Chapter 2

MATRICES

2.1 Matrix arithmetic

A matrix over a field F is a rectangular array of elements from F. The symbol $M_{m \times n}(F)$ denotes the collection of all $m \times n$ matrices over F. Matrices will usually be denoted by capital letters and the equation $A = [a_{ij}]$ means that the element in the *i*-th row and *j*-th column of the matrix A equals a_{ij} . It is also occasionally convenient to write $a_{ij} = (A)_{ij}$. For the present, all matrices will have rational entries, unless otherwise stated.

EXAMPLE 2.1.1 The formula $a_{ij} = 1/(i+j)$ for $1 \le i \le 3, 1 \le j \le 4$ defines a 3×4 matrix $A = [a_{ij}]$, namely

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}.$$

DEFINITION 2.1.1 (Equality of matrices) Matrices A, B are said to be equal if A and B have the same size and corresponding elements are equal; i.e., A and $B \in M_{m \times n}(F)$ and $A = [a_{ij}], B = [b_{ij}]$, with $a_{ij} = b_{ij}$ for $1 \le i \le m, 1 \le j \le n$.

DEFINITION 2.1.2 (Addition of matrices) Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be of the same size. Then A + B is the matrix obtained by adding corresponding elements of A and B; that is

$$A + B = [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}].$$

DEFINITION 2.1.3 (Scalar multiple of a matrix) Let $A = [a_{ij}]$ and $t \in F$ (that is t is a *scalar*). Then tA is the matrix obtained by multiplying all elements of A by t; that is

$$tA = t[a_{ij}] = [ta_{ij}].$$

DEFINITION 2.1.4 (Additive inverse of a matrix) Let $A = [a_{ij}]$. Then -A is the matrix obtained by replacing the elements of A by their additive inverses; that is

$$-A = -[a_{ij}] = [-a_{ij}].$$

DEFINITION 2.1.5 (Subtraction of matrices) Matrix subtraction is defined for two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ of the same size, in the usual way; that is

$$A - B = [a_{ij}] - [b_{ij}] = [a_{ij} - b_{ij}].$$

DEFINITION 2.1.6 (The zero matrix) For each m, n the matrix in $M_{m \times n}(F)$, all of whose elements are zero, is called the *zero* matrix (of size $m \times n$) and is denoted by the symbol 0.

The matrix operations of addition, scalar multiplication, additive inverse and subtraction satisfy the usual laws of arithmetic. (In what follows, s and t will be arbitrary scalars and A, B, C are matrices of the same size.)

- 1. (A+B) + C = A + (B+C);
- 2. A + B = B + A;
- 3. 0 + A = A;
- 4. A + (-A) = 0;
- 5. (s+t)A = sA + tA, (s-t)A = sA tA;
- 6. t(A+B) = tA + tB, t(A-B) = tA tB;
- 7. s(tA) = (st)A;
- 8. 1A = A, 0A = 0, (-1)A = -A;
- 9. $tA = 0 \Rightarrow t = 0$ or A = 0.

Other similar properties will be used when needed.

DEFINITION 2.1.7 (Matrix product) Let $A = [a_{ij}]$ be a matrix of size $m \times n$ and $B = [b_{jk}]$ be a matrix of size $n \times p$; (that is the number of columns of A equals the number of rows of B). Then AB is the $m \times p$ matrix $C = [c_{ik}]$ whose (i, k)-th element is defined by the formula

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} = a_{i1} b_{1k} + \dots + a_{in} b_{nk}.$$

EXAMPLE 2.1.2

1.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix};$$

2.
$$\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 23 & 34 \\ 31 & 46 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix};$$

3.
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix};$$

4.
$$\begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 11 \end{bmatrix};$$

5.
$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Matrix multiplication obeys many of the familiar laws of arithmetic apart from the commutative law.

- 1. (AB)C = A(BC) if A, B, C are $m \times n$, $n \times p$, $p \times q$, respectively;
- 2. t(AB) = (tA)B = A(tB), A(-B) = (-A)B = -(AB);
- 3. (A+B)C = AC + BC if A and B are $m \times n$ and C is $n \times p$;
- 4. D(A+B) = DA + DB if A and B are $m \times n$ and D is $p \times m$.

