Chapter 3

SUBSPACES

3.1 Introduction

Throughout this chapter, we will be studying F^n , the set of all *n*-dimensional column vectors with components from a field F. We continue our study of matrices by considering an important class of subsets of F^n called *subspaces*. These arise naturally for example, when we solve a system of m linear homogeneous equations in n unknowns.

We also study the concept of linear dependence of a family of vectors. This was introduced briefly in Chapter 2, Remark 2.5.4. Other topics discussed are the *row space*, *column space* and *null space* of a matrix over F, the *dimension* of a subspace, particular examples of the latter being the *rank* and *nullity* of a matrix.

3.2 Subspaces of F^n

DEFINITION 3.2.1 A subset S of F^n is called a subspace of F^n if

- 1. The zero vector belongs to S; (that is, $0 \in S$);
- 2. If $u \in S$ and $v \in S$, then $u + v \in S$; (S is said to be closed under vector addition);
- 3. If $u \in S$ and $t \in F$, then $tu \in S$; (S is said to be closed under scalar multiplication).

EXAMPLE 3.2.1 Let $A \in M_{m \times n}(F)$. Then the set of vectors $X \in F^n$ satisfying AX = 0 is a subspace of F^n called the *null space* of A and is denoted here by N(A). (It is sometimes called the *solution space* of A.)

Proof. (1) A0 = 0, so $0 \in N(A)$; (2) If $X, Y \in N(A)$, then AX = 0 and AY = 0, so A(X + Y) = AX + AY = 0 + 0 = 0 and so $X + Y \in N(A)$; (3) If $X \in N(A)$ and $t \in F$, then A(tX) = t(AX) = t0 = 0, so $tX \in N(A)$.

For example, if $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then $N(A) = \{0\}$, the set consisting of just the zero vector. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, then N(A) is the set of all scalar multiples of $[-2, 1]^t$.

EXAMPLE 3.2.2 Let $X_1, \ldots, X_m \in F^n$. Then the set consisting of all linear combinations $x_1X_1 + \cdots + x_mX_m$, where $x_1, \ldots, x_m \in F$, is a subspace of F^n . This subspace is called the subspace *spanned* or *generated* by X_1, \ldots, X_m and is denoted here by $\langle X_1, \ldots, X_m \rangle$. We also call X_1, \ldots, X_m a spanning family for $S = \langle X_1, \ldots, X_m \rangle$.

Proof. (1) $0 = 0X_1 + \cdots + 0X_m$, so $0 \in \langle X_1, \ldots, X_m \rangle$; (2) If $X, Y \in \langle X_1, \ldots, X_m \rangle$, then $X = x_1X_1 + \cdots + x_mX_m$ and $Y = y_1X_1 + \cdots + y_mX_m$, so

$$X + Y = (x_1X_1 + \dots + x_mX_m) + (y_1X_1 + \dots + y_mX_m)$$

= $(x_1 + y_1)X_1 + \dots + (x_m + y_m)X_m \in \langle X_1, \dots, X_m \rangle$

(3) If $X \in \langle X_1, \ldots, X_m \rangle$ and $t \in F$, then

$$X = x_1 X_1 + \dots + x_m X_m$$

$$tX = t(x_1 X_1 + \dots + x_m X_m)$$

$$= (tx_1) X_1 + \dots + (tx_m) X_m \in \langle X_1, \dots, X_m \rangle.$$

For example, if $A \in M_{m \times n}(F)$, the subspace generated by the columns of A is an important subspace of F^m and is called the *column space* of A. The column space of A is denoted here by C(A). Also the subspace generated by the rows of A is a subspace of F^n and is called the *row space* of A and is denoted by R(A).

EXAMPLE 3.2.3 For example $F^n = \langle E_1, \ldots, E_n \rangle$, where E_1, \ldots, E_n are the *n*-dimensional unit vectors. For if $X = [x_1, \ldots, x_n]^t \in F^n$, then $X = x_1E_1 + \cdots + x_nE_n$.

