Chapter 3

SUBSPACES

3.1 Introduction

Throughout this chapter, we will be studying F^{n}, the set of all n-dimensional column vectors with components from a field F. We continue our study of matrices by considering an important class of subsets of F^{n} called subspaces. These arise naturally for example, when we solve a system of m linear homogeneous equations in n unknowns.

We also study the concept of linear dependence of a family of vectors. This was introduced briefly in Chapter 2, Remark 2.5.4. Other topics discussed are the row space, column space and null space of a matrix over F, the dimension of a subspace, particular examples of the latter being the rank and nullity of a matrix.

3.2 Subspaces of F^{n}

DEFINITION 3.2.1 A subset S of F^{n} is called a subspace of F^{n} if

1. The zero vector belongs to S; (that is, $0 \in S$);
2. If $u \in S$ and $v \in S$, then $u+v \in S ;(S$ is said to be closed under vector addition);
3. If $u \in S$ and $t \in F$, then $t u \in S$; (S is said to be closed under scalar multiplication).

EXAMPLE 3.2.1 Let $A \in M_{m \times n}(F)$. Then the set of vectors $X \in F^{n}$ satisfying $A X=0$ is a subspace of F^{n} called the null space of A and is denoted here by $N(A)$. (It is sometimes called the solution space of A.)

Proof. (1) $A 0=0$, so $0 \in N(A)$; (2) If $X, Y \in N(A)$, then $A X=0$ and $A Y=0$, so $A(X+Y)=A X+A Y=0+0=0$ and so $X+Y \in N(A) ;(3)$ If $X \in N(A)$ and $t \in F$, then $A(t X)=t(A X)=t 0=0$, so $t X \in N(A)$.

For example, if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $N(A)=\{0\}$, the set consisting of just the zero vector. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$, then $N(A)$ is the set of all scalar multiples of $[-2,1]^{t}$.

EXAMPLE 3.2.2 Let $X_{1}, \ldots, X_{m} \in F^{n}$. Then the set consisting of all linear combinations $x_{1} X_{1}+\cdots+x_{m} X_{m}$, where $x_{1}, \ldots, x_{m} \in F$, is a subspace of F^{n}. This subspace is called the subspace spanned or generated by X_{1}, \ldots, X_{m} and is denoted here by $\left\langle X_{1}, \ldots, X_{m}\right\rangle$. We also call X_{1}, \ldots, X_{m} a spanning family for $S=\left\langle X_{1}, \ldots, X_{m}\right\rangle$.

Proof. (1) $0=0 X_{1}+\cdots+0 X_{m}$, so $0 \in\left\langle X_{1}, \ldots, X_{m}\right\rangle$; (2) If $X, Y \in$ $\left\langle X_{1}, \ldots, X_{m}\right\rangle$, then $X=x_{1} X_{1}+\cdots+x_{m} X_{m}$ and $Y=y_{1} X_{1}+\cdots+y_{m} X_{m}$, so

$$
\begin{aligned}
X+Y & =\left(x_{1} X_{1}+\cdots+x_{m} X_{m}\right)+\left(y_{1} X_{1}+\cdots+y_{m} X_{m}\right) \\
& =\left(x_{1}+y_{1}\right) X_{1}+\cdots+\left(x_{m}+y_{m}\right) X_{m} \in\left\langle X_{1}, \ldots, X_{m}\right\rangle .
\end{aligned}
$$

(3) If $X \in\left\langle X_{1}, \ldots, X_{m}\right\rangle$ and $t \in F$, then

$$
\begin{aligned}
X & =x_{1} X_{1}+\cdots+x_{m} X_{m} \\
t X & =t\left(x_{1} X_{1}+\cdots+x_{m} X_{m}\right) \\
& =\left(t x_{1}\right) X_{1}+\cdots+\left(t x_{m}\right) X_{m} \in\left\langle X_{1}, \ldots, X_{m}\right\rangle .
\end{aligned}
$$

For example, if $A \in M_{m \times n}(F)$, the subspace generated by the columns of A is an important subspace of F^{m} and is called the column space of A. The column space of A is denoted here by $C(A)$. Also the subspace generated by the rows of A is a subspace of F^{n} and is called the row space of A and is denoted by $R(A)$.