We prove the associative law only:

First observe that (AB)C and A(BC) are both of size $m \times q$. Let $A = [a_{ij}], B = [b_{jk}], C = [c_{kl}]$. Then

$$((AB)C)_{il} = \sum_{k=1}^{p} (AB)_{ik} c_{kl} = \sum_{k=1}^{p} \left(\sum_{j=1}^{n} a_{ij} b_{jk} \right) c_{kl}$$
$$= \sum_{k=1}^{p} \sum_{j=1}^{n} a_{ij} b_{jk} c_{kl}.$$

Similarly

$$(A(BC))_{il} = \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ij} b_{jk} c_{kl}.$$

However the double summations are equal. For sums of the form

$$\sum_{j=1}^{n} \sum_{k=1}^{p} d_{jk} \text{ and } \sum_{k=1}^{p} \sum_{j=1}^{n} d_{jk}$$

represent the sum of the np elements of the rectangular array $[d_{jk}]$, by rows and by columns, respectively. Consequently

$$((AB)C)_{il} = (A(BC))_{il}$$

for $1 \le i \le m$, $1 \le l \le q$. Hence (AB)C = A(BC).

The system of m linear equations in n unknowns

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

is equivalent to a single matrix equation

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

that is AX = B, where $A = [a_{ij}]$ is the *coefficient matrix* of the system,

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ is the vector of unknowns and } B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \text{ is the vector of }$$

Another useful matrix equation equivalent to the above system of linear equations is

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

EXAMPLE 2.1.3 The system

$$\begin{array}{rcl} x+y+z &=& 1\\ x-y+z &=& 0. \end{array}$$

is equivalent to the matrix equation

$$\left[\begin{array}{rrr}1 & 1 & 1\\1 & -1 & 1\end{array}\right]\left[\begin{array}{r}x\\y\\z\end{array}\right] = \left[\begin{array}{r}1\\0\end{array}\right]$$

and to the equation

$$x \begin{bmatrix} 1\\1 \end{bmatrix} + y \begin{bmatrix} 1\\-1 \end{bmatrix} + z \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}.$$

2.2 Linear transformations

An *n*-dimensional column vector is an $n \times 1$ matrix over F. The collection of all *n*-dimensional column vectors is denoted by F^n .

Every matrix is associated with an important type of function called a *linear transformation*.

DEFINITION 2.2.1 (Linear transformation) We can associate with $A \in M_{m \times n}(F)$, the function $T_A : F^n \to F^m$, defined by $T_A(X) = AX$ for all $X \in F^n$. More explicitly, using components, the above function takes the form

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

$$\vdots$$

$$y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n,$$

where y_1, y_2, \dots, y_m are the components of the column vector $T_A(X)$.

The function just defined has the property that

$$T_A(sX + tY) = sT_A(X) + tT_A(Y)$$
(2.1)

for all $s, t \in F$ and all *n*-dimensional column vectors X, Y. For

$$T_A(sX + tY) = A(sX + tY) = s(AX) + t(AY) = sT_A(X) + tT_A(Y).$$

REMARK 2.2.1 It is easy to prove that if $T : F^n \to F^m$ is a function satisfying equation 2.1, then $T = T_A$, where A is the $m \times n$ matrix whose columns are $T(E_1), \ldots, T(E_n)$, respectively, where E_1, \ldots, E_n are the ndimensional unit vectors defined by

$$E_1 = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \quad \dots \quad , E_n = \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}.$$

One well-known example of a linear transformation arises from rotating the (x, y)-plane in 2-dimensional Euclidean space, anticlockwise through θ radians. Here a point (x, y) will be transformed into the point (x_1, y_1) , where

$$\begin{aligned} x_1 &= x\cos\theta - y\sin\theta \\ y_1 &= x\sin\theta + y\cos\theta. \end{aligned}$$

In 3-dimensional Euclidean space, the equations

$$x_1 = x\cos\theta - y\sin\theta, \ y_1 = x\sin\theta + y\cos\theta, \ z_1 = z;$$

$$x_1 = x, \ y_1 = y\cos\phi - z\sin\phi, \ z_1 = y\sin\phi + z\cos\phi;$$

$$x_1 = x\cos\psi + z\sin\psi, \ y_1 = y, \ z_1 = -x\sin\psi + z\cos\psi;$$

correspond to rotations about the positive z, x and y axes, anticlockwise through θ , ϕ , ψ radians, respectively.

The product of two matrices is related to the product of the corresponding linear transformations:

If A is $m \times n$ and B is $n \times p$, then the function $T_A T_B : F^p \to F^m$, obtained by first performing T_B , then T_A is in fact equal to the linear transformation T_{AB} . For if $X \in F^p$, we have

$$T_A T_B(X) = A(BX) = (AB)X = T_{AB}(X).$$

The following example is useful for producing rotations in 3-dimensional animated design. (See [27, pages 97–112].)

