
Chapter 7

Identifying second degree

equations

7.1 The eigenvalue method

In this section we apply eigenvalue methods to determine the geometrical
nature of the second degree equation

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, (7.1)

where not all of a, h, b are zero.

Let A =

[

a h
h b

]

be the matrix of the quadratic form ax2 +2hxy + by2.

We saw in section 6.1, equation 6.2 that A has real eigenvalues λ1 and λ2,
given by

λ1 =
a + b −

√

(a − b)2 + 4h2

2
, λ2 =

a + b +
√

(a − b)2 + 4h2

2
.

We show that it is always possible to rotate the x, y axes to x1, y1 axes whose
positive directions are determined by eigenvectors X1 and X2 corresponding
to λ1and λ2 in such a way that relative to the x1, y1 axes, equation 7.1 takes
the form

a′x2 + b′y2 + 2g′x + 2f ′y + c = 0. (7.2)

Then by completing the square and suitably translating the x1, y1 axes,
to new x2, y2 axes, equation 7.2 can be reduced to one of several standard
forms, each of which is easy to sketch. We need some preliminary definitions.
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130 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS

DEFINITION 7.1.1 (Orthogonal matrix) An n × n real matrix P is
called orthogonal if

P tP = In.

It follows that if P is orthogonal, then detP = ±1. For

det (P tP ) = detP t det P = ( detP )2,

so (det P )2 = det In = 1. Hence det P = ±1.
If P is an orthogonal matrix with detP = 1, then P is called a proper

orthogonal matrix.

THEOREM 7.1.1 If P is a 2× 2 orthogonal matrix with detP = 1, then

P =

[

cos θ − sin θ
sin θ cos θ

]

for some θ.

REMARK 7.1.1 Hence, by the discusssion at the beginning of Chapter
6, if P is a proper orthogonal matrix, the coordinate transformation

[

x
y

]

= P

[

x1

y1

]

represents a rotation of the axes, with new x1 and y1 axes given by the
repective columns of P .

Proof. Suppose that P tP = I2, where ∆ =det P = 1. Let

P =

[

a b
c d

]

.

Then the equation

P t = P−1 =
1

∆
adjP

gives
[

a c
b d

]

=

[

d −b
−c a

]

Hence a = d, b = −c and so

P =

[

a −c
c a

]

,

where a2 + c2 = 1. But then the point (a, c) lies on the unit circle, so
a = cos θ and c = sin θ, where θ is uniquely determined up to multiples of
2π.
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DEFINITION 7.1.2 (Dot product). If X =

[

a
b

]

and Y =

[

c
d

]

, then

X · Y , the dot product of X and Y , is defined by

X · Y = ac + bd.

The dot product has the following properties:

(i) X · (Y + Z) = X · Y + X · Z;

(ii) X · Y = Y · X;

(iii) (tX) · Y = t(X · Y );

(iv) X · X = a2 + b2 if X =

[

a
b

]

;

(v) X · Y = XtY .

The length of X is defined by

||X|| =
√

a2 + b2 = (X · X)1/2.

We see that ||X|| is the distance between the origin O = (0, 0) and the point
(a, b).

THEOREM 7.1.2 (Geometrical meaning of the dot product)
Let A = (x1, y1) and B = (x2, y2) be points, each distinct from the origin

O = (0, 0). Then if X =

[

x1

y1

]

and Y =

[

x2

y2

]

, we have

X · Y = OA · OB cos θ,

where θ is the angle between the rays OA and OB.

Proof. By the cosine law applied to triangle OAB, we have

AB2 = OA2 + OB2 − 2OA · OB cos θ. (7.3)

Now AB2 = (x2 − x1)
2 + (y2 − y1)

2, OA2 = x2
1 + y2

1, OB2 = x2
2 + y2

2.

Substituting in equation 7.3 then gives

(x2 − x1)
2 + (y2 − y1)

2 = (x2
1 + y2

1) + (x2
2 + y2

2) − 2OA · OB cos θ,
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which simplifies to give

OA · OB cos θ = x1x2 + y1y2 = X · Y.