EXAMPLE 3.2.3 For example $F^{n}=\left\langle E_{1}, \ldots, E_{n}\right\rangle$, where E_{1}, \ldots, E_{n} are the n-dimensional unit vectors. For if $X=\left[x_{1}, \ldots, x_{n}\right]^{t} \in F^{n}$, then $X=$ $x_{1} E_{1}+\cdots+x_{n} E_{n}$.

EXAMPLE 3.2.4 Find a spanning family for the subspace S of \mathbb{R}^{3} defined by the equation $2 x-3 y+5 z=0$.

Solution. (S is in fact the null space of $[2,-3,5]$, so S is indeed a subspace of \mathbb{R}^{3}.)

If $[x, y, z]^{t} \in S$, then $x=\frac{3}{2} y-\frac{5}{2} z$. Then

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} y-\frac{5}{2} z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{c}
\frac{3}{2} \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-\frac{5}{2} \\
0 \\
1
\end{array}\right]
$$

and conversely. Hence $\left[\frac{3}{2}, 1,0\right]^{t}$ and $\left[-\frac{5}{2}, 0,1\right]^{t}$ form a spanning family for S.

The following result is easy to prove:
LEMMA 3.2.1 Suppose each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s}. Then any linear combination of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s}.
As a corollary we have
THEOREM 3.2.1 Subspaces $\left\langle X_{1}, \ldots, X_{r}\right\rangle$ and $\left\langle Y_{1}, \ldots, Y_{s}\right\rangle$ are equal if each of X_{1}, \ldots, X_{r} is a linear combination of Y_{1}, \ldots, Y_{s} and each of Y_{1}, \ldots, Y_{s} is a linear combination of X_{1}, \ldots, X_{r}.

COROLLARY 3.2.1 Subspaces $\left\langle X_{1}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}\right\rangle$ and $\left\langle X_{1}, \ldots, X_{r}\right\rangle$ are equal if each of Z_{1}, \ldots, Z_{t} is a linear combination of X_{1}, \ldots, X_{r}.

EXAMPLE 3.2.5 If X and Y are vectors in \mathbb{R}^{n}, then

$$
\langle X, Y\rangle=\langle X+Y, X-Y\rangle
$$

Solution. Each of $X+Y$ and $X-Y$ is a linear combination of X and Y. Also

$$
X=\frac{1}{2}(X+Y)+\frac{1}{2}(X-Y) \quad \text { and } \quad Y=\frac{1}{2}(X+Y)-\frac{1}{2}(X-Y)
$$

so each of X and Y is a linear combination of $X+Y$ and $X-Y$.
There is an important application of Theorem 3.2.1 to row equivalent matrices (see Definition 1.2.4):
THEOREM 3.2.2 If A is row equivalent to B, then $R(A)=R(B)$.
Proof. Suppose that B is obtained from A by a sequence of elementary row operations. Then it is easy to see that each row of B is a linear combination of the rows of A. But A can be obtained from B by a sequence of elementary operations, so each row of A is a linear combination of the rows of B. Hence by Theorem 3.2.1, $R(A)=R(B)$.

REMARK 3.2.1 If A is row equivalent to B, it is not always true that $C(A)=C(B)$.

For example, if $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$, then B is in fact the reduced row-echelon form of A. However we see that

$$
C(A)=\left\langle\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\rangle
$$

and similarly $C(B)=\left\langle\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\rangle$.

$$
\text { Consequently } C(A) \neq C(B) \text {, as }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \in C(A) \text { but }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \notin C(B) \text {. }
$$

3.3 Linear dependence

We now recall the definition of linear dependence and independence of a family of vectors in F^{n} given in Chapter 2.

DEFINITION 3.3.1 Vectors X_{1}, \ldots, X_{m} in F^{n} are said to be linearly dependent if there exist scalars x_{1}, \ldots, x_{m}, not all zero, such that

$$
x_{1} X_{1}+\cdots+x_{m} X_{m}=0 .
$$

In other words, X_{1}, \ldots, X_{m} are linearly dependent if some X_{i} is expressible as a linear combination of the remaining vectors.
X_{1}, \ldots, X_{m} are called linearly independent if they are not linearly dependent. Hence X_{1}, \ldots, X_{m} are linearly independent if and only if the equation

$$
x_{1} X_{1}+\cdots+x_{m} X_{m}=0
$$

has only the trivial solution $x_{1}=0, \ldots, x_{m}=0$.
EXAMPLE 3.3.1 The following three vectors in \mathbb{R}^{3}

$$
X_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad X_{2}=\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right], \quad X_{3}=\left[\begin{array}{r}
-1 \\
7 \\
12
\end{array}\right]
$$

are linearly dependent, as $2 X_{1}+3 X_{2}+(-1) X_{3}=0$.

