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Chapter 2

MATRICES

2.1 Matrix arithmetic

A matrix over a field F is a rectangular array of elements from F . The sym-
bol Mm×n(F ) denotes the collection of all m× n matrices over F . Matrices
will usually be denoted by capital letters and the equation A = [aij ] means
that the element in the i–th row and j–th column of the matrix A equals
aij . It is also occasionally convenient to write aij = (A)ij . For the present,
all matrices will have rational entries, unless otherwise stated.

EXAMPLE 2.1.1 The formula aij = 1/(i + j) for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4
defines a 3 × 4 matrix A = [aij ], namely

A =













1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7













.

DEFINITION 2.1.1 (Equality of matrices) Matrices A, B are said to
be equal if A and B have the same size and corresponding elements are
equal; i.e., A and B ∈ Mm×n(F ) and A = [aij ], B = [bij ], with aij = bij for
1 ≤ i ≤ m, 1 ≤ j ≤ n.

DEFINITION 2.1.2 (Addition of matrices) Let A = [aij ] and B =
[bij ] be of the same size. Then A + B is the matrix obtained by adding
corresponding elements of A and B; that is

A + B = [aij ] + [bij ] = [aij + bij ].

23



24 CHAPTER 2. MATRICES

DEFINITION 2.1.3 (Scalar multiple of a matrix) Let A = [aij ] and
t ∈ F (that is t is a scalar). Then tA is the matrix obtained by multiplying
all elements of A by t; that is

tA = t[aij ] = [taij ].

DEFINITION 2.1.4 (Additive inverse of a matrix) Let A = [aij ] .
Then −A is the matrix obtained by replacing the elements of A by their
additive inverses; that is

−A = −[aij ] = [−aij ].

DEFINITION 2.1.5 (Subtraction of matrices) Matrix subtraction is
defined for two matrices A = [aij ] and B = [bij ] of the same size, in the
usual way; that is

A − B = [aij ] − [bij ] = [aij − bij ].

DEFINITION 2.1.6 (The zero matrix) For each m, n the matrix in
Mm×n(F ), all of whose elements are zero, is called the zero matrix (of size
m × n) and is denoted by the symbol 0.

The matrix operations of addition, scalar multiplication, additive inverse
and subtraction satisfy the usual laws of arithmetic. (In what follows, s and
t will be arbitrary scalars and A, B, C are matrices of the same size.)

1. (A + B) + C = A + (B + C);

2. A + B = B + A;

3. 0 + A = A;

4. A + (−A) = 0;

5. (s + t)A = sA + tA, (s − t)A = sA − tA;

6. t(A + B) = tA + tB, t(A − B) = tA − tB;

7. s(tA) = (st)A;

8. 1A = A, 0A = 0, (−1)A = −A;

9. tA = 0 ⇒ t = 0 or A = 0.

Other similar properties will be used when needed.
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DEFINITION 2.1.7 (Matrix product) Let A = [aij ] be a matrix of
size m × n and B = [bjk] be a matrix of size n × p; (that is the number
of columns of A equals the number of rows of B). Then AB is the m × p
matrix C = [cik] whose (i, k)–th element is defined by the formula

cik =
n

∑

j=1

aijbjk = ai1b1k + · · · + ainbnk.

EXAMPLE 2.1.2

1.

[

1 2
3 4

] [

5 6
7 8

]

=

[

1 × 5 + 2 × 7 1 × 6 + 2 × 8
3 × 5 + 4 × 7 3 × 6 + 4 × 8

]

=

[

19 22
43 50

]

;

2.

[

5 6
7 8

] [

1 2
3 4

]

=

[

23 34
31 46

]

6=
[

1 2
3 4

] [

5 6
7 8

]

;

3.

[

1
2

]

[

3 4
]

=

[

3 4
6 8

]

;

4.
[

3 4
]

[

1
2

]

=
[

11
]

;

5.

[

1 −1
1 −1

] [

1 −1
1 −1

]

=

[

0 0
0 0

]

.

Matrix multiplication obeys many of the familiar laws of arithmetic apart
from the commutative law.

1. (AB)C = A(BC) if A, B, C are m × n, n × p, p × q, respectively;

2. t(AB) = (tA)B = A(tB), A(−B) = (−A)B = −(AB);

3. (A + B)C = AC + BC if A and B are m × n and C is n × p;

4. D(A + B) = DA + DB if A and B are m × n and D is p × m.

We prove the associative law only:
First observe that (AB)C and A(BC) are both of size m × q.
Let A = [aij ], B = [bjk], C = [ckl]. Then

((AB)C)il =

p
∑

k=1

(AB)ikckl =

p
∑

k=1





n
∑

j=1

aijbjk



 ckl

=

p
∑

k=1

n
∑

j=1

aijbjkckl.
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Similarly

(A(BC))il =
n

∑

j=1

p
∑

k=1

aijbjkckl.

However the double summations are equal. For sums of the form

n
∑

j=1

p
∑

k=1

djk and

p
∑

k=1

n
∑

j=1

djk

represent the sum of the np elements of the rectangular array [djk], by rows
and by columns, respectively. Consequently

((AB)C)il = (A(BC))il

for 1 ≤ i ≤ m, 1 ≤ l ≤ q. Hence (AB)C = A(BC).

The system of m linear equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

is equivalent to a single matrix equation










a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn





















x1

x2
...

xn











=











b1

b2
...

bm











,

that is AX = B, where A = [aij ] is the coefficient matrix of the system,

X =











x1

x2
...

xn











is the vector of unknowns and B =











b1

b2
...

bm











is the vector of

constants.
Another useful matrix equation equivalent to the above system of linear

equations is

x1











a11

a21
...

am1











+ x2











a12

a22
...

am2











+ · · · + xn











a1n

a2n
...

amn











=











b1

b2
...

bm











.
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EXAMPLE 2.1.3 The system

x + y + z = 1

x − y + z = 0.

is equivalent to the matrix equation

[

1 1 1
1 −1 1

]





x
y
z



 =

[

1
0

]

and to the equation

x

[

1
1

]

+ y

[

1
−1

]

+ z

[

1
1

]

=

[

1
0

]

.