EXAMPLE 2.2.1 The linear transformation resulting from successively rotating 3-dimensional space about the positive z, x, y-axes, anticlockwise through θ , ϕ , ψ radians respectively, is equal to T_{ABC} , where

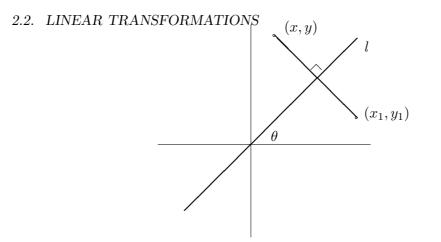


Figure 2.1: Reflection in a line.

$$C = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{bmatrix}.$$
$$A = \begin{bmatrix} \cos\psi & 0 & \sin\psi\\ 0 & 1 & 0\\ -\sin\psi & 0 & \cos\psi \end{bmatrix}.$$

The matrix ABC is quite complicated:

 $A(BC) = \begin{bmatrix} \cos\psi & 0 & \sin\psi \\ 0 & 1 & 0 \\ -\sin\psi & 0 & \cos\psi \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \cos\phi\sin\theta & \cos\phi\cos\theta & -\sin\phi \\ \sin\phi\sin\theta & \sin\phi\cos\theta & \cos\phi \end{bmatrix}$ $= \begin{bmatrix} \cos\psi\cos\theta + \sin\psi\sin\phi\sin\theta & -\cos\psi\sin\theta + \sin\psi\sin\phi\cos\theta & \sin\psi\cos\phi \\ \cos\phi\sin\theta & \cos\phi\cos\theta & -\sin\phi \\ -\sin\psi\cos\theta + \cos\psi\sin\phi\sin\theta & \sin\psi\sin\theta + \cos\psi\sin\phi\cos\theta & \cos\psi\cos\phi \end{bmatrix}.$

EXAMPLE 2.2.2 Another example from geometry is reflection of the plane in a line *l* inclined at an angle θ to the positive *x*-axis.

We reduce the problem to the simpler case $\theta = 0$, where the equations of transformation are $x_1 = x$, $y_1 = -y$. First rotate the plane clockwise through θ radians, thereby taking l into the *x*-axis; next reflect the plane in the *x*-axis; then rotate the plane anticlockwise through θ radians, thereby restoring l to its original position.

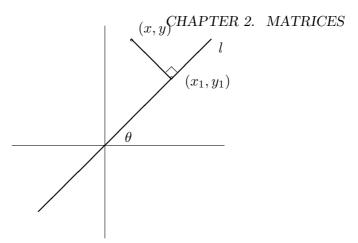


Figure 2.2: Projection on a line.

In terms of matrices, we get transformation equations

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

The more general transformation

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = a \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} u \\ v \end{bmatrix}, \quad a > 0,$$

represents a rotation, followed by a scaling and then by a translation. Such transformations are important in computer graphics. See [23, 24].

EXAMPLE 2.2.3 Our last example of a geometrical linear transformation arises from projecting the plane onto a line l through the origin, inclined at angle θ to the positive *x*-axis. Again we reduce that problem to the simpler case where l is the *x*-axis and the equations of transformation are $x_1 = x, y_1 = 0$.

In terms of matrices, we get transformation equations

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos\left(-\theta\right) & -\sin\left(-\theta\right) \\ \sin\left(-\theta\right) & \cos\left(-\theta\right) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & 0\\ \sin \theta & 0 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta\\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$
$$= \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta\\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}.$$

2.3 Recurrence relations

DEFINITION 2.3.1 (The identity matrix) The $n \times n$ matrix $I_n = [\delta_{ij}]$, defined by $\delta_{ij} = 1$ if i = j, $\delta_{ij} = 0$ if $i \neq j$, is called the $n \times n$ identity matrix of order n. In other words, the columns of the identity matrix of order n are the unit vectors E_1, \dots, E_n , respectively.

For example, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

THEOREM 2.3.1 If A is $m \times n$, then $I_m A = A = AI_n$.

DEFINITION 2.3.2 (*k*-th power of a matrix) If *A* is an $n \times n$ matrix, we define A^k recursively as follows: $A^0 = I_n$ and $A^{k+1} = A^k A$ for $k \ge 0$.

For example $A^1 = A^0 A = I_n A = A$ and hence $A^2 = A^1 A = AA$.

The usual index laws hold provided AB = BA:

- 1. $A^m A^n = A^{m+n}$, $(A^m)^n = A^{mn}$;
- 2. $(AB)^n = A^n B^n;$
- 3. $A^m B^n = B^n A^m$;
- 4. $(A+B)^2 = A^2 + 2AB + B^2;$

5.
$$(A+B)^n = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i};$$

6.
$$(A+B)(A-B) = A^2 - B^2$$
.