REMARK 3.3.1 If X_{1}, \ldots, X_{m} are linearly independent and

$$
x_{1} X_{1}+\cdots+x_{m} X_{m}=y_{1} X_{1}+\cdots+y_{m} X_{m}
$$

then $x_{1}=y_{1}, \ldots, x_{m}=y_{m}$. For the equation can be rewritten as

$$
\left(x_{1}-y_{1}\right) X_{1}+\cdots+\left(x_{m}-y_{m}\right) X_{m}=0
$$

and so $x_{1}-y_{1}=0, \ldots, x_{m}-y_{m}=0$.

THEOREM 3.3.1 A family of m vectors in F^{n} will be linearly dependent if $m>n$. Equivalently, any linearly independent family of m vectors in F^{n} must satisfy $m \leq n$.

Proof. The equation

$$
x_{1} X_{1}+\cdots+x_{m} X_{m}=0
$$

is equivalent to n homogeneous equations in m unknowns. By Theorem 1.5.1, such a system has a non-trivial solution if $m>n$.

The following theorem is an important generalization of the last result and is left as an exercise for the interested student:

THEOREM 3.3.2 A family of s vectors in $\left\langle X_{1}, \ldots, X_{r}\right\rangle$ will be linearly dependent if $s>r$. Equivalently, a linearly independent family of s vectors in $\left\langle X_{1}, \ldots, X_{r}\right\rangle$ must have $s \leq r$.

Here is a useful criterion for linear independence which is sometimes called the left-to-right test:

THEOREM 3.3.3 Vectors X_{1}, \ldots, X_{m} in F^{n} are linearly independent if
(a) $X_{1} \neq 0$;
(b) For each k with $1<k \leq m, X_{k}$ is not a linear combination of X_{1}, \ldots, X_{k-1}.

One application of this criterion is the following result:
THEOREM 3.3.4 Every subspace S of F^{n} can be represented in the form $S=\left\langle X_{1}, \ldots, X_{m}\right\rangle$, where $m \leq n$.

Proof. If $S=\{0\}$, there is nothing to prove - we take $X_{1}=0$ and $m=1$.
So we assume S contains a non-zero vector X_{1}; then $\left\langle X_{1}\right\rangle \subseteq S$ as S is a subspace. If $S=\left\langle X_{1}\right\rangle$, we are finished. If not, S will contain a vector X_{2}, not a linear combination of X_{1}; then $\left\langle X_{1}, X_{2}\right\rangle \subseteq S$ as S is a subspace. If $S=\left\langle X_{1}, X_{2}\right\rangle$, we are finished. If not, S will contain a vector X_{3} which is not a linear combination of X_{1} and X_{2}. This process must eventually stop, for at stage k we have constructed a family of k linearly independent vectors X_{1}, \ldots, X_{k}, all lying in F^{n} and hence $k \leq n$.

There is an important relationship between the columns of A and B, if A is row-equivalent to B.

THEOREM 3.3.5 Suppose that A is row equivalent to B and let c_{1}, \ldots, c_{r} be distinct integers satisfying $1 \leq c_{i} \leq n$. Then
(a) Columns $A_{* c_{1}}, \ldots, A_{* c_{r}}$ of A are linearly dependent if and only if the corresponding columns of B are linearly dependent; indeed more is true:

$$
x_{1} A_{* c_{1}}+\cdots+x_{r} A_{* c_{r}}=0 \Leftrightarrow x_{1} B_{* c_{1}}+\cdots+x_{r} B_{* c_{r}}=0
$$

(b) Columns $A_{* c_{1}}, \ldots, A_{* c_{r}}$ of A are linearly independent if and only if the corresponding columns of B are linearly independent.
(c) If $1 \leq c_{r+1} \leq n$ and c_{r+1} is distinct from c_{1}, \ldots, c_{r}, then

$$
A_{* c_{r+1}}=z_{1} A_{* c_{1}}+\cdots+z_{r} A_{* c_{r}} \Leftrightarrow B_{* c_{r}+1}=z_{1} B_{* c_{1}}+\cdots+z_{r} B_{* c_{r}}
$$