2.2 Linear transformations

An n–dimensional column vector is an n × 1 matrix over F . The collection
of all n–dimensional column vectors is denoted by Fn.

Every matrix is associated with an important type of function called a
linear transformation.

DEFINITION 2.2.1 (Linear transformation) We can associate with
A ∈ Mm×n(F ), the function TA : Fn → Fm, defined by TA(X) = AX for all
X ∈ Fn. More explicitly, using components, the above function takes the
form

y1 = a11x1 + a12x2 + · · · + a1nxn

y2 = a21x1 + a22x2 + · · · + a2nxn

...

ym = am1x1 + am2x2 + · · · + amnxn,

where y1, y2, · · · , ym are the components of the column vector TA(X).

The function just defined has the property that

TA(sX + tY ) = sTA(X) + tTA(Y ) (2.1)

for all s, t ∈ F and all n–dimensional column vectors X, Y . For

TA(sX + tY ) = A(sX + tY ) = s(AX) + t(AY ) = sTA(X) + tTA(Y ).
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REMARK 2.2.1 It is easy to prove that if T : Fn → Fm is a function
satisfying equation 2.1, then T = TA, where A is the m × n matrix whose
columns are T (E1), . . . , T (En), respectively, where E1, . . . , En are the n–
dimensional unit vectors defined by

E1 =











1
0
...
0











, . . . , En =











0
0
...
1











.

One well–known example of a linear transformation arises from rotating
the (x, y)–plane in 2-dimensional Euclidean space, anticlockwise through θ
radians. Here a point (x, y) will be transformed into the point (x1, y1),
where

x1 = x cos θ − y sin θ

y1 = x sin θ + y cos θ.

In 3–dimensional Euclidean space, the equations

x1 = x cos θ − y sin θ, y1 = x sin θ + y cos θ, z1 = z;

x1 = x, y1 = y cos φ − z sinφ, z1 = y sinφ + z cos φ;

x1 = x cos ψ + z sinψ, y1 = y, z1 = −x sinψ + z cos ψ;

correspond to rotations about the positive z, x and y axes, anticlockwise
through θ, φ, ψ radians, respectively.

The product of two matrices is related to the product of the correspond-
ing linear transformations:

If A is m×n and B is n×p, then the function TATB : F p → Fm, obtained
by first performing TB, then TA is in fact equal to the linear transformation
TAB. For if X ∈ F p, we have

TATB(X) = A(BX) = (AB)X = TAB(X).

The following example is useful for producing rotations in 3–dimensional
animated design. (See [27, pages 97–112].)

EXAMPLE 2.2.1 The linear transformation resulting from successively
rotating 3–dimensional space about the positive z, x, y–axes, anticlockwise
through θ, φ, ψ radians respectively, is equal to TABC , where
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Figure 2.1: Reflection in a line.

C =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



, B =





1 0 0
0 cos φ − sinφ
0 sinφ cos φ



.

A =





cos ψ 0 sinψ
0 1 0

− sinψ 0 cos ψ



.

The matrix ABC is quite complicated:

A(BC) =





cos ψ 0 sin ψ
0 1 0

− sinψ 0 cos ψ









cos θ − sin θ 0
cos φ sin θ cos φ cos θ − sinφ
sin φ sin θ sin φ cos θ cos φ





=





cos ψ cos θ+sin ψ sin φ sin θ − cos ψ sin θ+sin ψ sin φ cos θ sin ψ cos φ

cos φ sin θ cos φ cos θ − sin φ

− sin ψ cos θ+cos ψ sin φ sin θ sin ψ sin θ+cos ψ sin φ cos θ cos ψ cos φ



.

EXAMPLE 2.2.2 Another example from geometry is reflection of the
plane in a line l inclined at an angle θ to the positive x–axis.

We reduce the problem to the simpler case θ = 0, where the equations
of transformation are x1 = x, y1 = −y. First rotate the plane clockwise
through θ radians, thereby taking l into the x–axis; next reflect the plane in
the x–axis; then rotate the plane anticlockwise through θ radians, thereby
restoring l to its original position.



30 CHAPTER 2. MATRICES
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Figure 2.2: Projection on a line.

In terms of matrices, we get transformation equations

[

x1

y1

]

=

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 −1

] [

cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

] [

x
y

]

=

[

cos θ sin θ
sin θ − cos θ

] [

cos θ sin θ
− sin θ cos θ

] [

x
y

]

=

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

] [

x
y

]

.

The more general transformation

[

x1

y1

]

= a

[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

+

[

u
v

]

, a > 0,

represents a rotation, followed by a scaling and then by a translation. Such
transformations are important in computer graphics. See [23, 24].

EXAMPLE 2.2.3 Our last example of a geometrical linear transformation
arises from projecting the plane onto a line l through the origin, inclined
at angle θ to the positive x–axis. Again we reduce that problem to the
simpler case where l is the x–axis and the equations of transformation are
x1 = x, y1 = 0.

In terms of matrices, we get transformation equations

[

x1

y1

]

=

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 0

] [

cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

] [

x
y

]



2.3. RECURRENCE RELATIONS 31

=

[

cos θ 0
sin θ 0

] [

cos θ sin θ
− sin θ cos θ

] [

x
y

]

=

[

cos2 θ cos θ sin θ
sin θ cos θ sin2 θ

] [

x
y

]

.

