 10j − 3k,

so D = (11, 10, −3).

THEOREM 8.5.2 (Distance from a point to a line) If C is a point
and L is the line through A and B, then there is exactly one point P on L
such that

-
CP is perpendicular to

-
AB, namely

P = A + t
-

AB, t =

-
AC ·

-
AB

AB2
. (8.12)

Moreover if Q is any point on L, then CQ ≥ CP and hence P is the point
on L closest to C.
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The shortest distance CP is given by

CP =

√

AC2AB2 − (
-

AC ·
-

AB)2

AB
. (8.13)

(See Figure 8.12.)

Proof. Let P = A + t
-

AB and assume that
-

CP is perpendicular to
-

AB.
Then

-
CP ·

-
AB = 0

(P − C)·
-

AB = 0

(A + t
-

AB −C)·
-

AB = 0

(
-

CA +t
-

AB)·
-

AB = 0
-

CA ·
-

AB +t(
-

AB ·
-

AB) = 0

−
-

AC ·
-

AB +t(
-

AB ·
-

AB) = 0,

so equation 8.12 follows.
The inequality CQ ≥ CP , where Q is any point on L, is a consequence

of Pythagoras’ theorem.

Finally, as
-

CP and
-

PA are perpendicular, Pythagoras’ theorem gives

CP 2 = AC2 − PA2

= AC2 − ||t
-

AB ||2
= AC2 − t2AB2

= AC2 −





-
AC ·

-
AB

AB2





2

AB2

=
AC2AB2 − (

-
AC ·

-
AB)2

AB2
,

as required.

EXAMPLE 8.5.3 The closest point on the line through A = (1, 2, 1) and
B = (2, −1, 3) to the origin is P = (17

14
, 19

14
, 20

14
) and the corresponding

shortest distance equals 5

14

√
42.

Another application of theorem 8.5.2 is to the projection of a line segment
on another line:
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Figure 8.13: Projecting the segment C1C2 onto the line AB.

THEOREM 8.5.3 (The projection of a line segment onto a line)
Let C1, C2 be points and P1, P2 be the feet of the perpendiculars from
C1 and C2 to the line AB. Then

P1P2 = |
-

C1C2 ·n̂|,

where

n̂ =
1

AB

-
AB .

Also
C1C2 ≥ P1P2. (8.14)

(See Figure 8.13.)
Proof. Using equations 8.12, we have

P1 = A + t1
-

AB, P2 = A + t2
-

AB,

where

t1 =

-
AC1 ·

-
AB

AB2
, t2 =

-
AC2 ·

-
AB

AB2
.

Hence

-
P1P2 = (A + t2

-
AB) − (A + t1

-
AB)

= (t2 − t1)
-

AB,
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so

P1P2 = ||
-

P1P2 || = |t2 − t1|AB

=

∣

∣

∣

∣

∣

∣

-
AC2 ·

-
AB

AB2
−

-
AC1 ·

-
AB

AB2

∣

∣

∣

∣

∣

∣

AB

=

∣

∣

∣

∣

-
C1C2 ·

-
AB

∣

∣

∣

∣

AB2
AB

=

∣

∣

∣

∣

-
C1C2 ·n̂

∣

∣

∣

∣

,

where n̂ is the unit vector

n̂ =
1

AB

-
AB .

Inequality 8.14 then follows from the Cauchy–Schwarz inequality 8.3.

DEFINITION 8.5.3 Two non–intersecting lines are called skew if they
have non–parallel direction vectors.

Theorem 8.5.3 has an application to the problem of showing that two skew
lines have a shortest distance between them. (The reader is referred to
problem 16 at the end of the chapter.)

Before we turn to the study of planes, it is convenient to introduce the
cross–product of two vectors.

8.6 The cross–product of two vectors

DEFINITION 8.6.1 Let X = a1i + b1j + c1k and Y = a2i + b2j + c2k.
Then X × Y , the cross–product of X and Y , is defined by

X × Y = ai + bj + ck,

where

a =

∣

∣

∣

∣

b1 c1

b2 c2

∣

∣

∣

∣

, b = −
∣

∣

∣

∣

a1 c1

a2 c2

∣

∣

∣

∣

, c =

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

.