It follows from theorem 7.1.2 that if A = (x1, y1) and B = (x2, y2) are

points distinct from O = (0, 0) and X =

[

x1

y1

]

and Y =

[

x2

y2

]

, then

X · Y = 0 means that the rays OA and OB are perpendicular. This is the
reason for the following definition:

DEFINITION 7.1.3 (Orthogonal vectors) Vectors X and Y are called
orthogonal if

X · Y = 0.

There is also a connection with orthogonal matrices:

THEOREM 7.1.3 Let P be a 2× 2 real matrix. Then P is an orthogonal
matrix if and only if the columns of P are orthogonal and have unit length.

Proof. P is orthogonal if and only if P tP = I2. Now if P = [X1|X2], the
matrix P tP is an important matrix called the Gram matrix of the column
vectors X1 and X2. It is easy to prove that

P tP = [Xi · Xj ] =

[

X1 · X1 X1 · X2

X2 · X1 X2 · X2

]

.

Hence the equation P tP = I2 is equivalent to

[

X1 · X1 X1 · X2

X2 · X1 X2 · X2

]

=

[

1 0
0 1

]

,

or, equating corresponding elements of both sides:

X1 · X1 = 1, X1 · X2 = 0, X2 · X2 = 1,

which says that the columns of P are orthogonal and of unit length.

The next theorem describes a fundamental property of real symmetric
matrices and the proof generalizes to symmetric matrices of any size.

THEOREM 7.1.4 If X1 and X2 are eigenvectors corresponding to distinct
eigenvalues λ1 and λ2 of a real symmetric matrix A, then X1 and X2 are
orthogonal vectors.
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Proof. Suppose

AX1 = λ1X1, AX2 = λ2X2, (7.4)

where X1 and X2 are non–zero column vectors, At = A and λ1 6= λ2.

We have to prove that Xt
1X2 = 0. From equation 7.4,

Xt
2AX1 = λ1X

t
2X1 (7.5)

and

Xt
1AX2 = λ2X

t
1X2. (7.6)

From equation 7.5, taking transposes,

(Xt
2AX1)

t = (λ1X
t
2X1)

t

so

Xt
1A

tX2 = λ1X
t
1X2.

Hence

Xt
1AX2 = λ1X

t
1X2. (7.7)

Finally, subtracting equation 7.6 from equation 7.7, we have

(λ1 − λ2)X
t
1X2 = 0

and hence, since λ1 6= λ2,

Xt
1X2 = 0.

THEOREM 7.1.5 Let A be a real 2 × 2 symmetric matrix with distinct
eigenvalues λ1 and λ2. Then a proper orthogonal 2×2 matrix P exists such
that

P tAP = diag (λ1, λ2).

Also the rotation of axes

[

x
y

]

= P

[

x1

y1

]

“diagonalizes” the quadratic form corresponding to A:

XtAX = λ1x
2
1 + λ2y

2
1.
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Proof. Let X1 and X2 be eigenvectors corresponding to λ1 and λ2. Then
by theorem 7.1.4, X1 and X2 are orthogonal. By dividing X1 and X2 by
their lengths (i.e. normalizing X1 and X2) if necessary, we can assume that
X1 and X2 have unit length. Then by theorem 7.1.1, P = [X1|X2] is an
orthogonal matrix. By replacing X1 by −X1, if necessary, we can assume
that detP = 1. Then by theorem 6.2.1, we have

P tAP = P−1AP =

[

λ1 0
0 λ2

]

.

Also under the rotation X = PY ,

XtAX = (PY )tA(PY ) = Y t(P tAP )Y = Y t diag (λ1, λ2)Y

= λ1x
2
1 + λ2y

2
1.

EXAMPLE 7.1.1 Let A be the symmetric matrix

A =

[

12 −6
−6 7

]

.

Find a proper orthogonal matrix P such that P tAP is diagonal.

Solution. The characteristic equation of A is λ2 − 19λ + 48 = 0, or

(λ − 16)(λ − 3) = 0.

Hence A has distinct eigenvalues λ1 = 16 and λ2 = 3. We find corresponding
eigenvectors

X1 =

[

−3
2

]

and X2 =

[

2
3

]

.

Now ||X1|| = ||X2|| =
√

13. So we take

X1 =
1√
13

[

−3
2

]

and X2 =
1√
13

[

2
3

]

.