2.3 Recurrence relations

DEFINITION 2.3.1 (The identity matrix) The n × n matrix In =
[δij ], defined by δij = 1 if i = j, δij = 0 if i 6= j, is called the n × n identity

matrix of order n. In other words, the columns of the identity matrix of
order n are the unit vectors E1, · · · , En, respectively.

For example, I2 =

[

1 0
0 1

]

.

THEOREM 2.3.1 If A is m × n, then ImA = A = AIn.

DEFINITION 2.3.2 (k–th power of a matrix) If A is an n×n matrix,
we define Ak recursively as follows: A0 = In and Ak+1 = AkA for k ≥ 0.

For example A1 = A0A = InA = A and hence A2 = A1A = AA.

The usual index laws hold provided AB = BA:

1. AmAn = Am+n, (Am)n = Amn;

2. (AB)n = AnBn;

3. AmBn = BnAm;

4. (A + B)2 = A2 + 2AB + B2;

5. (A + B)n =
n

∑

i=0

(

n
i

)

AiBn−i;

6. (A + B)(A − B) = A2 − B2.

We now state a basic property of the natural numbers.

AXIOM 2.3.1 (MATHEMATICAL INDUCTION) If Pn denotes a

mathematical statement for each n ≥ 1, satisfying

(i) P1 is true,
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(ii) the truth of Pn implies that of Pn+1 for each n ≥ 1,

then Pn is true for all n ≥ 1.

EXAMPLE 2.3.1 Let A =

[

7 4
−9 −5

]

. Prove that

An =

[

1 + 6n 4n
−9n 1 − 6n

]

if n ≥ 1.

Solution. We use the principle of mathematical induction.

Take Pn to be the statement

An =

[

1 + 6n 4n
−9n 1 − 6n

]

.

Then P1 asserts that

A1 =

[

1 + 6 × 1 4 × 1
−9 × 1 1 − 6 × 1

]

=

[

7 4
−9 −5

]

,

which is true. Now let n ≥ 1 and assume that Pn is true. We have to deduce
that

An+1 =

[

1 + 6(n + 1) 4(n + 1)
−9(n + 1) 1 − 6(n + 1)

]

=

[

7 + 6n 4n + 4
−9n − 9 −5 − 6n

]

.

Now

An+1 = AnA

=

[

1 + 6n 4n
−9n 1 − 6n

] [

7 4
−9 −5

]

=

[

(1 + 6n)7 + (4n)(−9) (1 + 6n)4 + (4n)(−5)
(−9n)7 + (1 − 6n)(−9) (−9n)4 + (1 − 6n)(−5)

]

=

[

7 + 6n 4n + 4
−9n − 9 −5 − 6n

]

,

and “the induction goes through”.

The last example has an application to the solution of a system of re-

currence relations:
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EXAMPLE 2.3.2 The following system of recurrence relations holds for
all n ≥ 0:

xn+1 = 7xn + 4yn

yn+1 = −9xn − 5yn.

Solve the system for xn and yn in terms of x0 and y0.

Solution. Combine the above equations into a single matrix equation
[

xn+1

yn+1

]

=

[

7 4
−9 −5

] [

xn

yn

]

,

or Xn+1 = AXn, where A =

[

7 4
−9 −5

]

and Xn =

[

xn

yn

]

.

We see that

X1 = AX0

X2 = AX1 = A(AX0) = A2X0

...

Xn = AnX0.

(The truth of the equation Xn = AnX0 for n ≥ 1, strictly speaking
follows by mathematical induction; however for simple cases such as the
above, it is customary to omit the strict proof and supply instead a few
lines of motivation for the inductive statement.)

Hence the previous example gives
[

xn

yn

]

= Xn =

[

1 + 6n 4n
−9n 1 − 6n

] [

x0

y0

]

=

[

(1 + 6n)x0 + (4n)y0

(−9n)x0 + (1 − 6n)y0

]

,

and hence xn = (1+6n)x0 +4ny0 and yn = (−9n)x0 +(1−6n)y0, for n ≥ 1.

2.4 PROBLEMS

1. Let A, B, C, D be matrices defined by

A =





3 0
−1 2

1 1



 , B =





1 5 2
−1 1 0
−4 1 3



 ,
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C =





−3 −1
2 1
4 3



 , D =

[

4 −1
2 0

]

.

Which of the following matrices are defined? Compute those matrices
which are defined.

A + B, A + C, AB, BA, CD, DC, D2.

[Answers: A + C, BA, CD, D2;





0 −1
1 3
5 4



 ,





0 12
−4 2
−10 5



,





−14 3
10 −2
22 −4



,

[

14 −4
8 −2

]

.]

2. Let A =

[

−1 0 1
0 1 1

]

. Show that if B is a 3 × 2 such that AB = I2,

then

B =





a b
−a − 1 1 − b
a + 1 b





for suitable numbers a and b. Use the associative law to show that
(BA)2B = B.

3. If A =

[

a b
c d

]

, prove that A2 − (a + d)A + (ad − bc)I2 = 0.

4. If A =

[

4 −3
1 0

]

, use the fact A2 = 4A − 3I2 and mathematical

induction, to prove that

An =
(3n − 1)

2
A +

3 − 3n

2
I2 if n ≥ 1.

5. A sequence of numbers x1, x2, . . . , xn, . . . satisfies the recurrence rela-
tion xn+1 = axn +bxn−1 for n ≥ 1, where a and b are constants. Prove
that

[

xn+1

xn

]

= A

[

xn

xn−1

]

,
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where A =

[

a b
1 0

]

and hence express

[

xn+1

xn

]

in terms of

[

x1

x0

]

.

If a = 4 and b = −3, use the previous question to find a formula for
xn in terms of x1 and x0.

[Answer:

xn =
3n − 1

2
x1 +

3 − 3n

2
x0.]

6. Let A =

[

2a −a2

1 0

]

.