EXAMPLE 3.2.4 Find a spanning family for the subspace S of \mathbb{R}^3 defined by the equation 2x - 3y + 5z = 0.

Solution. (S is in fact the null space of [2, -3, 5], so S is indeed a subspace of \mathbb{R}^3 .)

If $[x, y, z]^t \in S$, then $x = \frac{3}{2}y - \frac{5}{2}z$. Then $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{3}{2}y - \frac{5}{2}z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} \frac{3}{2} \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -\frac{5}{2} \\ 0 \\ 1 \end{bmatrix}$

and conversely. Hence $[\frac{3}{2}, 1, 0]^t$ and $[-\frac{5}{2}, 0, 1]^t$ form a spanning family for S.

The following result is easy to prove:

LEMMA 3.2.1 Suppose each of X_1, \ldots, X_r is a linear combination of Y_1, \ldots, Y_s . Then any linear combination of X_1, \ldots, X_r is a linear combination of Y_1, \ldots, Y_s .

As a corollary we have

THEOREM 3.2.1 Subspaces $\langle X_1, \ldots, X_r \rangle$ and $\langle Y_1, \ldots, Y_s \rangle$ are equal if each of X_1, \ldots, X_r is a linear combination of Y_1, \ldots, Y_s and each of Y_1, \ldots, Y_s is a linear combination of X_1, \ldots, X_r .

COROLLARY 3.2.1 Subspaces $\langle X_1, \ldots, X_r, Z_1, \ldots, Z_t \rangle$ and $\langle X_1, \ldots, X_r \rangle$ are equal if each of Z_1, \ldots, Z_t is a linear combination of X_1, \ldots, X_r .

EXAMPLE 3.2.5 If X and Y are vectors in \mathbb{R}^n , then

$$\langle X, Y \rangle = \langle X + Y, X - Y \rangle$$

Solution. Each of X + Y and X - Y is a linear combination of X and Y. Also

$$X = \frac{1}{2}(X+Y) + \frac{1}{2}(X-Y)$$
 and $Y = \frac{1}{2}(X+Y) - \frac{1}{2}(X-Y)$,

so each of X and Y is a linear combination of X + Y and X - Y.

There is an important application of Theorem 3.2.1 to row equivalent matrices (see Definition 1.2.4):

THEOREM 3.2.2 If A is row equivalent to B, then R(A) = R(B).

Proof. Suppose that B is obtained from A by a sequence of elementary row operations. Then it is easy to see that each row of B is a linear combination of the rows of A. But A can be obtained from B by a sequence of elementary operations, so each row of A is a linear combination of the rows of B. Hence by Theorem 3.2.1, R(A) = R(B).

REMARK 3.2.1 If A is row equivalent to B, it is not always true that C(A) = C(B).

For example, if $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, then *B* is in fact the reduced row–echelon form of *A*. However we see that

$$C(A) = \left\langle \left[\begin{array}{c} 1\\1 \end{array} \right], \left[\begin{array}{c} 1\\1 \end{array} \right] \right\rangle = \left\langle \left[\begin{array}{c} 1\\1 \end{array} \right] \right\rangle$$

and similarly $C(B) = \left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\rangle$.

Consequently $C(A) \neq C(B)$, as $\begin{bmatrix} 1\\1 \end{bmatrix} \in C(A)$ but $\begin{bmatrix} 1\\1 \end{bmatrix} \notin C(B)$.

3.3 Linear dependence

We now recall the definition of linear dependence and independence of a family of vectors in F^n given in Chapter 2.

DEFINITION 3.3.1 Vectors X_1, \ldots, X_m in F^n are said to be *linearly* dependent if there exist scalars x_1, \ldots, x_m , not all zero, such that

$$x_1X_1 + \dots + x_mX_m = 0.$$

In other words, X_1, \ldots, X_m are linearly dependent if some X_i is expressible as a linear combination of the remaining vectors.