Then if P = [X1|X2], the proof of theorem 7.1.5 shows that

P tAP =

[

16 0
0 3

]

.

However det P = −1, so replacing X1 by −X1 will give det P = 1.
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Figure 7.1: 12x2 − 12xy + 7y2 + 60x − 38y + 31 = 0.

REMARK 7.1.2 (A shortcut) Once we have determined one eigenvec-

tor X1 =

[

a
b

]

, the other can be taken to be

[

−b
a

]

, as these vectors are

always orthogonal. Also P = [X1|X2] will have detP = a2 + b2 > 0.

We now apply the above ideas to determine the geometric nature of
second degree equations in x and y.

EXAMPLE 7.1.2 Sketch the curve determined by the equation

12x2 − 12xy + 7y2 + 60x − 38y + 31 = 0.

Solution. With P taken to be the proper orthogonal matrix defined in the
previous example by

P =

[

3/
√

13 2/
√

13

−2/
√

13 3/
√

13

]

,

then as theorem 7.1.1 predicts, P is a rotation matrix and the transformation

X =

[

x
y

]

= PY = P

[

x1

y1

]
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or more explicitly

x =
3x1 + 2y1√

13
, y =

−2x1 + 3y1√
13

, (7.8)

will rotate the x, y axes to positions given by the respective columns of P .
(More generally, we can always arrange for the x1 axis to point either into
the first or fourth quadrant.)

Now A =

[

12 −6
−6 7

]

is the matrix of the quadratic form

12x2 − 12xy + 7y2,

so we have, by Theorem 7.1.5

12x2 − 12xy + 7y2 = 16x2
1 + 3y2

1.

Then under the rotation X = PY , our original quadratic equation becomes

16x2
1 + 3y2

1 +
60√
13

(3x1 + 2y1) −
38√
13

(−2x1 + 3y1) + 31 = 0,

or

16x2
1 + 3y2

1 +
256√

13
x1 +

6√
13

y1 + 31 = 0.

Now complete the square in x1 and y1:

16

(

x2
1 +

16√
13

x1

)

+ 3

(

y2
1 +

2√
13

y1

)

+ 31 = 0,

16

(

x1 +
8√
13

)2

+ 3

(

y1 +
1√
13

)2

= 16

(

8√
13

)2

+ 3

(

1√
13

)2

− 31

= 48. (7.9)

Then if we perform a translation of axes to the new origin (x1, y1) =
(− 8√

13
, − 1√

13
):

x2 = x1 +
8√
13

, y2 = y1 +
1√
13

,

equation 7.9 reduces to
16x2

2 + 3y2
2 = 48,

or
x2

2

3
+

y2
2

16
= 1.
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x

y

Figure 7.2:
x2

a2
+

y2

b2
= 1, 0 < b < a: an ellipse.

This equation is now in one of the standard forms listed below as Figure 7.2
and is that of a whose centre is at (x2, y2) = (0, 0) and whose axes of
symmetry lie along the x2, y2 axes. In terms of the original x, y coordinates,
we find that the centre is (x, y) = (−2, 1). Also Y = P tX, so equations 7.8
can be solved to give

x1 =
3x − 2y√

13
, y1 =

2x + 3y√
13

.

Hence the y2–axis is given by

0 = x2 = x1 +
8√
13

=
3x − 2y√

13
+

8√
13

,

or 3x − 2y + 8 = 0. Similarly the x2–axis is given by 2x + 3y + 1 = 0.
This ellipse is sketched in Figure 7.1.

Figures 7.2, 7.3, 7.4 and 7.5 are a collection of standard second degree
equations: Figure 7.2 is an ellipse; Figures 7.3 are hyperbolas (in both these

examples, the asymptotes are the lines y = ± b

a
x); Figures 7.4 and 7.5

represent parabolas.

EXAMPLE 7.1.3 Sketch y2 − 4x − 10y − 7 = 0.
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x

y

x

y

Figure 7.3: (i)
x2

a2
− y2

b2
= 1; (ii)

x2

a2
− y2

b2
= −1, 0 < b, 0 < a.

x

y

x

y

Figure 7.4: (i) y2 = 4ax, a > 0; (ii) y2 = 4ax, a < 0.
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x

y

x

y

Figure 7.5: (iii) x2 = 4ay, a > 0; (iv) x2 = 4ay, a < 0.