(a) Prove that

An =

[

(n + 1)an −nan+1

nan−1 (1 − n)an

]

if n ≥ 1.

(b) A sequence x0, x1, . . . , xn, . . . satisfies xn+1 = 2axn − a2xn−1 for
n ≥ 1. Use part (a) and the previous question to prove that
xn = nan−1x1 + (1 − n)anx0 for n ≥ 1.

7. Let A =

[

a b
c d

]

and suppose that λ1 and λ2 are the roots of the

quadratic polynomial x2−(a+d)x+ad−bc. (λ1 and λ2 may be equal.)

Let kn be defined by k0 = 0, k1 = 1 and for n ≥ 2

kn =

n
∑

i=1

λn−i
1 λi−1

2 .

Prove that
kn+1 = (λ1 + λ2)kn − λ1λ2kn−1,

if n ≥ 1. Also prove that

kn =

{

(λn
1 − λn

2 )/(λ1 − λ2) if λ1 6= λ2,

nλn−1
1 if λ1 = λ2.

Use mathematical induction to prove that if n ≥ 1,

An = knA − λ1λ2kn−1I2,

[Hint: Use the equation A2 = (a + d)A − (ad − bc)I2.]
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8. Use Question 7 to prove that if A =

[

1 2
2 1

]

, then

An =
3n

2

[

1 1
1 1

]

+
(−1)n−1

2

[

−1 1
1 −1

]

if n ≥ 1.

9. The Fibonacci numbers are defined by the equations F0 = 0, F1 = 1
and Fn+1 = Fn + Fn−1 if n ≥ 1. Prove that

Fn =
1√
5

((

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n)

if n ≥ 0.

10. Let r > 1 be an integer. Let a and b be arbitrary positive integers.
Sequences xn and yn of positive integers are defined in terms of a and
b by the recurrence relations

xn+1 = xn + ryn

yn+1 = xn + yn,

for n ≥ 0, where x0 = a and y0 = b.

Use Question 7 to prove that

xn

yn
→

√
r as n → ∞.

2.5 Non–singular matrices

DEFINITION 2.5.1 (Non–singular matrix) A matrix A ∈ Mn×n(F )
is called non–singular or invertible if there exists a matrix B ∈ Mn×n(F )
such that

AB = In = BA.

Any matrix B with the above property is called an inverse of A. If A does
not have an inverse, A is called singular.

THEOREM 2.5.1 (Inverses are unique) If A has inverses B and C,
then B = C.
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Proof. Let B and C be inverses of A. Then AB = In = BA and AC =
In = CA. Then B(AC) = BIn = B and (BA)C = InC = C. Hence because
B(AC) = (BA)C, we deduce that B = C.

REMARK 2.5.1 If A has an inverse, it is denoted by A−1. So

AA−1 = In = A−1A.

Also if A is non–singular, it follows that A−1 is also non–singular and

(A−1)−1 = A.

THEOREM 2.5.2 If A and B are non–singular matrices of the same size,
then so is AB. Moreover

(AB)−1 = B−1A−1.

Proof.

(AB)(B−1A−1) = A(BB−1)A−1 = AInA−1 = AA−1 = In.

Similarly
(B−1A−1)(AB) = In.

REMARK 2.5.2 The above result generalizes to a product of m non–
singular matrices: If A1, . . . , Am are non–singular n × n matrices, then the
product A1 . . . Am is also non–singular. Moreover

(A1 . . . Am)−1 = A−1
m . . . A−1

1 .

(Thus the inverse of the product equals the product of the inverses in the

reverse order.)

EXAMPLE 2.5.1 If A and B are n × n matrices satisfying A2 = B2 =
(AB)2 = In, prove that AB = BA.

Solution. Assume A2 = B2 = (AB)2 = In. Then A, B, AB are non–
singular and A−1 = A, B−1 = B, (AB)−1 = AB.

But (AB)−1 = B−1A−1 and hence AB = BA.

EXAMPLE 2.5.2 A =

[

1 2
4 8

]

is singular. For suppose B =

[

a b
c d

]

is an inverse of A. Then the equation AB = I2 gives
[

1 2
4 8

] [

a b
c d

]

=

[

1 0
0 1

]
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and equating the corresponding elements of column 1 of both sides gives the
system

a + 2c = 1

4a + 8c = 0

which is clearly inconsistent.

THEOREM 2.5.3 Let A =

[

a b
c d

]

and ∆ = ad − bc 6= 0. Then A is

non–singular. Also

A−1 = ∆−1

[

d −b
−c a

]

.

REMARK 2.5.3 The expression ad − bc is called the determinant of A

and is denoted by the symbols detA or

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

.

Proof. Verify that the matrix B = ∆−1

[

d −b
−c a

]

satisfies the equation

AB = I2 = BA.

EXAMPLE 2.5.3 Let

A =





0 1 0
0 0 1
5 0 0



 .

Verify that A3 = 5I3, deduce that A is non–singular and find A−1.

Solution. After verifying that A3 = 5I3, we notice that

A

(

1

5
A2

)

= I3 =

(

1

5
A2

)

A.

Hence A is non–singular and A−1 = 1
5A2.

THEOREM 2.5.4 If the coefficient matrix A of a system of n equations
in n unknowns is non–singular, then the system AX = B has the unique
solution X = A−1B.

Proof. Assume that A−1 exists.
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1. (Uniqueness.) Assume that AX = B. Then

(A−1A)X = A−1B,

InX = A−1B,

X = A−1B.

2. (Existence.) Let X = A−1B. Then

AX = A(A−1B) = (AA−1)B = InB = B.

THEOREM 2.5.5 (Cramer’s rule for 2 equations in 2 unknowns)
The system

ax + by = e

cx + dy = f

has a unique solution if ∆ =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

6= 0, namely

x =
∆1

∆
, y =

∆2

∆
,

where

∆1 =

∣

∣

∣

∣

e b
f d

∣

∣

∣

∣

and ∆2 =

∣

∣

∣

∣

a e
c f

∣

∣

∣

∣

.