 X_1, \ldots, X_m are called *linearly independent* if they are not linearly dependent. Hence X_1, \ldots, X_m are linearly independent if and only if the equation

$$x_1X_1 + \dots + x_mX_m = 0$$

has only the trivial solution $x_1 = 0, \ldots, x_m = 0$.

EXAMPLE 3.3.1 The following three vectors in \mathbb{R}^3

$$X_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad X_2 = \begin{bmatrix} -1\\1\\2 \end{bmatrix}, \quad X_3 = \begin{bmatrix} -1\\7\\12 \end{bmatrix}$$

are linearly dependent, as $2X_1 + 3X_2 + (-1)X_3 = 0$.

REMARK 3.3.1 If X_1, \ldots, X_m are linearly independent and

$$x_1X_1 + \dots + x_mX_m = y_1X_1 + \dots + y_mX_m,$$

then $x_1 = y_1, \ldots, x_m = y_m$. For the equation can be rewritten as

$$(x_1 - y_1)X_1 + \dots + (x_m - y_m)X_m = 0$$

and so $x_1 - y_1 = 0, \dots, x_m - y_m = 0$.

THEOREM 3.3.1 A family of m vectors in F^n will be linearly dependent if m > n. Equivalently, any linearly independent family of m vectors in F^n must satisfy $m \le n$.

Proof. The equation

$$x_1X_1 + \dots + x_mX_m = 0$$

is equivalent to n homogeneous equations in m unknowns. By Theorem 1.5.1, such a system has a non-trivial solution if m > n.

The following theorem is an important generalization of the last result and is left as an exercise for the interested student:

THEOREM 3.3.2 A family of *s* vectors in $\langle X_1, \ldots, X_r \rangle$ will be linearly dependent if s > r. Equivalently, a linearly independent family of *s* vectors in $\langle X_1, \ldots, X_r \rangle$ must have $s \leq r$.

Here is a useful criterion for linear independence which is sometimes called the *left-to-right test*:

THEOREM 3.3.3 Vectors X_1, \ldots, X_m in F^n are linearly independent if

- (a) $X_1 \neq 0;$
- (b) For each k with $1 < k \leq m$, X_k is not a linear combination of X_1, \ldots, X_{k-1} .

One application of this criterion is the following result:

THEOREM 3.3.4 Every subspace S of F^n can be represented in the form $S = \langle X_1, \ldots, X_m \rangle$, where $m \leq n$.

Proof. If $S = \{0\}$, there is nothing to prove – we take $X_1 = 0$ and m = 1.

So we assume S contains a non-zero vector X_1 ; then $\langle X_1 \rangle \subseteq S$ as S is a subspace. If $S = \langle X_1 \rangle$, we are finished. If not, S will contain a vector X_2 , not a linear combination of X_1 ; then $\langle X_1, X_2 \rangle \subseteq S$ as S is a subspace. If $S = \langle X_1, X_2 \rangle$, we are finished. If not, S will contain a vector X_3 which is not a linear combination of X_1 and X_2 . This process must eventually stop, for at stage k we have constructed a family of k linearly independent vectors X_1, \ldots, X_k , all lying in F^n and hence $k \leq n$.

There is an important relationship between the columns of A and B, if A is row–equivalent to B.

THEOREM 3.3.5 Suppose that A is row equivalent to B and let c_1, \ldots, c_r be distinct integers satisfying $1 \le c_i \le n$. Then

(a) Columns $A_{*c_1}, \ldots, A_{*c_r}$ of A are linearly dependent if and only if the corresponding columns of B are linearly dependent; indeed more is true:

$$x_1 A_{*c_1} + \dots + x_r A_{*c_r} = 0 \Leftrightarrow x_1 B_{*c_1} + \dots + x_r B_{*c_r} = 0.$$