Proof. First observe that if $Y=\left[y_{1}, \ldots, y_{n}\right]^{t}$ is an n-dimensional column vector and A is $m \times n$, then

$$
A Y=y_{1} A_{* 1}+\cdots+y_{n} A_{* n}
$$

Also $A Y=0 \Leftrightarrow B Y=0$, if B is row equivalent to A. Then (a) follows by taking $y_{i}=x_{c_{j}}$ if $i=c_{j}$ and $y_{i}=0$ otherwise.
(b) is logically equivalent to (a), while (c) follows from (a) as

$$
\begin{aligned}
A_{* c_{r+1}}=z_{1} A_{* c_{1}}+\cdots+z_{r} A_{* c_{r}} & \Leftrightarrow z_{1} A_{* c_{1}}+\cdots+z_{r} A_{* c_{r}}+(-1) A_{* c_{r+1}}=0 \\
& \Leftrightarrow z_{1} B_{* c_{1}}+\cdots+z_{r} B_{* c_{r}}+(-1) B_{* c_{r+1}}=0 \\
& \Leftrightarrow B_{* c_{r+1}}=z_{1} B_{* c_{1}}+\cdots+z_{r} B_{* c_{r}}
\end{aligned}
$$

EXAMPLE 3.3.2 The matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 5 & 1 & 4 \\
2 & -1 & 1 & 2 & 2 \\
3 & 0 & 6 & 0 & -3
\end{array}\right]
$$

has reduced row-echelon form equal to

$$
B=\left[\begin{array}{rrrrr}
1 & 0 & 2 & 0 & -1 \\
0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 1 & 3
\end{array}\right]
$$

We notice that $B_{* 1}, B_{* 2}$ and $B_{* 4}$ are linearly independent and hence so are $A_{* 1}, A_{* 2}$ and $A_{* 4}$. Also

$$
\begin{aligned}
B_{* 3} & =2 B_{* 1}+3 B_{* 2} \\
B_{* 5} & =(-1) B_{* 1}+2 B_{* 2}+3 B_{* 4}
\end{aligned}
$$

so consequently

$$
\begin{aligned}
A_{* 3} & =2 A_{* 1}+3 A_{* 2} \\
A_{* 5} & =(-1) A_{* 1}+2 A_{* 2}+3 A_{* 4}
\end{aligned}
$$

3.4 Basis of a subspace

We now come to the important concept of basis of a vector subspace.

DEFINITION 3.4.1 Vectors X_{1}, \ldots, X_{m} belonging to a subspace S are said to form a basis of S if
(a) Every vector in S is a linear combination of X_{1}, \ldots, X_{m};
(b) X_{1}, \ldots, X_{m} are linearly independent.

Note that (a) is equivalent to the statement that $S=\left\langle X_{1}, \ldots, X_{m}\right\rangle$ as we automatically have $\left\langle X_{1}, \ldots, X_{m}\right\rangle \subseteq S$. Also, in view of Remark 3.3.1 above, (a) and (b) are equivalent to the statement that every vector in S is uniquely expressible as a linear combination of X_{1}, \ldots, X_{m}.

EXAMPLE 3.4.1 The unit vectors E_{1}, \ldots, E_{n} form a basis for F^{n}.

REMARK 3.4.1 The subspace $\{0\}$, consisting of the zero vector alone, does not have a basis. For every vector in a linearly independent family must necessarily be non-zero. (For example, if $X_{1}=0$, then we have the non-trivial linear relation

$$
1 X_{1}+0 X_{2}+\cdots+0 X_{m}=0
$$

and X_{1}, \ldots, X_{m} would be linearly independent.)
However if we exclude this case, every other subspace of F^{n} has a basis:
THEOREM 3.4.1 A subspace of the form $\left\langle X_{1}, \ldots, X_{m}\right\rangle$, where at least one of X_{1}, \ldots, X_{m} is non-zero, has a basis $X_{c_{1}}, \ldots, X_{c_{r}}$, where $1 \leq c_{1}<$ $\cdots<c_{r} \leq m$.

Proof. (The left-to-right algorithm). Let c_{1} be the least index k for which X_{k} is non-zero. If $c_{1}=m$ or if all the vectors X_{k} with $k>c_{1}$ are linear combinations of $X_{c_{1}}$, terminate the algorithm and let $r=1$. Otherwise let c_{2} be the least integer $k>c_{1}$ such that X_{k} is not a linear combination of $X_{c_{1}}$.