Proof. Suppose ∆ 6= 0. Then A =

[

a b
c d

]

has inverse

A−1 = ∆−1

[

d −b
−c a

]

and we know that the system

A

[

x
y

]

=

[

e
f

]

has the unique solution
[

x
y

]

= A−1

[

e
f

]

=
1

∆

[

d −b
−c a

] [

e
f

]

=
1

∆

[

de − bf
−ce + af

]

=
1

∆

[

∆1

∆2

]

=

[

∆1/∆
∆2/∆

]

.

Hence x = ∆1/∆, y = ∆2/∆.
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COROLLARY 2.5.1 The homogeneous system

ax + by = 0

cx + dy = 0

has only the trivial solution if ∆ =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

6= 0.

EXAMPLE 2.5.4 The system

7x + 8y = 100

2x − 9y = 10

has the unique solution x = ∆1/∆, y = ∆2/∆, where

∆=

˛

˛

˛

˛

˛

˛

7 8
2 −9

˛

˛

˛

˛

˛

˛

=−79, ∆1=

˛

˛

˛

˛

˛

˛

100 8
10 −9

˛

˛

˛

˛

˛

˛

=−980, ∆2=

˛

˛

˛

˛

˛

˛

7 100
2 10

˛

˛

˛

˛

˛

˛

=−130.

So x = 980
79 and y = 130

79 .

THEOREM 2.5.6 Let A be a square matrix. If A is non–singular, the
homogeneous system AX = 0 has only the trivial solution. Equivalently,
if the homogenous system AX = 0 has a non–trivial solution, then A is
singular.

Proof. If A is non–singular and AX = 0, then X = A−10 = 0.

REMARK 2.5.4 If A∗1, . . . , A∗n denote the columns of A, then the equa-
tion

AX = x1A∗1 + . . . + xnA∗n

holds. Consequently theorem 2.5.6 tells us that if there exist x1, . . . , xn, not

all zero, such that

x1A∗1 + . . . + xnA∗n = 0,

that is, if the columns of A are linearly dependent, then A is singular. An
equivalent way of saying that the columns of A are linearly dependent is that
one of the columns of A is expressible as a sum of certain scalar multiples
of the remaining columns of A; that is one column is a linear combination

of the remaining columns.



2.5. NON–SINGULAR MATRICES 41

EXAMPLE 2.5.5

A =





1 2 3
1 0 1
3 4 7





is singular. For it can be verified that A has reduced row–echelon form





1 0 1
0 1 1
0 0 0





and consequently AX = 0 has a non–trivial solution x = −1, y = −1, z = 1.

REMARK 2.5.5 More generally, if A is row–equivalent to a matrix con-
taining a zero row, then A is singular. For then the homogeneous system
AX = 0 has a non–trivial solution.

An important class of non–singular matrices is that of the elementary

row matrices.

DEFINITION 2.5.2 (Elementary row matrices) To each of the three
types of elementary row operation, there corresponds an elementary row

matrix, denoted by Eij , Ei(t), Eij(t):

1. Eij , (i 6= j) is obtained from the identity matrix In by interchanging
rows i and j.

2. Ei(t), (t 6= 0) is obtained by multiplying the i–th row of In by t.

3. Eij(t), (i 6= j) is obtained from In by adding t times the j–th row of
In to the i–th row.

EXAMPLE 2.5.6 (n = 3.)

E23 =





1 0 0
0 0 1
0 1 0



 , E2(−1) =





1 0 0
0 −1 0
0 0 1



 , E23(−1) =





1 0 0
0 1 −1
0 0 1



 .

The elementary row matrices have the following distinguishing property:

THEOREM 2.5.7 If a matrix A is pre–multiplied by an elementary row
matrix, the resulting matrix is the one obtained by performing the corre-
sponding elementary row–operation on A.



42 CHAPTER 2. MATRICES

EXAMPLE 2.5.7

E23





a b
c d
e f



 =





1 0 0
0 0 1
0 1 0









a b
c d
e f



 =





a b
e f
c d



 .

COROLLARY 2.5.2 Elementary row–matrices are non–singular. Indeed

1. E−1
ij = Eij ;

2. E−1
i (t) = Ei(t

−1);

3. (Eij(t))
−1 = Eij(−t).

Proof. Taking A = In in the above theorem, we deduce the following
equations:

EijEij = In

Ei(t)Ei(t
−1) = In = Ei(t

−1)Ei(t) if t 6= 0

Eij(t)Eij(−t) = In = Eij(−t)Eij(t).

EXAMPLE 2.5.8 Find the 3 × 3 matrix A = E3(5)E23(2)E12 explicitly.
Also find A−1.

Solution.

A = E3(5)E23(2)





0 1 0
1 0 0
0 0 1



 = E3(5)





0 1 0
1 0 2
0 0 1



 =





0 1 0
1 0 2
0 0 5



 .

To find A−1, we have

A−1 = (E3(5)E23(2)E12)
−1

= E−1
12 (E23(2))−1 (E3(5))−1

= E12E23(−2)E3(5
−1)

= E12E23(−2)





1 0 0
0 1 0
0 0 1

5





= E12





1 0 0
0 1 −2

5
0 0 1

5



 =





0 1 −2
5

1 0 0
0 0 1

5



 .
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REMARK 2.5.6 Recall that A and B are row–equivalent if B is obtained
from A by a sequence of elementary row operations. If E1, . . . , Er are the
respective corresponding elementary row matrices, then

B = Er (. . . (E2(E1A)) . . .) = (Er . . . E1)A = PA,

where P = Er . . . E1 is non–singular. Conversely if B = PA, where P is
non–singular, then A is row–equivalent to B. For as we shall now see, P is
in fact a product of elementary row matrices.

