Chapter 6

EIGENVALUES AND EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation

$$
a x^{2}+2 h x y+b y^{2}=c,
$$

where not all of a, h, b are zero. The expression $a x^{2}+2 h x y+b y^{2}$ is called a quadratic form in x and y and we have the identity

$$
a x^{2}+2 h x y+b y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & h \\
h & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=X^{t} A X,
$$

where $X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & h \\ h & b\end{array}\right] . A$ is called the matrix of the quadratic form.

We now rotate the x, y axes anticlockwise through θ radians to new x_{1}, y_{1} axes. The equations describing the rotation of axes are derived as follows:

Let P have coordinates (x, y) relative to the x, y axes and coordinates $\left(x_{1}, y_{1}\right)$ relative to the x_{1}, y_{1} axes. Then referring to Figure 6.1:

Figure 6.1: Rotating the axes.

$$
\begin{aligned}
x & =O Q=O P \cos (\theta+\alpha) \\
& =O P(\cos \theta \cos \alpha-\sin \theta \sin \alpha) \\
& =(O P \cos \alpha) \cos \theta-(O P \sin \alpha) \sin \theta \\
& =O R \cos \theta-P R \sin \theta \\
& =x_{1} \cos \theta-y_{1} \sin \theta
\end{aligned}
$$

Similarly $y=x_{1} \sin \theta+y_{1} \cos \theta$.
We can combine these transformation equations into the single matrix equation:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

or $X=P Y$, where $X=\left[\begin{array}{l}x \\ y\end{array}\right], Y=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ and $P=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. We note that the columns of P give the directions of the positive x_{1} and y_{1} axes. Also P is an orthogonal matrix - we have $P P^{t}=I_{2}$ and so $P^{-1}=P^{t}$. The matrix P has the special property that $\operatorname{det} P=1$.

A matrix of the type $P=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is called a rotation matrix. We shall show soon that any 2×2 real orthogonal matrix with determinant
equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=Y=P^{t} X=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

so $x_{1}=x \cos \theta+y \sin \theta$ and $y_{1}=-x \sin \theta+y \cos \theta$. Then

$$
X^{t} A X=(P Y)^{t} A(P Y)=Y^{t}\left(P^{t} A P\right) Y
$$

Now suppose, as we later show, that it is possible to choose an angle θ so that $P^{t} A P$ is a diagonal matrix, say $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$. Then

$$
X^{t} A X=\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{6.1}\\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\lambda_{1} x_{1}^{2}+\lambda_{2} y_{1}^{2}
$$

and relative to the new axes, the equation $a x^{2}+2 h x y+b y^{2}=c$ becomes $\lambda_{1} x_{1}^{2}+\lambda_{2} y_{1}^{2}=c$, which is quite easy to sketch. This curve is symmetrical about the x_{1} and y_{1} axes, with P_{1} and P_{2}, the respective columns of P, giving the directions of the axes of symmetry.

Also it can be verified that P_{1} and P_{2} satisfy the equations

$$
A P_{1}=\lambda_{1} P_{1} \text { and } A P_{2}=\lambda_{2} P_{2}
$$

These equations force a restriction on λ_{1} and λ_{2}. For if $P_{1}=\left[\begin{array}{l}u_{1} \\ v_{1}\end{array}\right]$, the first equation becomes

$$
\left[\begin{array}{ll}
a & h \\
h & b
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right] \text { or }\left[\begin{array}{cc}
a-\lambda_{1} & h \\
h & b-\lambda_{1}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Hence we are dealing with a homogeneous system of two linear equations in two unknowns, having a non-trivial solution $\left(u_{1}, v_{1}\right)$. Hence

$$
\left|\begin{array}{cc}
a-\lambda_{1} & h \\
h & b-\lambda_{1}
\end{array}\right|=0
$$

Similarly, λ_{2} satisfies the same equation. In expanded form, λ_{1} and λ_{2} satisfy

$$
\lambda^{2}-(a+b) \lambda+a b-h^{2}=0
$$

This equation has real roots

$$
\begin{equation*}
\lambda=\frac{a+b \pm \sqrt{(a+b)^{2}-4\left(a b-h^{2}\right)}}{2}=\frac{a+b \pm \sqrt{(a-b)^{2}+4 h^{2}}}{2} \tag{6.2}
\end{equation*}
$$

(The roots are distinct if $a \neq b$ or $h \neq 0$. The case $a=b$ and $h=0$ needs no investigation, as it gives an equation of a circle.)