- (b) Columns $A_{*c_1}, \ldots, A_{*c_r}$ of A are linearly independent if and only if the corresponding columns of B are linearly independent.
- (c) If $1 \leq c_{r+1} \leq n$ and c_{r+1} is distinct from c_1, \ldots, c_r , then

$$A_{*c_{r+1}} = z_1 A_{*c_1} + \dots + z_r A_{*c_r} \Leftrightarrow B_{*c_{r+1}} = z_1 B_{*c_1} + \dots + z_r B_{*c_r}.$$

Proof. First observe that if $Y = [y_1, \ldots, y_n]^t$ is an *n*-dimensional column vector and A is $m \times n$, then

$$AY = y_1 A_{*1} + \dots + y_n A_{*n}.$$

Also $AY = 0 \Leftrightarrow BY = 0$, if B is row equivalent to A. Then (a) follows by taking $y_i = x_{c_i}$ if $i = c_j$ and $y_i = 0$ otherwise.

(b) is logically equivalent to (a), while (c) follows from (a) as

$$\begin{aligned} A_{*c_{r+1}} &= z_1 A_{*c_1} + \dots + z_r A_{*c_r} &\Leftrightarrow z_1 A_{*c_1} + \dots + z_r A_{*c_r} + (-1) A_{*c_{r+1}} = 0 \\ &\Leftrightarrow z_1 B_{*c_1} + \dots + z_r B_{*c_r} + (-1) B_{*c_{r+1}} = 0 \\ &\Leftrightarrow B_{*c_{r+1}} = z_1 B_{*c_1} + \dots + z_r B_{*c_r}. \end{aligned}$$

EXAMPLE 3.3.2 The matrix

$$A = \begin{bmatrix} 1 & 1 & 5 & 1 & 4 \\ 2 & -1 & 1 & 2 & 2 \\ 3 & 0 & 6 & 0 & -3 \end{bmatrix}$$

has reduced row-echelon form equal to

$$B = \left[\begin{array}{rrrrr} 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{array} \right]$$

We notice that B_{*1} , B_{*2} and B_{*4} are linearly independent and hence so are A_{*1} , A_{*2} and A_{*4} . Also

$$B_{*3} = 2B_{*1} + 3B_{*2}$$

$$B_{*5} = (-1)B_{*1} + 2B_{*2} + 3B_{*4},$$

so consequently

$$\begin{array}{rcl} A_{*3} & = & 2A_{*1} + 3A_{*2} \\ A_{*5} & = & (-1)A_{*1} + 2A_{*2} + 3A_{*4}. \end{array}$$

3.4 Basis of a subspace

We now come to the important concept of *basis* of a vector subspace.

DEFINITION 3.4.1 Vectors X_1, \ldots, X_m belonging to a subspace S are said to form a basis of S if

- (a) Every vector in S is a linear combination of X_1, \ldots, X_m ;
- (b) X_1, \ldots, X_m are linearly independent.

Note that (a) is equivalent to the statement that $S = \langle X_1, \ldots, X_m \rangle$ as we automatically have $\langle X_1, \ldots, X_m \rangle \subseteq S$. Also, in view of Remark 3.3.1 above, (a) and (b) are equivalent to the statement that every vector in S is uniquely expressible as a linear combination of X_1, \ldots, X_m .

EXAMPLE 3.4.1 The unit vectors E_1, \ldots, E_n form a basis for F^n .

REMARK 3.4.1 The subspace $\{0\}$, consisting of the zero vector alone, does not have a basis. For every vector in a linearly independent family must necessarily be non-zero. (For example, if $X_1 = 0$, then we have the non-trivial linear relation

$$1X_1 + 0X_2 + \dots + 0X_m = 0$$

and X_1, \ldots, X_m would be linearly independent.)

However if we exclude this case, every other subspace of F^n has a basis:

THEOREM 3.4.1 A subspace of the form $\langle X_1, \ldots, X_m \rangle$, where at least one of X_1, \ldots, X_m is non-zero, has a basis X_{c_1}, \ldots, X_{c_r} , where $1 \leq c_1 < \cdots < c_r \leq m$.