If $c_{2}=m$ or if all the vectors X_{k} with $k>c_{2}$ are linear combinations of $X_{c_{1}}$ and $X_{c_{2}}$, terminate the algorithm and let $r=2$. Eventually the algorithm will terminate at the r-th stage, either because $c_{r}=m$, or because all vectors X_{k} with $k>c_{r}$ are linear combinations of $X_{c_{1}}, \ldots, X_{c_{r}}$.

Then it is clear by the construction of $X_{c_{1}}, \ldots, X_{c_{r}}$, using Corollary 3.2.1 that
(a) $\left\langle X_{c_{1}}, \ldots, X_{c_{r}}\right\rangle=\left\langle X_{1}, \ldots, X_{m}\right\rangle$;
(b) the vectors $X_{c_{1}}, \ldots, X_{c_{r}}$ are linearly independent by the left-to-right test.

Consequently $X_{c_{1}}, \ldots, X_{c_{r}}$ form a basis (called the left-to-right basis) for the subspace $\left\langle X_{1}, \ldots, X_{m}\right\rangle$.

EXAMPLE 3.4.2 Let X and Y be linearly independent vectors in \mathbb{R}^{n}. Then the subspace $\langle 0,2 X, X,-Y, X+Y\rangle$ has left-to-right basis consisting of $2 X,-Y$.

A subspace S will in general have more than one basis. For example, any permutation of the vectors in a basis will yield another basis. Given one particular basis, one can determine all bases for S using a simple formula. This is left as one of the problems at the end of this chapter.

We settle for the following important fact about bases:

THEOREM 3.4.2 Any two bases for a subspace S must contain the same number of elements.

Proof. For if X_{1}, \ldots, X_{r} and Y_{1}, \ldots, Y_{s} are bases for S, then Y_{1}, \ldots, Y_{s} form a linearly independent family in $S=\left\langle X_{1}, \ldots, X_{r}\right\rangle$ and hence $s \leq r$ by Theorem 3.3.2. Similarly $r \leq s$ and hence $r=s$.

DEFINITION 3.4.2 This number is called the dimension of S and is written $\operatorname{dim} S$. Naturally we define $\operatorname{dim}\{0\}=0$.

It follows from Theorem 3.3.1 that for any subspace S of F^{n}, we must have $\operatorname{dim} S \leq n$.

EXAMPLE 3.4.3 If E_{1}, \ldots, E_{n} denote the n-dimensional unit vectors in F^{n}, then $\operatorname{dim}\left\langle E_{1}, \ldots, E_{i}\right\rangle=i$ for $1 \leq i \leq n$.

The following result gives a useful way of exhibiting a basis.
THEOREM 3.4.3 A linearly independent family of m vectors in a subspace S, with $\operatorname{dim} S=m$, must be a basis for S.

Proof. Let X_{1}, \ldots, X_{m} be a linearly independent family of vectors in a subspace S, where $\operatorname{dim} S=m$. We have to show that every vector $X \in S$ is expressible as a linear combination of X_{1}, \ldots, X_{m}. We consider the following family of vectors in $S: X_{1}, \ldots, X_{m}, X$. This family contains $m+1$ elements and is consequently linearly dependent by Theorem 3.3.2. Hence we have

$$
\begin{equation*}
x_{1} X_{1}+\cdots+x_{m} X_{m}+x_{m+1} X=0 \tag{3.1}
\end{equation*}
$$

where not all of x_{1}, \ldots, x_{m+1} are zero. Now if $x_{m+1}=0$, we would have

$$
x_{1} X_{1}+\cdots+x_{m} X_{m}=0
$$

with not all of x_{1}, \ldots, x_{m} zero, contradictiong the assumption that $X_{1} \ldots, X_{m}$ are linearly independent. Hence $x_{m+1} \neq 0$ and we can use equation 3.1 to express X as a linear combination of X_{1}, \ldots, X_{m} :

$$
X=\frac{-x_{1}}{x_{m+1}} X_{1}+\cdots+\frac{-x_{m}}{x_{m+1}} X_{m}
$$

3.5 Rank and nullity of a matrix

We can now define three important integers associated with a matrix.
DEFINITION 3.5.1 Let $A \in M_{m \times n}(F)$. Then
(a) column $\operatorname{rank} A=\operatorname{dim} C(A)$;
(b) row $\operatorname{rank} A=\operatorname{dim} R(A)$;
(c) nullity $A=\operatorname{dim} N(A)$.