The equation $\lambda^{2}-(a+b) \lambda+a b-h^{2}=0$ is called the eigenvalue equation of the matrix A.

6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector) Let A be a complex square matrix. Then if λ is a complex number and X a non-zero complex column vector satisfying $A X=\lambda X$, we call X an eigenvector of A, while λ is called an eigenvalue of A. We also say that X is an eigenvector corresponding to the eigenvalue λ.

So in the above example P_{1} and P_{2} are eigenvectors corresponding to λ_{1} and λ_{2}, respectively. We shall give an algorithm which starts from the eigenvalues of $A=\left[\begin{array}{ll}a & h \\ h & b\end{array}\right]$ and constructs a rotation matrix P such that $P^{t} A P$ is diagonal.

As noted above, if λ is an eigenvalue of an $n \times n$ matrix A, with corresponding eigenvector X, then $\left(A-\lambda I_{n}\right) X=0$, with $X \neq 0$, so $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ and there are at most n distinct eigenvalues of A.

Conversely if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$, then $\left(A-\lambda I_{n}\right) X=0$ has a non-trivial solution X and so λ is an eigenvalue of A with X a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic polynomial, equation)

The polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A and is often denoted by $\operatorname{ch}_{A}(\lambda)$. The equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ is called the characteristic equation of A. Hence the eigenvalues of A are the roots of the characteristic polynomial of A.

For a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, it is easily verified that the characteristic polynomial is $\lambda^{2}-(\operatorname{trace} A) \lambda+\operatorname{det} A$, where trace $A=a+d$ is the sum of the diagonal elements of A.

EXAMPLE 6.2.1 Find the eigenvalues of $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ and find all eigenvectors.

Solution. The characteristic equation of A is $\lambda^{2}-4 \lambda+3=0$, or

$$
(\lambda-1)(\lambda-3)=0 .
$$

Hence $\lambda=1$ or 3 . The eigenvector equation $\left(A-\lambda I_{n}\right) X=0$ reduces to

$$
\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

or

$$
\begin{aligned}
& (2-\lambda) x+y=0 \\
& x+(2-\lambda) y=0 .
\end{aligned}
$$

Taking $\lambda=1$ gives

$$
\begin{aligned}
& x+y=0 \\
& x+y=0
\end{aligned}
$$

which has solution $x=-y, y$ arbitrary. Consequently the eigenvectors corresponding to $\lambda=1$ are the vectors $\left[\begin{array}{r}-y \\ y\end{array}\right]$, with $y \neq 0$.

Taking $\lambda=3$ gives

$$
\begin{aligned}
-x+y & =0 \\
x-y & =0
\end{aligned}
$$

which has solution $x=y, y$ arbitrary. Consequently the eigenvectors corresponding to $\lambda=3$ are the vectors $\left[\begin{array}{l}y \\ y\end{array}\right]$, with $y \neq 0$.

Our next result has wide applicability:
THEOREM 6.2.1 Let A be a 2×2 matrix having distinct eigenvalues λ_{1} and λ_{2} and corresponding eigenvectors X_{1} and X_{2}. Let P be the matrix whose columns are X_{1} and X_{2}, respectively. Then P is non-singular and

$$
P^{-1} A P=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] .
$$

Proof. Suppose $A X_{1}=\lambda_{1} X_{1}$ and $A X_{2}=\lambda_{2} X_{2}$. We show that the system of homogeneous equations

$$
x X_{1}+y X_{2}=0
$$

has only the trivial solution. Then by theorem 2.5.10 the matrix $P=$ $\left[X_{1} \mid X_{2}\right]$ is non-singular. So assume

$$
\begin{equation*}
x X_{1}+y X_{2}=0 . \tag{6.3}
\end{equation*}
$$

Then $A\left(x X_{1}+y X_{2}\right)=A 0=0$, so $x\left(A X_{1}\right)+y\left(A X_{2}\right)=0$. Hence

$$
\begin{equation*}
x \lambda_{1} X_{1}+y \lambda_{2} X_{2}=0 \tag{6.4}
\end{equation*}
$$

Multiplying equation 6.3 by λ_{1} and subtracting from equation 6.4 gives

$$
\left(\lambda_{2}-\lambda_{1}\right) y X_{2}=0
$$

Hence $y=0$, as $\left(\lambda_{2}-\lambda_{1}\right) \neq 0$ and $X_{2} \neq 0$. Then from equation $6.3, x X_{1}=0$ and hence $x=0$.