The vector cross–product has the following properties which follow from
properties of 2 × 2 and 3 × 3 determinants:

(i) i × j = k, j × k = i, k × i = j;
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(ii) X × X = 0;

(iii) Y × X = −X × Y ;

(iv) X × (Y + Z) = X × Y + X × Z;

(v) (tX) × Y = t(X × Y );

(vi) (Scalar triple product formula) if Z = a3i + b3j + c3k, then

X · (Y × Z) =

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

= (X × Y ) · Z;

(vii) X · (X × Y ) = 0 = Y · (X × Y );

(viii) ||X × Y || =
√

||X||2||Y ||2 − (X · Y )2;

(ix) if X and Y are non–zero vectors and θ is the angle between X and Y ,
then

||X × Y || = ||X|| · ||Y || sin θ.

(See Figure 8.14.)

From theorem 8.4.3 and the definition of cross–product, it follows that
non–zero vectors X and Y are parallel if and only if X × Y = 0; hence by
(vii), the cross–product of two non–parallel, non–zero vectors X and Y , is
a non–zero vector perpendicular to both X and Y .

LEMMA 8.6.1 Let X and Y be non–zero, non–parallel vectors.

(i) Z is a linear combination of X and Y , if and only if Z is perpendicular
to X × Y ;

(ii) Z is perpendicular to X and Y , if and only if Z is parallel to X × Y .

Proof. Let X and Y be non–zero, non–parallel vectors. Then

X × Y 6= 0.

Then if X × Y = ai + bj + ck, we have

det [X × Y |X|Y ]t =

∣

∣

∣

∣

∣

∣

a b c
a1 b1 c1

a2 b2 c2

∣

∣

∣

∣

∣

∣

= (X × Y ) · (X × Y ) > 0.
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Figure 8.14: The vector cross–product.

Hence the matrix [X × Y |X|Y ] is non–singular. Consequently the linear
system

r(X × Y ) + sX + tY = Z (8.15)

has a unique solution r, s, t.
(i) Suppose Z = sX + tY . Then

Z · (X × Y ) = sX · (X × Y ) + tY · (X × Y ) = s0 + t0 = 0.

Conversely, suppose that

Z · (X × Y ) = 0. (8.16)

Now from equation 8.15, r, s, t exist satisfying

Z = r(X × Y ) + sX + tY.

Then equation 8.16 gives

0 = (r(X × Y ) + sX + tY ) · (X × Y )

= r||X × Y ||2 + sX · (X × Y ) + tY · (Y × X)

= r||X × Y ||2.

Hence r = 0 and Z = sX + tY , as required.
(ii) Suppose Z = λ(X × Y ). Then clearly Z is perpendicular to X and Y .
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Conversely suppose that Z is perpendicular to X and Y .
Now from equation 8.15, r, s, t exist satisfying

Z = r(X × Y ) + sX + tY.

Then

sX · X + tX · Y = X · Z = 0

sY · X + tY · Y = Y · Z = 0,

from which it follows that

(sX + tY ) · (sX + tY ) = 0.

Hence sX + tY = 0 and so s = 0, t = 0. Consequently Z = r(X × Y ), as
required.

The cross–product gives a compact formula for the distance from a point
to a line, as well as the area of a triangle.

THEOREM 8.6.1 (Area of a triangle)
If A, B, C are distinct non–collinear points, then

(i) the distance d from C to the line AB is given by

d =
||

-
AB ×

-
AC ||

AB
, (8.17)

(ii) the area of the triangle ABC equals

||
-

AB ×
-

AC ||
2

=
||A × B + B × C + C × A||

2
. (8.18)

Proof. The area ∆ of triangle ABC is given by

∆ =
AB · CP

2
,

where P is the foot of the perpendicular from C to the line AB. Now by
formula 8.13, we have

CP =

√

AC2 · AB2 − (
-

AC ·
-

AB)2

AB

=
||

-
AB ×

-
AC ||

AB
,
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which, by property (viii) of the cross–product, gives formula 8.17. The
second formula of equation 8.18 follows from the equations

-
AB ×

-
AC = (B − A) × (C − A)

= {(B − A) × C} − {(C − A) × A}
= {(B × C − A × C)} − {(B × A − A × A)}
= B × C − A × C − B × A

= B × C + C × A + A × B,

as required.