Solution. Complete the square:

y2 − 10y + 25 − 4x − 32 = 0

(y − 5)2 = 4x + 32 = 4(x + 8),

or y2
1 = 4x1, under the translation of axes x1 = x + 8, y1 = y − 5. Hence we

get a parabola with vertex at the new origin (x1, y1) = (0, 0), i.e. (x, y) =
(−8, 5).

The parabola is sketched in Figure 7.6.

EXAMPLE 7.1.4 Sketch the curve x2 − 4xy + 4y2 + 5y − 9 = 0.

Solution. We have x2 − 4xy + 4y2 = XtAX, where

A =

[

1 −2
−2 4

]

.

The characteristic equation of A is λ2−5λ = 0, so A has distinct eigenvalues
λ1 = 5 and λ2 = 0. We find corresponding unit length eigenvectors

X1 =
1√
5

[

1
−2

]

, X2 =
1√
5

[

2
1

]

.

Then P = [X1|X2] is a proper orthogonal matrix and under the rotation of
axes X = PY , or

x =
x1 + 2y1√

5

y =
−2x1 + y1√

5
,
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Figure 7.6: y2 − 4x − 10y − 7 = 0.

we have
x2 − 4xy + 4y2 = λ1x

2
1 + λ2y

2
1 = 5x2

1.

The original quadratic equation becomes

5x2
1 +

5√
5
(−2x1 + y1) − 9 = 0

5(x2
1 −

2√
5
x1) +

√
5y1 − 9 = 0

5(x1 −
1√
5
)2 = 10 −

√
5y1 = −

√
5(y1 − 2

√
5),

or 5x2
2 = − 1√

5
y2, where the x1, y1 axes have been translated to x2, y2 axes

using the transformation

x2 = x1 −
1√
5
, y2 = y1 − 2

√
5.

Hence the vertex of the parabola is at (x2, y2) = (0, 0), i.e. (x1, y1) =
( 1√

5
, 2

√
5), or (x, y) = (21

5
, 8

5
). The axis of symmetry of the parabola is the

line x2 = 0, i.e. x1 = 1/
√

5. Using the rotation equations in the form

x1 =
x − 2y√

5
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Figure 7.7: x2 − 4xy + 4y2 + 5y − 9 = 0.

y1 =
2x + y√

5
,

we have
x − 2y√

5
=

1√
5
, or x − 2y = 1.

The parabola is sketched in Figure 7.7.

7.2 A classification algorithm

There are several possible degenerate cases that can arise from the general
second degree equation. For example x2 +y2 = 0 represents the point (0, 0);
x2 + y2 = −1 defines the empty set, as does x2 = −1 or y2 = −1; x2 = 0
defines the line x = 0; (x + y)2 = 0 defines the line x + y = 0; x2 − y2 = 0
defines the lines x − y = 0, x + y = 0; x2 = 1 defines the parallel lines
x = ±1; (x + y)2 = 1 likewise defines two parallel lines x + y = ±1.

We state without proof a complete classification 1 of the various cases

1This classification forms the basis of a computer program which was used to produce

the diagrams in this chapter. I am grateful to Peter Adams for his programming assistance.



142 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS

that can possibly arise for the general second degree equation

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0. (7.10)

It turns out to be more convenient to first perform a suitable translation of
axes, before rotating the axes. Let

∆ =

∣

∣

∣

∣

∣

∣

a h g
h b f
g f c

∣

∣

∣

∣

∣

∣

, C = ab − h2, A = bc − f2, B = ca − g2.

If C 6= 0, let

α =

−
∣

∣

∣

∣

g h
f b

∣

∣

∣

∣

C
, β =

−
∣

∣

∣

∣

a g
h f

∣

∣

∣

∣

C
. (7.11)

CASE 1. ∆ = 0.

(1.1) C 6= 0. Translate axes to the new origin (α, β), where α and β are
given by equations 7.11:

x = x1 + α, y = y1 + β.

Then equation 7.10 reduces to

ax2
1 + 2hx1y1 + by2

1 = 0.