We will now see that the reduced row-echelon form B of a matrix A allows us to exhibit bases for the row space, column space and null space of A. Moreover, an examination of the number of elements in each of these bases will immediately result in the following theorem:

THEOREM 3.5.1 Let $A \in M_{m \times n}(F)$. Then
(a) column $\operatorname{rank} A=\operatorname{row} \operatorname{rank} A$;
(b) column rank $A+$ nullity $A=n$.

Finding a basis for $R(A)$: The r non-zero rows of B form a basis for $R(A)$ and hence row rank $A=r$.

For we have seen earlier that $R(A)=R(B)$. Also

$$
\begin{aligned}
R(B) & =\left\langle B_{1 *}, \ldots, B_{m *}\right\rangle \\
& =\left\langle B_{1 *}, \ldots, B_{r *}, 0 \ldots, 0\right\rangle \\
& =\left\langle B_{1 *}, \ldots, B_{r *}\right\rangle
\end{aligned}
$$

The linear independence of the non-zero rows of B is proved as follows: Let the leading entries of rows $1, \ldots, r$ of B occur in columns c_{1}, \ldots, c_{r}. Suppose that

$$
x_{1} B_{1 *}+\cdots+x_{r} B_{r *}=0
$$

Then equating components c_{1}, \ldots, c_{r} of both sides of the last equation, gives $x_{1}=0, \ldots, x_{r}=0$, in view of the fact that B is in reduced row- echelon form.
Finding a basis for $C(A)$: The r columns $A_{* c_{1}}, \ldots, A_{* c_{r}}$ form a basis for $C(A)$ and hence column rank $A=r$. For it is clear that columns c_{1}, \ldots, c_{r} of B form the left-to-right basis for $C(B)$ and consequently from parts (b) and (c) of Theorem 3.3.5, it follows that columns c_{1}, \ldots, c_{r} of A form the left-to-right basis for $C(A)$.

Finding a basis for $N(A)$: For notational simplicity, let us suppose that $c_{1}=$ $\overline{1, \ldots, c_{r}=r \text {. Then } B \text { has the form }}$

$$
B=\left[\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & b_{1 r+1} & \cdots & b_{1 n} \\
0 & 1 & \cdots & 0 & b_{2 r+1} & \cdots & b_{2 n} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & b_{r r+1} & \cdots & b_{r n} \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Then $N(B)$ and hence $N(A)$ are determined by the equations

$$
\begin{aligned}
x_{1}= & \left(-b_{1 r+1}\right) x_{r+1}+\cdots+\left(-b_{1 n}\right) x_{n} \\
& \vdots \\
x_{r} & =\left(-b_{r r+1}\right) x_{r+1}+\cdots+\left(-b_{r n}\right) x_{n}
\end{aligned}
$$

where x_{r+1}, \ldots, x_{n} are arbitrary elements of F. Hence the general vector X in $N(A)$ is given by

$$
\begin{array}{cl}
{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{r} \\
x_{r+1} \\
\vdots \\
x_{n}
\end{array}\right]} & =x_{r+1}\left[\begin{array}{c}
-b_{1 r+1} \\
\vdots \\
-b_{r r+1} \\
1 \\
\vdots \\
0
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
-b_{n} \\
\vdots \\
-b_{r n} \\
0 \\
\vdots \\
1
\end{array}\right] \tag{3.2}\\
& =x_{r+1} X_{1}+\cdots+x_{n} X_{n-r} .
\end{array}
$$

Hence $N(A)$ is spanned by X_{1}, \ldots, X_{n-r}, as x_{r+1}, \ldots, x_{n} are arbitrary. Also X_{1}, \ldots, X_{n-r} are linearly independent. For equating the right hand side of equation 3.2 to 0 and then equating components $r+1, \ldots, n$ of both sides of the resulting equation, gives $x_{r+1}=0, \ldots, x_{n}=0$.