8.7 Planes

DEFINITION 8.7.1 A plane is a set of points P satisfying an equation
of the form

P = P0 + sX + tY, s, t ∈ R, (8.19)

where X and Y are non–zero, non–parallel vectors.

For example, the xy–plane consists of the points P = (x, y, 0) and corre-
sponds to the plane equation

P = xi + yj = O + xi + yj.

In terms of coordinates, equation 8.19 takes the form

x = x0 + sa1 + ta2

y = y0 + sb1 + tb2

z = z0 + sc1 + tc2,

where P0 = (x0, y0, z0) and (a1, b1, c1) and (a2, b2, c2) are non–zero and
non–proportional.

THEOREM 8.7.1 Let A, B, C be three non–collinear points. Then there
is one and only one plane through these points, namely the plane given by
the equation

P = A + s
-

AB +t
-

AC, (8.20)

or equivalently
-

AP= s
-

AB +t
-

AC . (8.21)

(See Figure 8.15.)
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Figure 8.15: Vector equation for the plane ABC.

Proof. First note that equation 8.20 is indeed the equation of a plane

through A, B and C, as
-

AB and
-

AC are non–zero and non–parallel and
(s, t) = (0, 0), (1, 0) and (0, 1) give P = A, B and C, respectively. Call
this plane P.

Conversely, suppose P = P0 + sX + tY is the equation of a plane Q
passing through A, B, C. Then A = P0 + s0X + t0Y , so the equation for
Q may be written

P = A + (s − s0)X + (t − t0)Y = A + s′X + t′Y ;

so in effect we can take P0 = A in the equation of Q. Then the fact that B
and C lie on Q gives equations

B = A + s1X + t1Y, C = A + s2X + t2Y,

or -
AB= s1X + t1Y,

-
AC= s2X + t2Y. (8.22)

Then equations 8.22 and equation 8.20 show that

P ⊆ Q.

Conversely, it is straightforward to show that because
-

AB and
-

AC are not
parallel, we have

∣

∣

∣

∣

s1 t1
s2 t2

∣

∣

∣

∣

6= 0.
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Hence equations 8.22 can be solved for X and Y as linear combinations of
-

AB and
-

AC, allowing us to deduce that

Q ⊆ P.

Hence

Q = P.

THEOREM 8.7.2 (Normal equation for a plane) Let

A = (x1, y1, z1), B = (x2, y2, z2), C = (x3, y3, z3)

be three non–collinear points. Then the plane through A, B, C is given by

-
AP ·(

-
AB ×

-
AC) = 0, (8.23)

or equivalently,
∣

∣

∣

∣

∣

∣

x − x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

= 0, (8.24)

where P = (x, y, z). (See Figure 8.16.)
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REMARK 8.7.1 Equation 8.24 can be written in more symmetrical form
as

∣

∣

∣

∣

∣

∣

∣

∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (8.25)

Proof. Let P be the plane through A, B, C. Then by equation 8.21, we

have P ∈ P if and only if
-

AP is a linear combination of
-

AB and
-

AC and so

by lemma 8.6.1(i), using the fact that
-

AB ×
-

AC 6= 0 here, if and only if
-

AP

is perpendicular to
-

AB ×
-

AC. This gives equation 8.23.

Equation 8.24 is the scalar triple product version of equation 8.23, taking
into account the equations

-
AP = (x − x1)i + (y − y1)j + (z − z1)k,
-

AB = (x2 − x1)i + (y2 − y1)j + (z2 − z1)k,
-

AC = (x3 − x1)i + (y3 − y1)j + (z3 − z1)k.