Then the equations $A X_{1}=\lambda_{1} X_{1}$ and $A X_{2}=\lambda_{2} X_{2}$ give

$$
\begin{aligned}
A P=A\left[X_{1} \mid X_{2}\right]=\left[A X_{1} \mid A X_{2}\right] & =\left[\lambda_{1} X_{1} \mid \lambda_{2} X_{2}\right] \\
& =\left[X_{1} \mid X_{2}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=P\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
\end{aligned}
$$

So

$$
P^{-1} A P=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

EXAMPLE 6.2.2 Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ be the matrix of example 6.2.1. Then $X_{1}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ and $X_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are eigenvectors corresponding to eigenvalues 1 and 3 , respectively. Hence if $P=\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$, we have

$$
P^{-1} A P=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

There are two immediate applications of theorem 6.2.1. The first is to the calculation of A^{n} : If $P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, then $A=P \operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) P^{-1}$ and

$$
A^{n}=\left(P\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] P^{-1}\right)^{n}=P\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]^{n} P^{-1}=P\left[\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right] P^{-1}
$$

The second application is to solving a system of linear differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

where $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is a matrix of real or complex numbers and x and y are functions of t. The system can be written in matrix form as $\dot{X}=A X$, where

$$
X=\left[\begin{array}{c}
x \\
y
\end{array}\right] \text { and } \dot{X}=\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]
$$

We make the substitution $X=P Y$, where $Y=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$. Then x_{1} and y_{1} are also functions of t and

$$
\dot{X}=P \dot{Y}=A X=A(P Y), \text { so } \dot{Y}=\left(P^{-1} A P\right) Y=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] Y
$$

Hence $\dot{x_{1}}=\lambda_{1} x_{1}$ and $\dot{y_{1}}=\lambda_{2} y_{1}$.
These differential equations are well-known to have the solutions $x_{1}=$ $x_{1}(0) e^{\lambda_{1} t}$ and $y_{1}=y_{1}(0) e^{\lambda_{2} t}$, where $x_{1}(0)$ is the value of x_{1} when $t=0$.
[If $\frac{d x}{d t}=k x$, where k is a constant, then

$$
\frac{d}{d t}\left(e^{-k t} x\right)=-k e^{-k t} x+e^{-k t} \frac{d x}{d t}=-k e^{-k t} x+e^{-k t} k x=0
$$

Hence $e^{-k t} x$ is constant, so $e^{-k t} x=e^{-k 0} x(0)=x(0)$. Hence $x=x(0) e^{k t}$.]
However $\left[\begin{array}{l}x_{1}(0) \\ y_{1}(0)\end{array}\right]=P^{-1}\left[\begin{array}{l}x(0) \\ y(0)\end{array}\right]$, so this determines $x_{1}(0)$ and $y_{1}(0)$ in terms of $x(0)$ and $y(0)$. Hence ultimately x and y are determined as explicit functions of t, using the equation $X=P Y$.

EXAMPLE 6.2.3 Let $A=\left[\begin{array}{cc}2 & -3 \\ 4 & -5\end{array}\right]$. Use the eigenvalue method to derive an explicit formula for A^{n} and also solve the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-3 y \\
& \frac{d y}{d t}=4 x-5 y
\end{aligned}
$$

given $x=7$ and $y=13$ when $t=0$.
Solution. The characteristic polynomial of A is $\lambda^{2}+3 \lambda+2$ which has distinct roots $\lambda_{1}=-1$ and $\lambda_{2}=-2$. We find corresponding eigenvectors $X_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $X_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Hence if $P=\left[\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right]$, we have $P^{-1} A P=\operatorname{diag}(-1,-2)$. Hence