Proof. (The left-to-right algorithm). Let c_1 be the least index k for which X_k is non-zero. If $c_1 = m$ or if all the vectors X_k with $k > c_1$ are linear combinations of X_{c_1} , terminate the algorithm and let r = 1. Otherwise let c_2 be the least integer $k > c_1$ such that X_k is not a linear combination of X_{c_1} .

If $c_2 = m$ or if all the vectors X_k with $k > c_2$ are linear combinations of X_{c_1} and X_{c_2} , terminate the algorithm and let r = 2. Eventually the algorithm will terminate at the *r*-th stage, either because $c_r = m$, or because all vectors X_k with $k > c_r$ are linear combinations of X_{c_1}, \ldots, X_{c_r} .

Then it is clear by the construction of X_{c_1}, \ldots, X_{c_r} , using Corollary 3.2.1 that

- (a) $\langle X_{c_1}, \ldots, X_{c_r} \rangle = \langle X_1, \ldots, X_m \rangle;$
- (b) the vectors X_{c_1}, \ldots, X_{c_r} are linearly independent by the left-to-right test.

Consequently X_{c_1}, \ldots, X_{c_r} form a basis (called the *left-to-right basis*) for the subspace $\langle X_1, \ldots, X_m \rangle$.

EXAMPLE 3.4.2 Let X and Y be linearly independent vectors in \mathbb{R}^n . Then the subspace $\langle 0, 2X, X, -Y, X+Y \rangle$ has left-to-right basis consisting of 2X, -Y.

A subspace S will in general have more than one basis. For example, any permutation of the vectors in a basis will yield another basis. Given one particular basis, one can determine all bases for S using a simple formula. This is left as one of the problems at the end of this chapter.

We settle for the following important fact about bases:

THEOREM 3.4.2 Any two bases for a subspace *S* must contain the same number of elements.

Proof. For if X_1, \ldots, X_r and Y_1, \ldots, Y_s are bases for S, then Y_1, \ldots, Y_s form a linearly independent family in $S = \langle X_1, \ldots, X_r \rangle$ and hence $s \leq r$ by Theorem 3.3.2. Similarly $r \leq s$ and hence r = s.

DEFINITION 3.4.2 This number is called the *dimension* of S and is written dim S. Naturally we define dim $\{0\} = 0$.

It follows from Theorem 3.3.1 that for any subspace S of F^n , we must have $\dim S \leq n$.

EXAMPLE 3.4.3 If E_1, \ldots, E_n denote the *n*-dimensional unit vectors in F^n , then dim $\langle E_1, \ldots, E_i \rangle = i$ for $1 \le i \le n$.

The following result gives a useful way of exhibiting a basis.

THEOREM 3.4.3 A linearly independent family of m vectors in a subspace S, with dim S = m, must be a basis for S.

Proof. Let X_1, \ldots, X_m be a linearly independent family of vectors in a subspace S, where dim S = m. We have to show that every vector $X \in S$ is expressible as a linear combination of X_1, \ldots, X_m . We consider the following family of vectors in $S: X_1, \ldots, X_m, X$. This family contains m + 1 elements and is consequently linearly dependent by Theorem 3.3.2. Hence we have

$$x_1 X_1 + \dots + x_m X_m + x_{m+1} X = 0, (3.1)$$

where not all of x_1, \ldots, x_{m+1} are zero. Now if $x_{m+1} = 0$, we would have

$$x_1X_1 + \dots + x_mX_m = 0,$$

with not all of x_1, \ldots, x_m zero, contradiction the assumption that X_1, \ldots, X_m are linearly independent. Hence $x_{m+1} \neq 0$ and we can use equation 3.1 to express X as a linear combination of X_1, \ldots, X_m :

$$X = \frac{-x_1}{x_{m+1}} X_1 + \dots + \frac{-x_m}{x_{m+1}} X_m.$$

3.5 Rank and nullity of a matrix

We can now define three important integers associated with a matrix.