REMARK 8.7.2 Equation 8.24 gives rise to a linear equation in x, y and
z:

ax + by + cz = d,
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where ai + bj + ck 6= 0. For
∣

∣

∣

∣

∣

∣

x − x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x y z
x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

(8.26)

and expanding the first determinant on the right–hand side of equation 8.26
along row 1 gives an expression

ax + by + cz

where

a =

∣

∣

∣

∣

y2 − y1 z2 − z1

y3 − y1 z3 − z1

∣

∣

∣

∣

, b = −
∣

∣

∣

∣

x2 − x1 z2 − z1

x3 − x1 z3 − z1

∣

∣

∣

∣

, c =

∣

∣

∣

∣

x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣

∣

∣

∣

.

But a, b, c are the components of
-

AB ×
-

AC, which in turn is non–zero, as
A, B, C are non–collinear here.

Conversely if ai + bj + ck 6= 0, the equation

ax + by + cz = d

does indeed represent a plane. For if say a 6= 0, the equation can be solved
for x in terms of y and z:





x
y
z



 =





−d
a
0
0



 + y





− b
a
1
0



 + z





− c
a
0
1



 ,

which gives the plane
P = P0 + yX + zY,

where P0 = (−d
a , 0, 0) and X = − b

a i + j and Y = − c
a i + k are evidently

non–parallel vectors.

REMARK 8.7.3 The plane equation ax+by+cz = d is called the normal

form, as it is easy to prove that if P1 and P2 are two points in the plane,

then ai + bj + ck is perpendicular to
-

P1P2. Any non–zero vector with this
property is called a normal to the plane. (See Figure 8.17.)
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By lemma 8.6.1(ii), it follows that every vector X normal to a plane

through three non–collinear points A, B, C is parallel to
-

AB ×
-

AC, since

X is perpendicular to
-

AB and
-

AC.

EXAMPLE 8.7.1 Show that the planes

x + y − 2z = 1 and x + 3y − z = 4

intersect in a line and find the distance from the point C = (1, 0, 1) to this
line.

Solution. Solving the two equations simultaneously gives

x = −1

2
+

5

2
z, y =

3

2
− 1

2
z, (8.27)

where z is arbitrary. Hence

xi + yj + zk = −1

2
i − 3

2
j + z(

5

2
i − 1

2
j + k),

which is the equation of a line L through A = (−1

2
, −3

2
, 0) and having

direction vector 5

2
i − 1

2
j + k.

We can now proceed in one of three ways to find the closest point on L
to A.

One way is to use equation 8.17 with B defined by

-
AB=

5

2
i − 1

2
j + k.

Another method minimizes the distance CP , where P ranges over L.
A third way is to find an equation for the plane through C, having

5

2
i − 1

2
j + k as a normal. Such a plane has equation

5x − y + 2z = d,

where d is found by substituting the coordinates of C in the last equation.

d = 5 × 1 − 0 + 2 × 1 = 7.

We now find the point P where the plane intersects the line L. Then
-

CP
will be perpendicular to L and CP will be the required shortest distance
from C to L. We find using equations 8.27 that

5(−1

2
+

5

2
z) − (

3

2
− 1

2
z) + 2z = 7,
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Figure 8.18: Line of intersection of two planes.

so z = 11

15
. Hence P = (4

3
, 17

15
, 11

15
).

It is clear that through a given line and a point not on that line, there
passes exactly one plane. If the line is given as the intersection of two planes,
each in normal form, there is a simple way of finding an equation for this
plane. More explicitly we have the following result:

THEOREM 8.7.3 Suppose the planes

a1x + b1y + c1z = d1 (8.28)

a2x + b2y + c2z = d2 (8.29)

have non–parallel normals. Then the planes intersect in a line L.
Moreover the equation

λ(a1x + b1y + c1z − d1) + µ(a2x + b2y + c2z − d2) = 0, (8.30)

where λ and µ are not both zero, gives all planes through L.