$$
\begin{aligned}
A^{n} & =\left(P \operatorname{diag}(-1,-2) P^{-1}\right)^{n}=P \operatorname{diag}\left((-1)^{n},(-2)^{n}\right) P^{-1} \\
& =\left[\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{cc}
(-1)^{n} & 0 \\
0 & (-2)^{n}
\end{array}\right]\left[\begin{array}{rr}
4 & -3 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{n}\left[\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{rc}
1 & 0 \\
0 & 2^{n}
\end{array}\right]\left[\begin{array}{rr}
4 & -3 \\
-1 & 1
\end{array}\right] \\
& =(-1)^{n}\left[\begin{array}{ll}
1 & 3 \times 2^{n} \\
1 & 4 \times 2^{n}
\end{array}\right]\left[\begin{array}{rr}
4 & -3 \\
-1 & 1
\end{array}\right] \\
& =(-1)^{n}\left[\begin{array}{ll}
4-3 \times 2^{n} & -3+3 \times 2^{n} \\
4-4 \times 2^{n} & -3+4 \times 2^{n}
\end{array}\right] .
\end{aligned}
$$

To solve the differential equation system, make the substitution $X=$ $P Y$. Then $x=x_{1}+3 y_{1}, y=x_{1}+4 y_{1}$. The system then becomes

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1} \\
\dot{y}_{1} & =-2 y_{1}
\end{aligned}
$$

so $x_{1}=x_{1}(0) e^{-t}, y_{1}=y_{1}(0) e^{-2 t}$. Now

$$
\left[\begin{array}{l}
x_{1}(0) \\
y_{1}(0)
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{rr}
4 & -3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
7 \\
13
\end{array}\right]=\left[\begin{array}{r}
-11 \\
6
\end{array}\right]
$$

so $x_{1}=-11 e^{-t}$ and $y_{1}=6 e^{-2 t}$. Hence $x=-11 e^{-t}+3\left(6 e^{-2 t}\right)=-11 e^{-t}+$ $18 e^{-2 t}, y=-11 e^{-t}+4\left(6 e^{-2 t}\right)=-11 e^{-t}+24 e^{-2 t}$.

For a more complicated example we solve a system of inhomogeneous recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =2 x_{n}-y_{n}-1 \\
y_{n+1} & =-x_{n}+2 y_{n}+2
\end{aligned}
$$

given that $x_{0}=0$ and $y_{0}=-1$.
Solution. The system can be written in matrix form as

$$
X_{n+1}=A X_{n}+B
$$

where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

It is then an easy induction to prove that

$$
\begin{equation*}
X_{n}=A^{n} X_{0}+\left(A^{n-1}+\cdots+A+I_{2}\right) B \tag{6.5}
\end{equation*}
$$

Also it is easy to verify by the eigenvalue method that

$$
A^{n}=\frac{1}{2}\left[\begin{array}{ll}
1+3^{n} & 1-3^{n} \\
1-3^{n} & 1+3^{n}
\end{array}\right]=\frac{1}{2} U+\frac{3^{n}}{2} V
$$

where $U=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $V=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$. Hence

$$
\begin{aligned}
A^{n-1}+\cdots+A+I_{2} & =\frac{n}{2} U+\frac{\left(3^{n-1}+\cdots+3+1\right)}{2} V \\
& =\frac{n}{2} U+\frac{\left(3^{n}-1\right)}{4} V
\end{aligned}
$$

Then equation 6.5 gives

$$
X_{n}=\left(\frac{1}{2} U+\frac{3^{n}}{2} V\right)\left[\begin{array}{r}
0 \\
-1
\end{array}\right]+\left(\frac{n}{2} U+\frac{\left(3^{n}-1\right)}{4} V\right)\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

which simplifies to

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
\left(2 n+1-3^{n}\right) / 4 \\
\left(2 n-5+3^{n}\right) / 4
\end{array}\right]
$$

Hence $x_{n}=\left(2 n+1-3^{n}\right) / 4$ and $y_{n}=\left(2 n-5+3^{n}\right) / 4$.
REMARK 6.2.1 If $\left(A-I_{2}\right)^{-1}$ existed (that is, if $\operatorname{det}\left(A-I_{2}\right) \neq 0$, or equivalently, if 1 is not an eigenvalue of A), then we could have used the formula

$$
\begin{equation*}
A^{n-1}+\cdots+A+I_{2}=\left(A^{n}-I_{2}\right)\left(A-I_{2}\right)^{-1} \tag{6.6}
\end{equation*}
$$