We now state a basic property of the natural numbers.

AXIOM 2.3.1 (MATHEMATICAL INDUCTION) If \mathcal{P}_n denotes a mathematical statement for each $n \geq 1$, satisfying

(i) \mathcal{P}_1 is true,

(ii) the truth of \mathcal{P}_n implies that of \mathcal{P}_{n+1} for each $n \geq 1$,

then \mathcal{P}_n is true for all $n \geq 1$.

EXAMPLE 2.3.1 Let $A = \begin{bmatrix} 7 & 4 \\ -9 & -5 \end{bmatrix}$. Prove that $A^n = \begin{bmatrix} 1+6n & 4n \\ -9n & 1-6n \end{bmatrix} \text{ if } n \ge 1.$

Solution. We use the principle of mathematical induction.

Take \mathcal{P}_n to be the statement

$$A^n = \left[\begin{array}{cc} 1+6n & 4n \\ -9n & 1-6n \end{array} \right].$$

Then \mathcal{P}_1 asserts that

$$A^{1} = \begin{bmatrix} 1+6\times 1 & 4\times 1\\ -9\times 1 & 1-6\times 1 \end{bmatrix} = \begin{bmatrix} 7 & 4\\ -9 & -5 \end{bmatrix},$$

which is true. Now let $n \geq 1$ and assume that \mathcal{P}_n is true. We have to deduce that

$$A^{n+1} = \begin{bmatrix} 1+6(n+1) & 4(n+1) \\ -9(n+1) & 1-6(n+1) \end{bmatrix} = \begin{bmatrix} 7+6n & 4n+4 \\ -9n-9 & -5-6n \end{bmatrix}.$$

Now

$$A^{n+1} = A^{n}A$$

= $\begin{bmatrix} 1+6n & 4n \\ -9n & 1-6n \end{bmatrix} \begin{bmatrix} 7 & 4 \\ -9 & -5 \end{bmatrix}$
= $\begin{bmatrix} (1+6n)7+(4n)(-9) & (1+6n)4+(4n)(-5) \\ (-9n)7+(1-6n)(-9) & (-9n)4+(1-6n)(-5) \end{bmatrix}$
= $\begin{bmatrix} 7+6n & 4n+4 \\ -9n-9 & -5-6n \end{bmatrix}$,

and "the induction goes through".

The last example has an application to the solution of a system of *re-currence relations*:

EXAMPLE 2.3.2 The following system of recurrence relations holds for all $n \ge 0$:

$$\begin{aligned} x_{n+1} &= 7x_n + 4y_n \\ y_{n+1} &= -9x_n - 5y_n. \end{aligned}$$

Solve the system for x_n and y_n in terms of x_0 and y_0 .

Solution. Combine the above equations into a single matrix equation

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 7 & 4 \\ -9 & -5 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix},$$

or $X_{n+1} = AX_n$, where $A = \begin{bmatrix} 7 & 4 \\ -9 & -5 \end{bmatrix}$ and $X_n = \begin{bmatrix} x_n \\ y_n \end{bmatrix}$.
We see that

$$X_1 = AX_0$$

$$X_2 = AX_1 = A(AX_0) = A^2X_0$$

$$\vdots$$

$$X_n = A^nX_0.$$

(The truth of the equation $X_n = A^n X_0$ for $n \ge 1$, strictly speaking follows by mathematical induction; however for simple cases such as the above, it is customary to omit the strict proof and supply instead a few lines of motivation for the inductive statement.)

Hence the previous example gives

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = X_n = \begin{bmatrix} 1+6n & 4n \\ -9n & 1-6n \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$
$$= \begin{bmatrix} (1+6n)x_0 + (4n)y_0 \\ (-9n)x_0 + (1-6n)y_0 \end{bmatrix},$$

and hence $x_n = (1+6n)x_0 + 4ny_0$ and $y_n = (-9n)x_0 + (1-6n)y_0$, for $n \ge 1$.

2.4 PROBLEMS

1. Let A, B, C, D be matrices defined by

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 1 & 0 \\ -4 & 1 & 3 \end{bmatrix},$$

$$C = \begin{bmatrix} -3 & -1 \\ 2 & 1 \\ 4 & 3 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & -1 \\ 2 & 0 \end{bmatrix}.$$

Which of the following matrices are defined? Compute those matrices which are defined.

$$A+B$$
, $A+C$, AB , BA , CD , DC , D^2 .