(See Figure 8.18.)
Proof. Assume that the normals a1i + b1j + c1k and a2i + b2j + c2k are
non–parallel. Then by theorem 8.4.3, not all of

∆1 =

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

, ∆2 =

∣

∣

∣

∣

b1 c1

b2 c2

∣

∣

∣

∣

, ∆3 =

∣

∣

∣

∣

a1 c1

a2 c2

∣

∣

∣

∣

(8.31)
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are zero. If say ∆1 6= 0, we can solve equations 8.28 and 8.29 for x and y in
terms of z, as we did in the previous example, to show that the intersection
forms a line L.

We next have to check that if λ and µ are not both zero, then equa-
tion 8.30 represents a plane. (Whatever set of points equation 8.30 repre-
sents, this set certainly contains L.)

(λa1 + µa2)x + (λb1 + µb2)y + (λc1 + µc2)z − (λd1 + µd2) = 0.

Then we clearly cannot have all the coefficients

λa1 + µa2, λb1 + µb2, λc1 + µc2

zero, as otherwise the vectors a1i + b1j + c1k and a2i + b2j + c2k would be
parallel.

Finally, if P is a plane containing L, let P0 = (x0, y0, z0) be a point not
on L. Then if we define λ and µ by

λ = −(a2x0 + b2y0 + c2z0 − d2), µ = a1x0 + b1y0 + c1z0 − d1,

then at least one of λ and µ is non–zero. Then the coordinates of P0 satisfy
equation 8.30, which therefore represents a plane passing through L and P0

and hence identical with P.

EXAMPLE 8.7.2 Find an equation for the plane through P0 = (1, 0, 1)
and passing through the line of intersection of the planes

x + y − 2z = 1 and x + 3y − z = 4.

Solution. The required plane has the form

λ(x + y − 2z − 1) + µ(x + 3y − z − 4) = 0,

where not both of λ and µ are zero. Substituting the coordinates of P0 into
this equation gives

−2λ + µ(−4) = 0, λ = −2µ.

So the required equation is

−2µ(x + y − 2z − 1) + µ(x + 3y − z − 4) = 0,

or
−x + y + 3z − 2 = 0.

Our final result is a formula for the distance from a point to a plane.
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Figure 8.19: Distance from a point P0 to the plane ax + by + cz = d.

THEOREM 8.7.4 (Distance from a point to a plane)
Let P0 = (x0, y0, z0) and P be the plane

ax + by + cz = d. (8.32)

Then there is a unique point P on P such that
-

P0P is normal to P. Morever

P0P =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2

(See Figure 8.19.)
Proof. The line through P0 normal to P is given by

P = P0 + t(ai + bj + ck),

or in terms of coordinates

x = x0 + at, y = y0 + bt, z = z0 + ct.

Substituting these formulae in equation 8.32 gives

a(x0 + at) + b(y0 + bt) + c(z0 + ct) = d

t(a2 + b2 + c2) = −(ax0 + by0 + cz0 − d),

so

t = −
(

ax0 + by0 + cz0 − d

a2 + b2 + c2

)

.
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Then

P0P = ||
-

P0P || = ||t(ai + bj + ck)||
= |t|

√

a2 + b2 + c2

=
|ax0 + by0 + cz0 − d|

a2 + b2 + c2

√

a2 + b2 + c2

=
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

Other interesting geometrical facts about lines and planes are left to the
problems at the end of this chapter.

8.8 PROBLEMS

.

1. Find the point where the line through A = (3, −2, 7) and B =
(13, 3, −8) meets the xz–plane.

[Ans: (7, 0, 1).]

2. Let A, B, C be non–collinear points. If E is the mid–point of the
segment BC and F is the point on the segment EA satisfying AF

EF = 2,
prove that

F =
1

3
(A + B + C).

(F is called the centroid of triangle ABC.)