Consequently X_{1}, \ldots, X_{n-r} form a basis for $N(A)$.
Theorem 3.5.1 now follows. For we have

$$
\begin{aligned}
\operatorname{row} \operatorname{rank} A & =\operatorname{dim} R(A)=r \\
\text { column } \operatorname{rank} A & =\operatorname{dim} C(A)=r
\end{aligned}
$$

Hence

$$
\operatorname{row} \operatorname{rank} A=\text { column } \operatorname{rank} A
$$

Also

$$
\text { column } \operatorname{rank} A+\text { nullity } A=r+\operatorname{dim} N(A)=r+(n-r)=n .
$$

DEFINITION 3.5.2 The common value of column $\operatorname{rank} A$ and $\operatorname{row} \operatorname{rank} A$ is called the rank of A and is denoted by rank A.

EXAMPLE 3.5.1 Given that the reduced row-echelon form of

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 5 & 1 & 4 \\
2 & -1 & 1 & 2 & 2 \\
3 & 0 & 6 & 0 & -3
\end{array}\right]
$$

equal to

$$
B=\left[\begin{array}{rrrrr}
1 & 0 & 2 & 0 & -1 \\
0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 1 & 3
\end{array}\right],
$$

find bases for $R(A), C(A)$ and $N(A)$.
Solution. $[1,0,2,0,-1],[0,1,3,0,2]$ and $[0,0,0,1,3]$ form a basis for $R(A)$. Also

$$
A_{* 1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], A_{* 2}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], A_{* 4}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

form a basis for $C(A)$.
Finally $N(A)$ is given by

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3}+x_{5} \\
-3 x_{3}-2 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-2 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
-2 \\
0 \\
-3 \\
1
\end{array}\right]=x_{3} X_{1}+x_{5} X_{2},
$$

where x_{3} and x_{5} are arbitrary. Hence X_{1} and X_{2} form a basis for $N(A)$.
Here $\operatorname{rank} A=3$ and nullity $A=2$.
EXAMPLE 3.5.2 Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$. Then $B=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$ is the reduced row-echelon form of A.

Hence $[1,2]$ is a basis for $R(A)$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a basis for $C(A)$. Also $N(A)$ is given by the equation $x_{1}=-2 x_{2}$, where x_{2} is arbitrary. Then

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-2 x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

and hence $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ is a basis for $N(A)$.
Here $\operatorname{rank} A=1$ and nullity $A=1$.
EXAMPLE 3.5.3 Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Then $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the reduced row-echelon form of A.

Hence $[1,0],[0,1]$ form a basis for $R(A)$ while $[1,3],[2,4]$ form a basis for $C(A)$. Also $N(A)=\{0\}$.

Here $\operatorname{rank} A=2$ and nullity $A=0$.

We conclude this introduction to vector spaces with a result of great theoretical importance.

THEOREM 3.5.2 Every linearly independent family of vectors in a subspace S can be extended to a basis of S.

Proof. Suppose S has basis X_{1}, \ldots, X_{m} and that Y_{1}, \ldots, Y_{r} is a linearly independent family of vectors in S. Then

$$
S=\left\langle X_{1}, \ldots, X_{m}\right\rangle=\left\langle Y_{1}, \ldots, Y_{r}, X_{1}, \ldots, X_{m}\right\rangle
$$

as each of Y_{1}, \ldots, Y_{r} is a linear combination of X_{1}, \ldots, X_{m}.
Then applying the left-to-right algorithm to the second spanning family for S will yield a basis for S which includes Y_{1}, \ldots, Y_{r}.

3.6 PROBLEMS

1. Which of the following subsets of \mathbb{R}^{2} are subspaces?
(a) $[x, y]$ satisfying $x=2 y$;
(b) $[x, y]$ satisfying $x=2 y$ and $2 x=y$;
(c) $[x, y]$ satisfying $x=2 y+1$;
(d) $[x, y]$ satisfying $x y=0$;
(e) $[x, y]$ satisfying $x \geq 0$ and $y \geq 0$.
[Answer: (a) and (b).]
2. If X, Y, Z are vectors in \mathbb{R}^{n}, prove that

$$
\langle X, Y, Z\rangle=\langle X+Y, X+Z, Y+Z\rangle
$$

3. Determine if $X_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right], X_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right]$ and $X_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]$ are linearly independent in \mathbb{R}^{4}.
4. For which real numbers λ are the following vectors linearly independent in \mathbb{R}^{3} ?

$$
X_{1}=\left[\begin{array}{r}
\lambda \\
-1 \\
-1
\end{array}\right], \quad X_{2}=\left[\begin{array}{r}
-1 \\
\lambda \\
-1
\end{array}\right], \quad X_{3}=\left[\begin{array}{r}
-1 \\
-1 \\
\lambda
\end{array}\right]
$$