However the eigenvalues of A are 1 and 3 in the above problem, so formula 6.6 cannot be used there.
Our discussion of eigenvalues and eigenvectors has been limited to 2×2 matrices. The discussion is more complicated for matrices of size greater than two and is best left to a second course in linear algebra. Nevertheless the following result is a useful generalization of theorem 6.2.1. The reader is referred to [28, page 350] for a proof.
THEOREM 6.2.2 Let A be an $n \times n$ matrix having distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors X_{1}, \ldots, X_{n}. Let P be the matrix whose columns are respectively X_{1}, \ldots, X_{n}. Then P is non-singular and

$$
P^{-1} A P=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Another useful result which covers the case where there are multiple eigenvalues is the following (The reader is referred to [28, pages 351-352] for a proof):

THEOREM 6.2.3 Suppose the characteristic polynomial of A has the factorization

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=\left(\lambda-c_{1}\right)^{n_{1}} \cdots\left(\lambda-c_{t}\right)^{n_{t}}
$$

where c_{1}, \ldots, c_{t} are the distinct eigenvalues of A. Suppose that for $i=$ $1, \ldots, t$, we have nullity $\left(c_{i} I_{n}-A\right)=n_{i}$. For each such i, choose a basis $X_{i 1}, \ldots, X_{i n_{i}}$ for the eigenspace $N\left(c_{i} I_{n}-A\right)$. Then the matrix

$$
P=\left[X_{11}|\cdots| X_{1 n_{1}}|\cdots| X_{t 1}|\cdots| X_{t n_{t}}\right]
$$

is non-singular and $P^{-1} A P$ is the following diagonal matrix

$$
P^{-1} A P=\left[\begin{array}{cccc}
c_{1} I_{n_{1}} & 0 & \cdots & 0 \\
0 & c_{2} I_{n_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & c_{t} I_{n_{t}}
\end{array}\right]
$$

(The notation means that on the diagonal there are n_{1} elements c_{1}, followed by n_{2} elements c_{2}, \ldots, n_{t} elements c_{t}.)

6.3 PROBLEMS

1. Let $A=\left[\begin{array}{rr}4 & -3 \\ 1 & 0\end{array}\right]$. Find an invertible matrix P such that $P^{-1} A P=$ $\operatorname{diag}(1,3)$ and hence prove that

$$
A^{n}=\frac{3^{n}-1}{2} A+\frac{3-3^{n}}{2} I_{2}
$$

2. If $A=\left[\begin{array}{ll}0.6 & 0.8 \\ 0.4 & 0.2\end{array}\right]$, prove that A^{n} tends to a limiting matrix

$$
\left[\begin{array}{ll}
2 / 3 & 2 / 3 \\
1 / 3 & 1 / 3
\end{array}\right]
$$

as $n \rightarrow \infty$.
3. Solve the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=3 x-2 y \\
& \frac{d y}{d t}=5 x-4 y
\end{aligned}
$$

given $x=13$ and $y=22$ when $t=0$.
[Answer: $x=7 e^{t}+6 e^{-2 t}, y=7 e^{t}+15 e^{-2 t}$.]
4. Solve the system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =3 x_{n}-y_{n} \\
y_{n+1} & =-x_{n}+3 y_{n}
\end{aligned}
$$

given that $x_{0}=1$ and $y_{0}=2$.
[Answer: $x_{n}=2^{n-1}\left(3-2^{n}\right), y_{n}=2^{n-1}\left(3+2^{n}\right)$.]
5. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a real or complex matrix with distinct eigenvalues λ_{1}, λ_{2} and corresponding eigenvectors X_{1}, X_{2}. Also let $P=\left[X_{1} \mid X_{2}\right]$.
(a) Prove that the system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =a x_{n}+b y_{n} \\
y_{n+1} & =c x_{n}+d y_{n}
\end{aligned}
$$

has the solution

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=\alpha \lambda_{1}^{n} X_{1}+\beta \lambda_{2}^{n} X_{2}
$$

where α and β are determined by the equation

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

(b) Prove that the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

has the solution

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\alpha e^{\lambda_{1} t} X_{1}+\beta e^{\lambda_{2} t} X_{2}
$$