3. Prove that the points (2, 1, 4), (1, −1, 2), (3, 3, 6) are collinear.

4. If A = (2, 3, −1) and B = (3, 7, 4), find the points P on the line AB
satisfying PA/PB = 2/5.

[Ans:
(

16

7
, 29

7
, 3

7

)

and
(

4

3
, 1

3
, −13

3

)

.]

5. Let M be the line through A = (1, 2, 3) parallel to the line joining
B = (−2, 2, 0) and C = (4, −1, 7). Also N is the line joining E =
(1, −1, 8) and F = (10, −1, 11). Prove that M and N intersect and
find the point of intersection.

[Ans: (7, −1, 10).]
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6. Prove that the triangle formed by the points (−3, 5, 6), (−2, 7, 9) and
(2, 1, 7) is a 30o, 60o, 90o triangle.

7. Find the point on the line AB closest to the origin, where A =
(−2, 1, 3) and B = (1, 2, 4). Also find this shortest distance.

[Ans:
(

−16

11
, 13

11
, 35

11

)

and
√

150

11
.]

8. A line N is determined by the two planes

x + y − 2z = 1, and x + 3y − z = 4.

Find the point P on N closest to the point C = (1, 0, 1) and find the
distance PC.

[Ans:
(

4

3
, 17

15
, 11

15

)

and
√

330

15
.]

9. Find a linear equation describing the plane perpendicular to the line
of intersection of the planes x + y − 2z = 4 and 3x − 2y + z = 1 and
which passes through (6, 0, 2).

[Ans: 3x + 7y + 5z = 28.]

10. Find the length of the projection of the segment AB on the line L,
where A = (1, 2, 3), B = (5, −2, 6) and L is the line CD, where
C = (7, 1, 9) and D = (−1, 5, 8).

[Ans: 17

3
.]

11. Find a linear equation for the plane through A = (3, −1, 2), perpen-
dicular to the line L joining B = (2, 1, 4) and C = (−3, −1, 7). Also
find the point of intersection of L and the plane and hence determine

the distance from A to L. [Ans: 5x+2y−3z = 7,
(

111

38
, 52

38
, 131

38

)

,
√

293

38
.]

12. If P is a point inside the triangle ABC, prove that

P = rA + sB + tC,

where r + s + t = 1 and r > 0, s > 0, t > 0.

13. If B is the point where the perpendicular from A = (6, −1, 11) meets
the plane 3x + 4y + 5z = 10, find B and the distance AB.

[Ans: B =
(

123

50
, −286

50
, 255

50

)

and AB = 59√
50

.]
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14. Prove that the triangle with vertices (−3, 0, 2), (6, 1, 4), (−5, 1, 0)
has area 1

2

√
333.

15. Find an equation for the plane through (2, 1, 4), (1, −1, 2), (4, −1, 1).

[Ans: 2x − 7y + 6z = 21.]

16. Lines L and M are non–parallel in 3–dimensional space and are given
by equations

P = A + sX, Q = B + tY.

(i) Prove that there is precisely one pair of points P and Q such that
-

PQ is perpendicular to X and Y .

(ii) Explain why PQ is the shortest distance between lines L and M.

Also prove that

PQ =
| (X × Y )·

-
AB|

‖X × Y ‖ .

17. If L is the line through A = (1, 2, 1) and C = (3, −1, 2), while M
is the line through B = (1, 0, 2) and D = (2, 1, 3), prove that the
shortest distance between L and M equals 13√

62
.

18. Prove that the volume of the tetrahedron formed by four non–coplanar
points Ai = (xi, yi, zi), 1 ≤ i ≤ 4, is equal to

1

6
| (

-
A1A2 ×

-
A1A3)·

-
A1A4|,

which in turn equals the absolute value of the determinant

1

6

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

.

19. The points A = (1, 1, 5), B = (2, 2, 1), C = (1, −2, 2) and D =
(−2, 1, 2) are the vertices of a tetrahedron. Find the equation of the
line through A perpendicular to the face BCD and the distance of A
from this face. Also find the shortest distance between the skew lines
AD and BC.

[Ans: P = (1 + t)(i + j + 5k); 2
√

3; 3.]