THEOREM 2.5.8 Let A be non–singular n × n matrix. Then

(i) A is row–equivalent to In,

(ii) A is a product of elementary row matrices.

Proof. Assume that A is non–singular and let B be the reduced row–echelon
form of A. Then B has no zero rows, for otherwise the equation AX = 0
would have a non–trivial solution. Consequently B = In.

It follows that there exist elementary row matrices E1, . . . , Er such that
Er (. . . (E1A) . . .) = B = In and hence A = E−1

1 . . . E−1
r , a product of

elementary row matrices.

THEOREM 2.5.9 Let A be n × n and suppose that A is row–equivalent
to In. Then A is non–singular and A−1 can be found by performing the
same sequence of elementary row operations on In as were used to convert
A to In.

Proof. Suppose that Er . . . E1A = In. In other words BA = In, where
B = Er . . . E1 is non–singular. Then B−1(BA) = B−1In and so A = B−1,
which is non–singular.

Also A−1 =
(

B−1
)−1

= B = Er ((. . . (E1In) . . .), which shows that A−1

is obtained from In by performing the same sequence of elementary row
operations as were used to convert A to In.

REMARK 2.5.7 It follows from theorem 2.5.9 that if A is singular, then
A is row–equivalent to a matrix whose last row is zero.

EXAMPLE 2.5.9 Show that A =

[

1 2
1 1

]

is non–singular, find A−1 and

express A as a product of elementary row matrices.
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Solution. We form the partitioned matrix [A|I2] which consists of A followed
by I2. Then any sequence of elementary row operations which reduces A to
I2 will reduce I2 to A−1. Here

[A|I2] =

[

1 2 1 0
1 1 0 1

]

R2 → R2 − R1

[

1 2 1 0
0 −1 −1 1

]

R2 → (−1)R2

[

1 2 1 0
0 1 1 −1

]

R1 → R1 − 2R2

[

1 0 −1 2
0 1 1 −1

]

.

Hence A is row–equivalent to I2 and A is non–singular. Also

A−1 =

[

−1 2
1 −1

]

.

We also observe that

E12(−2)E2(−1)E21(−1)A = I2.

Hence

A−1 = E12(−2)E2(−1)E21(−1)

A = E21(1)E2(−1)E12(2).

The next result is the converse of Theorem 2.5.6 and is useful for proving
the non–singularity of certain types of matrices.

THEOREM 2.5.10 Let A be an n × n matrix with the property that
the homogeneous system AX = 0 has only the trivial solution. Then A is
non–singular. Equivalently, if A is singular, then the homogeneous system
AX = 0 has a non–trivial solution.

Proof. If A is n × n and the homogeneous system AX = 0 has only the
trivial solution, then it follows that the reduced row–echelon form B of A
cannot have zero rows and must therefore be In. Hence A is non–singular.

COROLLARY 2.5.3 Suppose that A and B are n × n and AB = In.
Then BA = In.
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Proof. Let AB = In, where A and B are n × n. We first show that B
is non–singular. Assume BX = 0. Then A(BX) = A0 = 0, so (AB)X =
0, InX = 0 and hence X = 0.

Then from AB = In we deduce (AB)B−1 = InB−1 and hence A = B−1.
The equation BB−1 = In then gives BA = In.

Before we give the next example of the above criterion for non-singularity,
we introduce an important matrix operation.

DEFINITION 2.5.3 (The transpose of a matrix) Let A be an m×n
matrix. Then At, the transpose of A, is the matrix obtained by interchanging
the rows and columns of A. In other words if A = [aij ], then

(

At
)

ji
= aij .

Consequently At is n × m.

The transpose operation has the following properties:

1.
(

At
)t

= A;

2. (A ± B)t = At ± Bt if A and B are m × n;

3. (sA)t = sAt if s is a scalar;

4. (AB)t = BtAt if A is m × n and B is n × p;

5. If A is non–singular, then At is also non–singular and

(

At
)−1

=
(

A−1
)t

;

6. XtX = x2
1 + . . . + x2

n if X = [x1, . . . , xn]t is a column vector.

We prove only the fourth property. First check that both (AB)t and BtAt

have the same size (p × m). Moreover, corresponding elements of both
matrices are equal. For if A = [aij ] and B = [bjk], we have

(

(AB)t)

ki
= (AB)ik

=
n

∑

j=1

aijbjk

=
n

∑

j=1

(

Bt
)

kj

(

At
)

ji

=
(

BtAt
)

ki
.

There are two important classes of matrices that can be defined concisely
in terms of the transpose operation.
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DEFINITION 2.5.4 (Symmetric matrix) A matrix A is symmetric if
At = A. In other words A is square (n × n say) and aji = aij for all
1 ≤ i ≤ n, 1 ≤ j ≤ n. Hence

A =

[

a b
b c

]

is a general 2 × 2 symmetric matrix.

DEFINITION 2.5.5 (Skew–symmetric matrix) A matrix A is called
skew–symmetric if At = −A. In other words A is square (n × n say) and
aji = −aij for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.

REMARK 2.5.8 Taking i = j in the definition of skew–symmetric matrix
gives aii = −aii and so aii = 0. Hence

A =

[

0 b
−b 0

]

is a general 2 × 2 skew–symmetric matrix.

We can now state a second application of the above criterion for non–
singularity.

COROLLARY 2.5.4 Let B be an n × n skew–symmetric matrix. Then
A = In − B is non–singular.

Proof. Let A = In − B, where Bt = −B. By Theorem 2.5.10 it suffices to
show that AX = 0 implies X = 0.

We have (In − B)X = 0, so X = BX. Hence XtX = XtBX.