5. Find bases for the row, column and null spaces of the following matrix over \mathbb{Q} :

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & 0 & 1 \\
2 & 2 & 5 & 0 & 3 \\
0 & 0 & 0 & 1 & 3 \\
8 & 11 & 19 & 0 & 11
\end{array}\right]
$$

6. Find bases for the row, column and null spaces of the following matrix over \mathbb{Z}_{2} :

$$
A=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

7. Find bases for the row, column and null spaces of the following matrix over \mathbb{Z}_{5} :

$$
A=\left[\begin{array}{llllll}
1 & 1 & 2 & 0 & 1 & 3 \\
2 & 1 & 4 & 0 & 3 & 2 \\
0 & 0 & 0 & 1 & 3 & 0 \\
3 & 0 & 2 & 4 & 3 & 2
\end{array}\right]
$$

8. Find bases for the row, column and null spaces of the matrix A defined in section 1.6, Problem 17. (Note: In this question, F is a field of four elements.)
9. If X_{1}, \ldots, X_{m} form a basis for a subspace S, prove that

$$
X_{1}, X_{1}+X_{2}, \ldots, X_{1}+\cdots+X_{m}
$$

also form a basis for S.
10. Let $A=\left[\begin{array}{lll}a & b & c \\ 1 & 1 & 1\end{array}\right]$. Find conditions on a, b, c such that (a) $\operatorname{rank} A=$ 1; (b) $\operatorname{rank} A=2$.
[Answer: (a) $a=b=c$; (b) at least two of a, b, c are distinct.]
11. Let S be a subspace of F^{n} with $\operatorname{dim} S=m$. If X_{1}, \ldots, X_{m} are vectors in S with the property that $S=\left\langle X_{1}, \ldots, X_{m}\right\rangle$, prove that $X_{1} \ldots, X_{m}$ form a basis for S.
12. Find a basis for the subspace S of \mathbb{R}^{3} defined by the equation

$$
x+2 y+3 z=0 .
$$

Verify that $Y_{1}=[-1,-1,1]^{t} \in S$ and find a basis for S which includes Y_{1}.
13. Let X_{1}, \ldots, X_{m} be vectors in F^{n}. If $X_{i}=X_{j}$, where $i<j$, prove that $X_{1}, \ldots X_{m}$ are linearly dependent.
14. Let X_{1}, \ldots, X_{m+1} be vectors in F^{n}. Prove that

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m+1}\right\rangle=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle
$$

if X_{m+1} is a linear combination of X_{1}, \ldots, X_{m}, but

$$
\operatorname{dim}\left\langle X_{1}, \ldots, X_{m+1}\right\rangle=\operatorname{dim}\left\langle X_{1}, \ldots, X_{m}\right\rangle+1
$$

if X_{m+1} is not a linear combination of X_{1}, \ldots, X_{m}.
Deduce that the system of linear equations $A X=B$ is consistent, if and only if

$$
\operatorname{rank}[A \mid B]=\operatorname{rank} A
$$

15. Let a_{1}, \ldots, a_{n} be elements of F, not all zero. Prove that the set of vectors $\left[x_{1}, \ldots, x_{n}\right]^{t}$ where x_{1}, \ldots, x_{n} satisfy

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

is a subspace of F^{n} with dimension equal to $n-1$.
16. Prove Lemma 3.2.1, Theorem 3.2.1, Corollary 3.2.1 and Theorem 3.3.2.
17. Let R and S be subspaces of F^{n}, with $R \subseteq S$. Prove that

$$
\operatorname{dim} R \leq \operatorname{dim} S
$$

and that equality implies $R=S$. (This is a very useful way of proving equality of subspaces.)
18. Let R and S be subspaces of F^{n}. If $R \cup S$ is a subspace of F^{n}, prove that $R \subseteq S$ or $S \subseteq R$.
19. Let X_{1}, \ldots, X_{r} be a basis for a subspace S. Prove that all bases for S are given by the family Y_{1}, \ldots, Y_{r}, where

$$
Y_{i}=\sum_{j=1}^{r} a_{i j} X_{j}
$$

and where $A=\left[a_{i j}\right] \in M_{r \times r}(F)$ is a non-singular matrix.