[Answers: A + C, BA, CD, D^2 ;

$$\begin{bmatrix} 0 & -1 \\ 1 & 3 \\ 5 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 12 \\ -4 & 2 \\ -10 & 5 \end{bmatrix}, \begin{bmatrix} -14 & 3 \\ 10 & -2 \\ 22 & -4 \end{bmatrix}, \begin{bmatrix} 14 & -4 \\ 8 & -2 \end{bmatrix}.$$

2. Let $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Show that if B is a 3×2 such that $AB = I_2$, then

$$B = \begin{bmatrix} a & b \\ -a - 1 & 1 - b \\ a + 1 & b \end{bmatrix}$$

for suitable numbers a and b. Use the associative law to show that $(BA)^2B = B$.

3. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, prove that $A^2 - (a+d)A + (ad-bc)I_2 = 0$.

4. If $A = \begin{bmatrix} 4 & -3 \\ 1 & 0 \end{bmatrix}$, use the fact $A^2 = 4A - 3I_2$ and mathematical induction, to prove that

$$A^{n} = \frac{(3^{n} - 1)}{2}A + \frac{3 - 3^{n}}{2}I_{2} \quad \text{if } n \ge 1.$$

5. A sequence of numbers $x_1, x_2, \ldots, x_n, \ldots$ satisfies the recurrence relation $x_{n+1} = ax_n + bx_{n-1}$ for $n \ge 1$, where a and b are constants. Prove that

$$\left[\begin{array}{c} x_{n+1} \\ x_n \end{array}\right] = A \left[\begin{array}{c} x_n \\ x_{n-1} \end{array}\right],$$

2.4. PROBLEMS

where $A = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}$ and hence express $\begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix}$ in terms of $\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$. If a = 4 and b = -3, use the previous question to find a formula for x_n in terms of x_1 and x_0 .

[Answer:

$$x_n = \frac{3^n - 1}{2}x_1 + \frac{3 - 3^n}{2}x_0.$$

- 6. Let $A = \begin{bmatrix} 2a & -a^2 \\ 1 & 0 \end{bmatrix}$.
 - (a) Prove that

$$A^{n} = \begin{bmatrix} (n+1)a^{n} & -na^{n+1} \\ na^{n-1} & (1-n)a^{n} \end{bmatrix} \text{ if } n \ge 1.$$

- (b) A sequence $x_0, x_1, \ldots, x_n, \ldots$ satisfies $x_{n+1} = 2ax_n a^2x_{n-1}$ for $n \ge 1$. Use part (a) and the previous question to prove that $x_n = na^{n-1}x_1 + (1-n)a^nx_0$ for $n \ge 1$.
- 7. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and suppose that λ_1 and λ_2 are the roots of the quadratic polynomial $x^2 (a+d)x + ad bc$. (λ_1 and λ_2 may be equal.) Let k_n be defined by $k_0 = 0$, $k_1 = 1$ and for $n \ge 2$

$$k_n = \sum_{i=1}^n \lambda_1^{n-i} \lambda_2^{i-1}.$$

Prove that

$$k_{n+1} = (\lambda_1 + \lambda_2)k_n - \lambda_1\lambda_2k_{n-1}$$

if $n \ge 1$. Also prove that

$$k_n = \begin{cases} (\lambda_1^n - \lambda_2^n)/(\lambda_1 - \lambda_2) & \text{if } \lambda_1 \neq \lambda_2, \\ n\lambda_1^{n-1} & \text{if } \lambda_1 = \lambda_2. \end{cases}$$

Use mathematical induction to prove that if $n \ge 1$,

$$A^n = k_n A - \lambda_1 \lambda_2 k_{n-1} I_2,$$

[Hint: Use the equation $A^2 = (a+d)A - (ad-bc)I_2$.]

8. Use Question 7 to prove that if $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, then

$$A^{n} = \frac{3^{n}}{2} \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix} + \frac{(-1)^{n-1}}{2} \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix}$$

if $n \ge 1$.

9. The Fibonacci numbers are defined by the equations $F_0 = 0$, $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ if $n \ge 1$. Prove that

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

if $n \ge 0$.

10. Let r > 1 be an integer. Let *a* and *b* be arbitrary positive integers. Sequences x_n and y_n of positive integers are defined in terms of *a* and *b* by the recurrence relations

$$\begin{aligned} x_{n+1} &= x_n + ry_n \\ y_{n+1} &= x_n + y_n, \end{aligned}$$

for $n \ge 0$, where $x_0 = a$ and $y_0 = b$.

Use Question 7 to prove that

$$\frac{x_n}{y_n} \to \sqrt{r}$$
 as $n \to \infty$.