DEFINITION 3.5.1 Let $A \in M_{m \times n}(F)$. Then

- (a) column rank $A = \dim C(A)$;
- (b) row rank $A = \dim R(A)$;
- (c) nullity $A = \dim N(A)$.

We will now see that the reduced row-echelon form B of a matrix A allows us to exhibit bases for the row space, column space and null space of A. Moreover, an examination of the number of elements in each of these bases will immediately result in the following theorem:

THEOREM 3.5.1 Let $A \in M_{m \times n}(F)$. Then

- (a) column rank A = row rank A;
- (b) column rank A+ nullity A = n.

Finding a basis for R(A): The r non-zero rows of B form a basis for R(A)and hence row rank A = r.

For we have seen earlier that R(A) = R(B). Also

$$R(B) = \langle B_{1*}, \dots, B_{m*} \rangle$$

= $\langle B_{1*}, \dots, B_{r*}, 0 \dots, 0 \rangle$
= $\langle B_{1*}, \dots, B_{r*} \rangle.$

The linear independence of the non-zero rows of B is proved as follows: Let the leading entries of rows $1, \ldots, r$ of B occur in columns c_1, \ldots, c_r . Suppose that

$$x_1 B_{1*} + \dots + x_r B_{r*} = 0.$$

Then equating components c_1, \ldots, c_r of both sides of the last equation, gives $x_1 = 0, \ldots, x_r = 0$, in view of the fact that B is in reduced row- echelon form.

<u>Finding a basis for C(A)</u>: The *r* columns $A_{*c_1}, \ldots, A_{*c_r}$ form a basis for C(A) and hence column rank A = r. For it is clear that columns c_1, \ldots, c_r of *B* form the left–to–right basis for C(B) and consequently from parts (b) and (c) of Theorem 3.3.5, it follows that columns c_1, \ldots, c_r of *A* form the left–to–right basis for C(A).

Finding a basis for N(A): For notational simplicity, let us suppose that $c_1 = 1, \ldots, c_r = r$. Then B has the form

$$B = \begin{bmatrix} 1 & 0 & \cdots & 0 & b_{1r+1} & \cdots & b_{1n} \\ 0 & 1 & \cdots & 0 & b_{2r+1} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & b_{rr+1} & \cdots & b_{rn} \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Then N(B) and hence N(A) are determined by the equations

$$\begin{aligned} x_1 &= (-b_{1r+1})x_{r+1} + \dots + (-b_{1n})x_n \\ &\vdots \\ x_r &= (-b_{rr+1})x_{r+1} + \dots + (-b_{rn})x_n, \end{aligned}$$

where x_{r+1}, \ldots, x_n are arbitrary elements of F. Hence the general vector X in N(A) is given by

$$\begin{bmatrix} x_{1} \\ \vdots \\ x_{r} \\ x_{r+1} \\ \vdots \\ x_{n} \end{bmatrix} = x_{r+1} \begin{bmatrix} -b_{1r+1} \\ \vdots \\ -b_{rr+1} \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_{n} \begin{bmatrix} -b_{n} \\ \vdots \\ -b_{rn} \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
(3.2)
$$= x_{r+1}X_{1} + \dots + x_{n}X_{n-r}.$$

Hence N(A) is spanned by X_1, \ldots, X_{n-r} , as x_{r+1}, \ldots, x_n are arbitrary. Also X_1, \ldots, X_{n-r} are linearly independent. For equating the right hand side of equation 3.2 to 0 and then equating components $r + 1, \ldots, n$ of both sides of the resulting equation, gives $x_{r+1} = 0, \ldots, x_n = 0$.

Consequently X_1, \ldots, X_{n-r} form a basis for N(A).

Theorem 3.5.1 now follows. For we have

row rank
$$A = \dim R(A) = r$$

column rank $A = \dim C(A) = r$.

Hence

row rank A = column rank A.

Also

column rank A + nullity $A = r + \dim N(A) = r + (n - r) = n$.

DEFINITION 3.5.2 The common value of column rank *A* and row rank *A* is called the *rank* of *A* and is denoted by rank *A*.