(a) C > 0: Single point (x, y) = (α, β).

(b) C < 0: Two non–parallel lines intersecting in (x, y) = (α, β).

The lines are

y − β

x − α
=

−h ±
√
−C

b
if b 6= 0,

x = α and
y − β

x − α
= − a

2h
, if b = 0.

(1.2) C = 0.

(a) h = 0.

(i) a = g = 0.

(A) A > 0: Empty set.

(B) A = 0: Single line y = −f/b.
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(C) A < 0: Two parallel lines

y =
−f ±

√
−A

b

(ii) b = f = 0.

(A) B > 0: Empty set.

(B) B = 0: Single line x = −g/a.

(C) B < 0: Two parallel lines

x =
−g ±

√
−B

a

(b) h 6= 0.

(i) B > 0: Empty set.

(ii) B = 0: Single line ax + hy = −g.

(iii) B < 0: Two parallel lines

ax + hy = −g ±
√
−B.

CASE 2. ∆ 6= 0.

(2.1) C 6= 0. Translate axes to the new origin (α, β), where α and β are
given by equations 7.11:

x = x1 + α, y = y1 + β.

Equation 7.10 becomes

ax2
1 + 2hx1y1 + by2

1 = −∆

C
. (7.12)

CASE 2.1(i) h = 0. Equation 7.12 becomes ax2
1 + by2

1 = −∆
C .

(a) C < 0: Hyperbola.

(b) C > 0 and a∆ > 0: Empty set.

(c) C > 0 and a∆ < 0.

(i) a = b: Circle, centre (α, β), radius
√

g2+f2−ac
a .

(ii) a 6= b: Ellipse.
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CASE 2.1(ii) h 6= 0.

Rotate the (x1, y1) axes with the new positive x2–axis in the direction
of

[(b − a + R)/2, −h],

where R =
√

(a − b)2 + 4h2.

Then equation 7.12 becomes

λ1x
2
2 + λ2y

2
2 = −∆

C
. (7.13)

where
λ1 = (a + b − R)/2, λ2 = (a + b + R)/2,

Here λ1λ2 = C.

(a) C < 0: Hyperbola.

Here λ2 > 0 > λ1 and equation 7.13 becomes

x2
2

u2
− y2

2

v2
=

−∆

|∆| ,

where

u =

√

|∆|
Cλ1

, v =

√

|∆|
−Cλ2

.

(b) C > 0 and a∆ > 0: Empty set.

(c) C > 0 and a∆ < 0: Ellipse.

Here λ1, λ2, a, b have the same sign and λ1 6= λ2 and equa-
tion 7.13 becomes

x2
2

u2
+

y2
2

v2
= 1,

where

u =

√

∆

−Cλ1

, v =

√

∆

−Cλ2

.

(2.1) C = 0.

(a) h = 0.

(i) a = 0: Then b 6= 0 and g 6= 0. Parabola with vertex

(−A

2gb
, −f

b

)

.
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Translate axes to (x1, y1) axes:

y2
1 = −2g

b
x1.

(ii) b = 0: Then a 6= 0 and f 6= 0. Parabola with vertex

(

−g

a
,
−B

2fa

)

.

Translate axes to (x1, y1) axes:

x2
1 = −2f

a
y1.

(b) h 6= 0: Parabola. Let

k =
ga + hf

a + b
.

The vertex of the parabola is

(

(2akf − hk2 − hac)

d
,

a(k2 + ac − 2kg)

d

)

,

where d = 2a(gh − af). Now translate to the vertex as the new
origin, then rotate to (x2, y2) axes with the positive x2–axis along
[sa, −sh], where s = sign (a).

(The positive x2–axis points into the first or fourth quadrant.)
Then the parabola has equation

x2
2 =

−2st√
a2 + h2

y2,

where t = (af − gh)/(a + b).

REMARK 7.2.1 If ∆ = 0, it is not necessary to rotate the axes. Instead
it is always possible to translate the axes suitably so that the coefficients of
the terms of the first degree vanish.