2.5 Non-singular matrices

DEFINITION 2.5.1 (Non-singular matrix) A matrix $A \in M_{n \times n}(F)$ is called *non-singular* or *invertible* if there exists a matrix $B \in M_{n \times n}(F)$ such that

$$AB = I_n = BA.$$

Any matrix B with the above property is called an *inverse* of A. If A does not have an inverse, A is called *singular*.

THEOREM 2.5.1 (Inverses are unique) If A has inverses B and C, then B = C.

Proof. Let B and C be inverses of A. Then $AB = I_n = BA$ and $AC = I_n = CA$. Then $B(AC) = BI_n = B$ and $(BA)C = I_nC = C$. Hence because B(AC) = (BA)C, we deduce that B = C.

REMARK 2.5.1 If A has an inverse, it is denoted by A^{-1} . So

$$AA^{-1} = I_n = A^{-1}A.$$

Also if A is non-singular, it follows that A^{-1} is also non-singular and

$$(A^{-1})^{-1} = A.$$

THEOREM 2.5.2 If A and B are non–singular matrices of the same size, then so is AB. Moreover

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Proof.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

Similarly

$$(B^{-1}A^{-1})(AB) = I_n.$$

REMARK 2.5.2 The above result generalizes to a product of m nonsingular matrices: If A_1, \ldots, A_m are non-singular $n \times n$ matrices, then the product $A_1 \ldots A_m$ is also non-singular. Moreover

$$(A_1 \dots A_m)^{-1} = A_m^{-1} \dots A_1^{-1}.$$

(Thus the inverse of the product equals the product of the inverses in the reverse order.)

EXAMPLE 2.5.1 If A and B are $n \times n$ matrices satisfying $A^2 = B^2 = (AB)^2 = I_n$, prove that AB = BA.

Solution. Assume $A^2 = B^2 = (AB)^2 = I_n$. Then A, B, AB are nonsingular and $A^{-1} = A$, $B^{-1} = B$, $(AB)^{-1} = AB$. But $(AB)^{-1} = B^{-1}A^{-1}$ and hence AB = BA.

EXAMPLE 2.5.2 $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$ is singular. For suppose $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an inverse of A. Then the equation $AB = I_2$ gives

 $\left[\begin{array}{rrr}1&2\\4&8\end{array}\right]\left[\begin{array}{rr}a&b\\c&d\end{array}\right] = \left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$

and equating the corresponding elements of column 1 of both sides gives the system

$$\begin{aligned} a+2c &= 1\\ 4a+8c &= 0 \end{aligned}$$

which is clearly inconsistent.

THEOREM 2.5.3 Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\Delta = ad - bc \neq 0$. Then A is non-singular. Also

$$A^{-1} = \Delta^{-1} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

REMARK 2.5.3 The expression ad - bc is called the *determinant* of A and is denoted by the symbols det A or $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

Proof. Verify that the matrix $B = \Delta^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ satisfies the equation $AB = I_2 = BA$.

EXAMPLE 2.5.3 Let

$$A = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 0 & 0 \end{array} \right].$$

Verify that $A^3 = 5I_3$, deduce that A is non-singular and find A^{-1} .

Solution. After verifying that $A^3 = 5I_3$, we notice that

$$A\left(\frac{1}{5}A^2\right) = I_3 = \left(\frac{1}{5}A^2\right)A.$$

Hence A is non-singular and $A^{-1} = \frac{1}{5}A^2$.

THEOREM 2.5.4 If the coefficient matrix A of a system of n equations in n unknowns is non-singular, then the system AX = B has the unique solution $X = A^{-1}B$.

Proof. Assume that A^{-1} exists.

2.5. NON-SINGULAR MATRICES

1. (Uniqueness.) Assume that AX = B. Then

$$(A^{-1}A)X = A^{-1}B,$$

$$I_nX = A^{-1}B,$$

$$X = A^{-1}B.$$

2. (Existence.) Let $X = A^{-1}B$. Then

$$AX = A(A^{-1}B) = (AA^{-1})B = I_nB = B.$$

THEOREM 2.5.5 (Cramer's rule for 2 equations in 2 unknowns) The system

$$ax + by = e$$
$$cx + dy = f$$

has a unique solution if $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$, namely

$$x = \frac{\Delta_1}{\Delta}, \qquad y = \frac{\Delta_2}{\Delta},$$

where

$$\Delta_1 = \begin{vmatrix} e & b \\ f & d \end{vmatrix}$$
 and $\Delta_2 = \begin{vmatrix} a & e \\ c & f \end{vmatrix}$.