EXAMPLE 3.5.1 Given that the reduced row-echelon form of

$$A = \begin{bmatrix} 1 & 1 & 5 & 1 & 4 \\ 2 & -1 & 1 & 2 & 2 \\ 3 & 0 & 6 & 0 & -3 \end{bmatrix}$$

equal to

$$B = \left[\begin{array}{rrrrr} 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{array} \right],$$

find bases for R(A), C(A) and N(A).

Solution. [1, 0, 2, 0, -1], [0, 1, 3, 0, 2] and [0, 0, 0, 1, 3] form a basis for R(A). Also

$$A_{*1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ A_{*2} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \ A_{*4} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}$$

form a basis for C(A).

Finally N(A) is given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_3 + x_5 \\ -3x_3 - 2x_5 \\ x_3 \\ -3x_5 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 1 \\ -2 \\ 0 \\ -3 \\ 1 \end{bmatrix} = x_3X_1 + x_5X_2,$$

where x_3 and x_5 are arbitrary. Hence X_1 and X_2 form a basis for N(A). Here rank A = 3 and nullity A = 2.

EXAMPLE 3.5.2 Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Then $B = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ is the reduced row–echelon form of A.

3.6. PROBLEMS

Hence [1, 2] is a basis for R(A) and $\begin{bmatrix} 1\\2 \end{bmatrix}$ is a basis for C(A). Also N(A) is given by the equation $x_1 = -2x_2$, where x_2 is arbitrary. Then

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} -2x_2 \\ x_2 \end{array}\right] = x_2 \left[\begin{array}{c} -2 \\ 1 \end{array}\right]$$

and hence $\begin{bmatrix} -2\\ 1 \end{bmatrix}$ is a basis for N(A). Here rank A = 1 and nullity A = 1.

EXAMPLE 3.5.3 Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Then $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the reduced row–echelon form of A.

Hence [1, 0], [0, 1] form a basis for R(A) while [1, 3], [2, 4] form a basis for C(A). Also $N(A) = \{0\}$.

Here rank A = 2 and nullity A = 0.

We conclude this introduction to vector spaces with a result of great theoretical importance.

THEOREM 3.5.2 Every linearly independent family of vectors in a subspace S can be extended to a basis of S.

Proof. Suppose S has basis X_1, \ldots, X_m and that Y_1, \ldots, Y_r is a linearly independent family of vectors in S. Then

$$S = \langle X_1, \dots, X_m \rangle = \langle Y_1, \dots, Y_r, X_1, \dots, X_m \rangle,$$

as each of Y_1, \ldots, Y_r is a linear combination of X_1, \ldots, X_m .

Then applying the left-to-right algorithm to the second spanning family for S will yield a basis for S which includes Y_1, \ldots, Y_r .

3.6 PROBLEMS

- 1. Which of the following subsets of \mathbb{R}^2 are subspaces?
 - (a) [x, y] satisfying x = 2y;
 - (b) [x, y] satisfying x = 2y and 2x = y;
 - (c) [x, y] satisfying x = 2y + 1;
 - (d) [x, y] satisfying xy = 0;

(e) [x, y] satisfying $x \ge 0$ and $y \ge 0$.

[Answer: (a) and (b).]

2. If X, Y, Z are vectors in \mathbb{R}^n , prove that

$$\langle X, Y, Z \rangle = \langle X + Y, X + Z, Y + Z \rangle.$$

- 3. Determine if $X_1 = \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}$, $X_2 = \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix}$ and $X_3 = \begin{bmatrix} 1\\1\\1\\3 \end{bmatrix}$ are linearly independent in \mathbb{R}^4 .
- 4. For which real numbers λ are the following vectors linearly independent in \mathbb{R}^3 ?

$$X_1 = \begin{bmatrix} \lambda \\ -1 \\ -1 \end{bmatrix}, \quad X_2 = \begin{bmatrix} -1 \\ \lambda \\ -1 \end{bmatrix}, \quad X_3 = \begin{bmatrix} -1 \\ -1 \\ \lambda \end{bmatrix}.$$