where α and β are determined by the equation

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]
$$

6. Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ be a real matrix with non-real eigenvalues $\lambda=$ $a+i b$ and $\bar{\lambda}=a-i b$, with corresponding eigenvectors $X=U+i V$ and $\bar{X}=U-i V$, where U and V are real vectors. Also let P be the real matrix defined by $P=[U \mid V]$. Finally let $a+i b=r e^{i \theta}$, where $r>0$ and θ is real.
(a) Prove that

$$
\begin{aligned}
A U & =a U-b V \\
A V & =b U+a V
\end{aligned}
$$

(b) Deduce that

$$
P^{-1} A P=\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]
$$

(c) Prove that the system of recurrence relations

$$
\begin{aligned}
x_{n+1} & =a_{11} x_{n}+a_{12} y_{n} \\
y_{n+1} & =a_{21} x_{n}+a_{22} y_{n}
\end{aligned}
$$

has the solution

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=r^{n}\{(\alpha U+\beta V) \cos n \theta+(\beta U-\alpha V) \sin n \theta\}
$$

where α and β are determined by the equation

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

(d) Prove that the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

has the solution

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=e^{a t}\{(\alpha U+\beta V) \cos b t+(\beta U-\alpha V) \sin b t\}
$$

where α and β are determined by the equation

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right] .
$$

[Hint: Let $\left[\begin{array}{l}x \\ y\end{array}\right]=P\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$. Also let $z=x_{1}+i y_{1}$. Prove that

$$
\dot{z}=(a-i b) z
$$

and deduce that

$$
x_{1}+i y_{1}=e^{a t}(\alpha+i \beta)(\cos b t+i \sin b t)
$$

Then equate real and imaginary parts to solve for x_{1}, y_{1} and hence x, y.]
7. (The case of repeated eigenvalues.) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and suppose that the characteristic polynomial of $A, \lambda^{2}-(a+d) \lambda+(a d-b c)$, has a repeated root α. Also assume that $A \neq \alpha I_{2}$. Let $B=A-\alpha I_{2}$.
(i) Prove that $(a-d)^{2}+4 b c=0$.
(ii) Prove that $B^{2}=0$.
(iii) Prove that $B X_{2} \neq 0$ for some vector X_{2}; indeed, show that X_{2} can be taken to be $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(iv) Let $X_{1}=B X_{2}$. Prove that $P=\left[X_{1} \mid X_{2}\right]$ is non-singular,

$$
A X_{1}=\alpha X_{1} \text { and } A X_{2}=\alpha X_{2}+X_{1}
$$

and deduce that

$$
P^{-1} A P=\left[\begin{array}{ll}
\alpha & 1 \\
0 & \alpha
\end{array}\right]
$$

8. Use the previous result to solve system of the differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=4 x-y \\
& \frac{d y}{d t}=4 x+8 y
\end{aligned}
$$

given that $x=1=y$ when $t=0$.
[To solve the differential equation

$$
\frac{d x}{d t}-k x=f(t), \quad k \text { a constant }
$$

multiply throughout by $e^{-k t}$, thereby converting the left-hand side to $\left.\frac{d x}{d t}\left(e^{-k t} x\right).\right]$
[Answer: $x=(1-3 t) e^{6 t}, y=(1+6 t) e^{6 t}$.]
9. Let

$$
A=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right]
$$

(a) Verify that $\operatorname{det}\left(\lambda I_{3}-A\right)$, the characteristic polynomial of A, is given by

$$
(\lambda-1) \lambda\left(\lambda-\frac{1}{4}\right)
$$

(b) Find a non-singular matrix P such that $P^{-1} A P=\operatorname{diag}\left(1,0, \frac{1}{4}\right)$.
(c) Prove that

$$
A^{n}=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{3 \cdot 4^{n}}\left[\begin{array}{rrr}
2 & 2 & -4 \\
-1 & -1 & 2 \\
-1 & -1 & 2
\end{array}\right]
$$

if $n \geq 1$.
10. Let

$$
A=\left[\begin{array}{rrr}
5 & 2 & -2 \\
2 & 5 & -2 \\
-2 & -2 & 5
\end{array}\right]
$$

(a) Verify that $\operatorname{det}\left(\lambda I_{3}-A\right)$, the characteristic polynomial of A, is given by

$$
(\lambda-3)^{2}(\lambda-9)
$$

(b) Find a non-singular matrix P such that $P^{-1} A P=\operatorname{diag}(3,3,9)$.