Proof. Suppose $\Delta \neq 0$. Then $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has inverse

$$A^{-1} = \Delta^{-1} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

and we know that the system

$$A\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{c} e\\ f\end{array}\right]$$

has the unique solution

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} e \\ f \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} e \\ f \end{bmatrix}$$
$$= \frac{1}{\Delta} \begin{bmatrix} de - bf \\ -ce + af \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \Delta_1 \\ \Delta_2 \end{bmatrix} = \begin{bmatrix} \Delta_1/\Delta \\ \Delta_2/\Delta \end{bmatrix}.$$

Hence $x = \Delta_1 / \Delta$, $y = \Delta_2 / \Delta$.

COROLLARY 2.5.1 The homogeneous system

$$ax + by = 0$$
$$cx + dy = 0$$

has only the trivial solution if $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$

EXAMPLE 2.5.4 The system

$$7x + 8y = 100$$
$$2x - 9y = 10$$

has the unique solution $x = \Delta_1/\Delta, y = \Delta_2/\Delta$, where

$$\Delta = \begin{vmatrix} 7 & 8 \\ 2 & -9 \end{vmatrix} = -79, \quad \Delta_1 = \begin{vmatrix} 100 & 8 \\ 10 & -9 \end{vmatrix} = -980, \quad \Delta_2 = \begin{vmatrix} 7 & 100 \\ 2 & 10 \end{vmatrix} = -130$$

So $x = \frac{980}{79}$ and $y = \frac{130}{79}$.

THEOREM 2.5.6 Let A be a square matrix. If A is non-singular, the homogeneous system AX = 0 has only the trivial solution. Equivalently, if the homogenous system AX = 0 has a non-trivial solution, then A is singular.

Proof. If A is non-singular and AX = 0, then $X = A^{-1}0 = 0$.

REMARK 2.5.4 If A_{*1}, \ldots, A_{*n} denote the columns of A, then the equation

$$AX = x_1 A_{*1} + \ldots + x_n A_{*n}$$

holds. Consequently theorem 2.5.6 tells us that if there exist x_1, \ldots, x_n , not all zero, such that

$$x_1 A_{*1} + \ldots + x_n A_{*n} = 0,$$

that is, if the columns of A are *linearly dependent*, then A is singular. An equivalent way of saying that the columns of A are linearly dependent is that one of the columns of A is expressible as a sum of certain scalar multiples of the remaining columns of A; that is one column is a *linear combination* of the remaining columns.

EXAMPLE 2.5.5

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 3 & 4 & 7 \end{bmatrix}$$

is singular. For it can be verified that A has reduced row-echelon form

$$\left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right]$$

and consequently AX = 0 has a non-trivial solution x = -1, y = -1, z = 1.

REMARK 2.5.5 More generally, if A is row–equivalent to a matrix containing a zero row, then A is singular. For then the homogeneous system AX = 0 has a non–trivial solution.

An important class of non-singular matrices is that of the *elementary* row matrices.

DEFINITION 2.5.2 (Elementary row matrices) To each of the three types of elementary row operation, there corresponds an *elementary row* matrix, denoted by E_{ij} , $E_i(t)$, $E_{ij}(t)$:

- 1. E_{ij} , $(i \neq j)$ is obtained from the identity matrix I_n by interchanging rows *i* and *j*.
- 2. $E_i(t)$, $(t \neq 0)$ is obtained by multiplying the *i*-th row of I_n by t.
- 3. $E_{ij}(t)$, $(i \neq j)$ is obtained from I_n by adding t times the j-th row of I_n to the *i*-th row.

EXAMPLE 2.5.6 (n = 3.)

$$E_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_2(-1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{23}(-1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

The elementary row matrices have the following distinguishing property:

THEOREM 2.5.7 If a matrix A is pre-multiplied by an elementary row matrix, the resulting matrix is the one obtained by performing the corresponding elementary row-operation on A.

•

EXAMPLE 2.5.7

	a	b		1	0	0]	a	b		a	b	
E_{23}	c	d	=	0	0	1	c	d	=	e	f	.
E_{23}	e	<i>f</i> _		0	1	0	e	f		c	d	

COROLLARY 2.5.2 Elementary row-matrices are non-singular. Indeed

1.
$$E_{ij}^{-1} = E_{ij};$$

- 2. $E_i^{-1}(t) = E_i(t^{-1});$
- 3. $(E_{ij}(t))^{-1} = E_{ij}(-t).$

Proof. Taking $A = I_n$ in the above theorem, we deduce the following equations:

EXAMPLE 2.5.8 Find the 3×3 matrix $A = E_3(5)E_{23}(2)E_{12}$ explicitly. Also find A^{-1} .