EXAMPLE 7.2.1 Identify the curve

2x2 + xy − y2 + 6y − 8 = 0. (7.14)
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Solution. Here

∆ =

∣

∣

∣

∣

∣

∣

2 1
2

0
1
2

−1 3
0 3 −8

∣

∣

∣

∣

∣

∣

= 0.

Let x = x1 + α, y = y1 + β and substitute in equation 7.14 to get

2(x1 + α)2 + (x1 + α)(y1 + β) − (y1 + β)2 + 4(y1 + β) − 8 = 0. (7.15)

Then equating the coefficients of x1 and y1 to 0 gives

4α + β = 0

α + 2β + 4 = 0,

which has the unique solution α = −2
3
, β = 8

3
. Then equation 7.15 simplifies

to
2x2

1 + x1y1 − y2
1 = 0 = (2x1 − y1)(x1 + y1),

so relative to the x1, y1 coordinates, equation 7.14 describes two lines: 2x1−
y1 = 0 or x1 + y1 = 0. In terms of the original x, y coordinates, these lines
become 2(x + 2

3
)− (y− 8

3
) = 0 and (x + 2

3
) + (y− 8

3
) = 0, i.e. 2x− y + 4 = 0

and x + y − 2 = 0, which intersect in the point

(x, y) = (α, β) = (−2

3
,

8

3
).

EXAMPLE 7.2.2 Identify the curve

x2 + 2xy + y2 + 2x + 2y + 1 = 0. (7.16)

Solution. Here

∆ =

∣

∣

∣

∣

∣

∣

1 1 1
1 1 1
1 1 1

∣

∣

∣

∣

∣

∣

= 0.

Let x = x1 + α, y = y1 + β and substitute in equation 7.16 to get

(x1+α)2+2(x1+α)(y1+β)+(y1+β)2+2(x1+α)+2(y1+β)+1 = 0. (7.17)

Then equating the coefficients of x1 and y1 to 0 gives the same equation

2α + 2β + 2 = 0.

Take α = 0, β = −1. Then equation 7.17 simplifies to

x2
1 + 2x1y1 + y2

1 = 0 = (x1 + y1)
2,

and in terms of x, y coordinates, equation 7.16 becomes

(x + y + 1)2 = 0, or x + y + 1 = 0.



7.3. PROBLEMS 147

7.3 PROBLEMS

1. Sketch the curves

(i) x2 − 8x + 8y + 8 = 0;

(ii) y2 − 12x + 2y + 25 = 0.

2. Sketch the hyperbola
4xy − 3y2 = 8

and find the equations of the asymptotes.

[Answer: y = 0 and y = 4
3
x.]

3. Sketch the ellipse
8x2 − 4xy + 5y2 = 36

and find the equations of the axes of symmetry.

[Answer: y = 2x and x = −2y.]

4. Sketch the conics defined by the following equations. Find the centre
when the conic is an ellipse or hyperbola, asymptotes if an hyperbola,
the vertex and axis of symmetry if a parabola:

(i) 4x2 − 9y2 − 24x − 36y − 36 = 0;

(ii) 5x2 − 4xy + 8y2 + 4
√

5x − 16
√

5y + 4 = 0;

(iii) 4x2 + y2 − 4xy − 10y − 19 = 0;

(iv) 77x2 + 78xy − 27y2 + 70x − 30y + 29 = 0.

[Answers: (i) hyperbola, centre (3, −2), asymptotes 2x − 3y − 12 =
0, 2x + 3y = 0;

(ii) ellipse, centre (0,
√

5);

(iii) parabola, vertex (−7
5
, −9

5
), axis of symmetry 2x − y + 1 = 0;

(iv) hyperbola, centre (− 1
10

, − 7
10

), asymptotes 7x + 9y + 7 = 0 and
11x − 3y − 1 = 0.]

5. Identify the lines determined by the equations:

(i) 2x2 + y2 + 3xy − 5x − 4y + 3 = 0;
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(ii) 9x2 + y2 − 6xy + 6x − 2y + 1 = 0;

(iii) x2 + 4xy + 4y2 − x − 2y − 2 = 0.

[Answers: (i) 2x + y − 3 = 0 and x + y − 1 = 0; (ii) 3x − y + 1 = 0;
(iii) x + 2y + 1 = 0 and x + 2y − 2 = 0.]