Taking transposes of both sides gives

(XtBX)t = (XtX)t

XtBt(Xt)t = Xt(Xt)t

Xt(−B)X = XtX

−XtBX = XtX = XtBX.

Hence XtX = −XtX and XtX = 0. But if X = [x1, . . . , xn]t, then XtX =
x2

1 + . . . + x2
n = 0 and hence x1 = 0, . . . , xn = 0.
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2.6 Least squares solution of equations

Suppose AX = B represents a system of linear equations with real coeffi-
cients which may be inconsistent, because of the possibility of experimental
errors in determining A or B. For example, the system

x = 1

y = 2

x + y = 3.001

is inconsistent.
It can be proved that the associated system AtAX = AtB is always

consistent and that any solution of this system minimizes the sum r2
1 + . . .+

r2
m, where r1, . . . , rm (the residuals) are defined by

ri = ai1x1 + . . . + ainxn − bi,

for i = 1, . . . , m. The equations represented by AtAX = AtB are called the
normal equations corresponding to the system AX = B and any solution
of the system of normal equations is called a least squares solution of the
original system.

EXAMPLE 2.6.1 Find a least squares solution of the above inconsistent
system.

Solution. Here A =





1 0
0 1
1 1



 , X =

[

x
y

]

, B =





1
2

3.001



.

Then AtA =

[

1 0 1
0 1 1

]





1 0
0 1
1 1



 =

[

2 1
1 2

]

.

Also AtB =

[

1 0 1
0 1 1

]





1
2

3.001



 =

[

4.001
5.001

]

.

So the normal equations are

2x + y = 4.001

x + 2y = 5.001

which have the unique solution

x =
3.001

3
, y =

6.001

3
.
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EXAMPLE 2.6.2 Points (x1, y1), . . . , (xn, yn) are experimentally deter-
mined and should lie on a line y = mx + c. Find a least squares solution to
the problem.

Solution. The points have to satisfy

mx1 + c = y1

...

mxn + c = yn,

or Ax = B, where

A =







x1 1
...

...
xn 1






, X =

[

m
c

]

, B =







y1
...

yn






.

The normal equations are given by (AtA)X = AtB. Here

AtA =

[

x1 . . . xn

1 . . . 1

]







x1 1
...

...
xn 1






=

[

x2
1 + . . . + x2

n x1 + . . . + xn

x1 + . . . + xn n

]

Also

AtB =

[

x1 . . . xn

1 . . . 1

]







y1
...

yn






=

[

x1y1 + . . . + xnyn

y1 + . . . + yn

]

.

It is not difficult to prove that

∆ = det (AtA) =
∑

1≤i<j≤n

(xi − xj)
2,

which is positive unless x1 = . . . = xn. Hence if not all of x1, . . . , xn are
equal, AtA is non–singular and the normal equations have a unique solution.
This can be shown to be

m =
1

∆

∑

1≤i<j≤n

(xi − xj)(yi − yj), c =
1

∆

∑

1≤i<j≤n

(xiyj − xjyi)(xi − xj).

REMARK 2.6.1 The matrix AtA is symmetric.
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2.7 PROBLEMS

1. Let A =

[

1 4
−3 1

]

. Prove that A is non–singular, find A−1 and

express A as a product of elementary row matrices.

[Answer: A−1 =

[

1
13 − 4

13
3
13

1
13

]

,

A = E21(−3)E2(13)E12(4) is one such decomposition.]

2. A square matrix D = [dij ] is called diagonal if dij = 0 for i 6= j. (That
is the off–diagonal elements are zero.) Prove that pre–multiplication
of a matrix A by a diagonal matrix D results in matrix DA whose
rows are the rows of A multiplied by the respective diagonal elements
of D. State and prove a similar result for post–multiplication by a
diagonal matrix.

Let diag (a1, . . . , an) denote the diagonal matrix whose diagonal ele-
ments dii are a1, . . . , an, respectively. Show that

diag (a1, . . . , an)diag (b1, . . . , bn) = diag (a1b1, . . . , anbn)

and deduce that if a1 . . . an 6= 0, then diag (a1, . . . , an) is non–singular
and

(diag (a1, . . . , an))−1 = diag (a−1
1 , . . . , a−1

n ).

Also prove that diag (a1, . . . , an) is singular if ai = 0 for some i.

3. Let A =





0 0 2
1 2 6
3 7 9



. Prove that A is non–singular, find A−1 and

express A as a product of elementary row matrices.

[Answers: A−1 =





−12 7 −2
9
2 −3 1
1
2 0 0



,

A = E12E31(3)E23E3(2)E12(2)E13(24)E23(−9) is one such decompo-
sition.]
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4. Find the rational number k for which the matrix A =





1 2 k
3 −1 1
5 3 −5





is singular. [Answer: k = −3.]

5. Prove that A =

[

1 2
−2 −4

]

is singular and find a non–singular matrix

P such that PA has last row zero.

6. If A =

[

1 4
−3 1

]

, verify that A2 − 2A + 13I2 = 0 and deduce that

A−1 = − 1
13(A − 2I2).

7. Let A =





1 1 −1
0 0 1
2 1 2



.

(i) Verify that A3 = 3A2 − 3A + I3.

(ii) Express A4 in terms of A2, A and I3 and hence calculate A4

explicitly.

(iii) Use (i) to prove that A is non–singular and find A−1 explicitly.

[Answers: (ii) A4 = 6A2 − 8A + 3I3 =





−11 −8 −4
12 9 4
20 16 5



;

(iii) A−1 = A2 − 3A + 3I3 =





−1 −3 1
2 4 −1
0 1 0



.]

8. (i) Let B be an n×n matrix such that B3 = 0. If A = In−B, prove
that A is non–singular and A−1 = In + B + B2.

Show that the system of linear equations AX = b has the solution

X = b + Bb + B2b.