5. Find bases for the row, column and null spaces of the following matrix over \mathbb{Q} :

$$A = \begin{bmatrix} 1 & 1 & 2 & 0 & 1 \\ 2 & 2 & 5 & 0 & 3 \\ 0 & 0 & 0 & 1 & 3 \\ 8 & 11 & 19 & 0 & 11 \end{bmatrix}.$$

6. Find bases for the row, column and null spaces of the following matrix over \mathbb{Z}_2 :

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

7. Find bases for the row, column and null spaces of the following matrix over \mathbb{Z}_5 :

$$A = \begin{bmatrix} 1 & 1 & 2 & 0 & 1 & 3 \\ 2 & 1 & 4 & 0 & 3 & 2 \\ 0 & 0 & 0 & 1 & 3 & 0 \\ 3 & 0 & 2 & 4 & 3 & 2 \end{bmatrix}$$

68

- 8. Find bases for the row, column and null spaces of the matrix A defined in section 1.6, Problem 17. (Note: In this question, F is a field of four elements.)
- 9. If X_1, \ldots, X_m form a basis for a subspace S, prove that

$$X_1, X_1 + X_2, \dots, X_1 + \dots + X_m$$

also form a basis for S.

10. Let $A = \begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix}$. Find conditions on a, b, c such that (a) rank A = 1; (b) rank A = 2.

[Answer: (a) a = b = c; (b) at least two of a, b, c are distinct.]

- 11. Let S be a subspace of F^n with dim S = m. If X_1, \ldots, X_m are vectors in S with the property that $S = \langle X_1, \ldots, X_m \rangle$, prove that X_1, \ldots, X_m form a basis for S.
- 12. Find a basis for the subspace S of \mathbb{R}^3 defined by the equation

$$x + 2y + 3z = 0.$$

Verify that $Y_1 = [-1, -1, 1]^t \in S$ and find a basis for S which includes Y_1 .

- 13. Let X_1, \ldots, X_m be vectors in F^n . If $X_i = X_j$, where i < j, prove that X_1, \ldots, X_m are linearly dependent.
- 14. Let X_1, \ldots, X_{m+1} be vectors in F^n . Prove that

$$\dim \langle X_1, \dots, X_{m+1} \rangle = \dim \langle X_1, \dots, X_m \rangle$$

if X_{m+1} is a linear combination of X_1, \ldots, X_m , but

$$\dim \langle X_1, \dots, X_{m+1} \rangle = \dim \langle X_1, \dots, X_m \rangle + 1$$

if X_{m+1} is not a linear combination of X_1, \ldots, X_m .

Deduce that the system of linear equations AX = B is consistent, if and only if

$$\operatorname{rank}[A|B] = \operatorname{rank} A.$$

15. Let a_1, \ldots, a_n be elements of F, not all zero. Prove that the set of vectors $[x_1, \ldots, x_n]^t$ where x_1, \ldots, x_n satisfy

$$a_1x_1 + \dots + a_nx_n = 0$$

is a subspace of F^n with dimension equal to n-1.

- 16. Prove Lemma 3.2.1, Theorem 3.2.1, Corollary 3.2.1 and Theorem 3.3.2.
- 17. Let R and S be subspaces of F^n , with $R \subseteq S$. Prove that

$$\dim R \le \dim S$$

and that equality implies R = S. (This is a very useful way of proving equality of subspaces.)

- 18. Let R and S be subspaces of F^n . If $R \cup S$ is a subspace of F^n , prove that $R \subseteq S$ or $S \subseteq R$.
- 19. Let X_1, \ldots, X_r be a basis for a subspace S. Prove that all bases for S are given by the family Y_1, \ldots, Y_r , where

$$Y_i = \sum_{j=1}^r a_{ij} X_j,$$

and where $A = [a_{ij}] \in M_{r \times r}(F)$ is a non-singular matrix.