(ii) If B =





0 r s
0 0 t
0 0 0



, verify that B3 = 0 and use (i) to determine

(I3 − B)−1 explicitly.
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[Answer:





1 r s + rt
0 1 t
0 0 1



.]

9. Let A be n × n.

(i) If A2 = 0, prove that A is singular.

(ii) If A2 = A and A 6= In, prove that A is singular.

10. Use Question 7 to solve the system of equations

x + y − z = a

z = b

2x + y + 2z = c

where a, b, c are given rationals. Check your answer using the Gauss–
Jordan algorithm.

[Answer: x = −a − 3b + c, y = 2a + 4b − c, z = b.]

11. Determine explicitly the following products of 3 × 3 elementary row
matrices.

(i) E12E23 (ii) E1(5)E12 (iii) E12(3)E21(−3) (iv) (E1(100))−1

(v) E−1
12 (vi) (E12(7))−1 (vii) (E12(7)E31(1))−1.

[Answers: (i)

2

4

0 0 1
1 0 0
0 1 0

3

5 (ii)

2

4

0 5 0
1 0 0
0 0 1

3

5 (iii)

2

4

−8 3 0
−3 1 0

0 0 1

3

5

(iv)

2

4

1/100 0 0
0 1 0
0 0 1

3

5 (v)

2

4

0 1 0
1 0 0
0 0 1

3

5 (vi)

2

4

1 −7 0
0 1 0
0 0 1

3

5 (vii)

2

4

1 −7 0
0 1 0

−1 7 1

3

5.]

12. Let A be the following product of 4 × 4 elementary row matrices:

A = E3(2)E14E42(3).

Find A and A−1 explicitly.

[Answers: A =

2

6

6

4

0 3 0 1
0 1 0 0
0 0 2 0
1 0 0 0

3

7

7

5

, A−1 =

2

6

6

4

0 0 0 1
0 1 0 0
0 0 1/2 0
1 −3 0 0

3

7

7

5

.]
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13. Determine which of the following matrices over Z2 are non–singular
and find the inverse, where possible.

(a)

2

6

6

4

1 1 0 1
0 0 1 1
1 1 1 1
1 0 0 1

3

7

7

5

(b)

2

6

6

4

1 1 0 1
0 1 1 1
1 0 1 0
1 1 0 1

3

7

7

5

. [Answer: (a)

2

6

6

4

1 1 1 1
1 0 0 1
1 0 1 0
1 1 1 0

3

7

7

5

.]

14. Determine which of the following matrices are non–singular and find
the inverse, where possible.

(a)

2

4

1 1 1
−1 1 0

2 0 0

3

5 (b)

2

4

2 2 4
1 0 1
0 1 0

3

5 (c)

2

4

4 6 −3
0 0 7
0 0 5

3

5

(d)

2

4

2 0 0
0 −5 0
0 0 7

3

5 (e)

2

6

6

4

1 2 4 6
0 1 2 0
0 0 1 2
0 0 0 2

3

7

7

5

(f)

2

4

1 2 3
4 5 6
5 7 9

3

5.

[Answers: (a)

2

4

0 0 1/2
0 1 1/2
1 −1 −1

3

5 (b)

2

4

−1/2 2 1
0 0 1

1/2 −1 −1

3

5 (d)

2

4

1/2 0 0
0 −1/5 0
0 0 1/7

3

5

(e)

2

6

6

4

1 −2 0 −3
0 1 −2 2
0 0 1 −1
0 0 0 1/2

3

7

7

5

.]

15. Let A be a non–singular n × n matrix. Prove that At is non–singular
and that (At)−1 = (A−1)t.

16. Prove that A =

[

a b
c d

]

has no inverse if ad − bc = 0.

[Hint: Use the equation A2 − (a + d)A + (ad − bc)I2 = 0.]

17. Prove that the real matrix A =

2

4

1 a b
−a 1 c
−b −c 1

3

5 is non–singular by prov-

ing that A is row–equivalent to I3.

18. If P−1AP = B, prove that P−1AnP = Bn for n ≥ 1.
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19. Let A =

[

2/3 1/4
1/3 3/4

]

, P =

[

1 3
−1 4

]

. Verify that P−1AP =
[

5/12 0
0 1

]

and deduce that

An =
1

7

[

3 3
4 4

]

+
1

7

(

5

12

)n [

4 −3
−4 3

]

.

20. Let A =

[

a b
c d

]

be a Markov matrix; that is a matrix whose elements

are non–negative and satisfy a+c = 1 = b+d. Also let P =

[

b 1
c −1

]

.

Prove that if A 6= I2 then

(i) P is non–singular and P−1AP =

[

1 0
0 a + d − 1

]

,

(ii) An → 1

b + c

[

b b
c c

]

as n → ∞, if A 6=
[

0 1
1 0

]

.

21. If X =





1 2
3 4
5 6



 and Y =





−1
3
4



, find XXt, XtX, Y Y t, Y tY .

[Answers:





5 11 17
11 25 39
17 39 61



 ,

[

35 44
44 56

]

,





1 −3 −4
−3 9 12
−4 12 16



 , 26.]

22. Prove that the system of linear equations

x + 2y = 4
x + y = 5

3x + 5y = 12

is inconsistent and find a least squares solution of the system.

[Answer: x = 6, y = −7/6.]

23. The points (0, 0), (1, 0), (2, −1), (3, 4), (4, 8) are required to lie on a
parabola y = a + bx + cx2. Find a least squares solution for a, b, c.
Also prove that no parabola passes through these points.

[Answer: a = 1
5 , b = −2, c = 1.]
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24. If A is a symmetric n×n real matrix and B is n×m, prove that BtAB
is a symmetric m × m matrix.

25. If A is m × n and B is n × m, prove that AB is singular if m > n.

26. Let A and B be n × n. If A or B is singular, prove that AB is also
singular.