Solution.

$$A = E_3(5)E_{23}(2) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_3(5) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 5 \end{bmatrix}.$$

To find A^{-1} , we have

$$A^{-1} = (E_3(5)E_{23}(2)E_{12})^{-1}$$

= $E_{12}^{-1}(E_{23}(2))^{-1}(E_3(5))^{-1}$
= $E_{12}E_{23}(-2)E_3(5^{-1})$
= $E_{12}E_{23}(-2)\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$
= $E_{12}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} 0 & 1 & -\frac{2}{5} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$

REMARK 2.5.6 Recall that A and B are row-equivalent if B is obtained from A by a sequence of elementary row operations. If E_1, \ldots, E_r are the respective corresponding elementary row matrices, then

$$B = E_r \left(\dots \left(E_2(E_1 A) \right) \dots \right) = \left(E_r \dots E_1 \right) A = PA,$$

where $P = E_r \dots E_1$ is non-singular. Conversely if B = PA, where P is non-singular, then A is row-equivalent to B. For as we shall now see, P is in fact a product of elementary row matrices.

THEOREM 2.5.8 Let A be non-singular $n \times n$ matrix. Then

- (i) A is row-equivalent to I_n ,
- (ii) A is a product of elementary row matrices.

Proof. Assume that A is non-singular and let B be the reduced row-echelon form of A. Then B has no zero rows, for otherwise the equation AX = 0 would have a non-trivial solution. Consequently $B = I_n$.

It follows that there exist elementary row matrices E_1, \ldots, E_r such that $E_r(\ldots(E_1A)\ldots) = B = I_n$ and hence $A = E_1^{-1}\ldots E_r^{-1}$, a product of elementary row matrices.

THEOREM 2.5.9 Let A be $n \times n$ and suppose that A is row-equivalent to I_n . Then A is non-singular and A^{-1} can be found by performing the same sequence of elementary row operations on I_n as were used to convert A to I_n .

Proof. Suppose that $E_r \ldots E_1 A = I_n$. In other words $BA = I_n$, where $B = E_r \ldots E_1$ is non-singular. Then $B^{-1}(BA) = B^{-1}I_n$ and so $A = B^{-1}$, which is non-singular.

Also $A^{-1} = (B^{-1})^{-1} = B = E_r ((\dots (E_1 I_n) \dots))$, which shows that A^{-1} is obtained from I_n by performing the same sequence of elementary row operations as were used to convert A to I_n .

REMARK 2.5.7 It follows from theorem 2.5.9 that if A is singular, then A is row–equivalent to a matrix whose last row is zero.

EXAMPLE 2.5.9 Show that $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ is non-singular, find A^{-1} and express A as a product of elementary row matrices.

Solution. We form the *partitioned* matrix $[A|I_2]$ which consists of A followed by I_2 . Then any sequence of elementary row operations which reduces A to I_2 will reduce I_2 to A^{-1} . Here

$$[A|I_2] = \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 1 & 1 & | & 0 & 1 \end{bmatrix}$$
$$R_2 \to R_2 - R_1 \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & -1 & | & -1 & 1 \end{bmatrix}$$
$$R_2 \to (-1)R_2 \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & 1 & -1 \end{bmatrix}$$
$$R_1 \to R_1 - 2R_2 \begin{bmatrix} 1 & 0 & | & -1 & 2 \\ 0 & 1 & | & 1 & -1 \end{bmatrix}.$$

Hence A is row-equivalent to I_2 and A is non-singular. Also

$$A^{-1} = \left[\begin{array}{cc} -1 & 2\\ 1 & -1 \end{array} \right].$$

We also observe that

$$E_{12}(-2)E_2(-1)E_{21}(-1)A = I_2.$$

Hence

$$A^{-1} = E_{12}(-2)E_2(-1)E_{21}(-1)$$

$$A = E_{21}(1)E_2(-1)E_{12}(2).$$

The next result is the converse of Theorem 2.5.6 and is useful for proving the non–singularity of certain types of matrices.

THEOREM 2.5.10 Let A be an $n \times n$ matrix with the property that the homogeneous system AX = 0 has only the trivial solution. Then A is non-singular. Equivalently, if A is singular, then the homogeneous system AX = 0 has a non-trivial solution.

Proof. If A is $n \times n$ and the homogeneous system AX = 0 has only the trivial solution, then it follows that the reduced row-echelon form B of A cannot have zero rows and must therefore be I_n . Hence A is non-singular.

COROLLARY 2.5.3 Suppose that A and B are $n \times n$ and $AB = I_n$. Then $BA = I_n$. **Proof.** Let $AB = I_n$, where A and B are $n \times n$. We first show that B is non-singular. Assume BX = 0. Then A(BX) = A0 = 0, so (AB)X = 0, $I_nX = 0$ and hence X = 0.

Then from $AB = I_n$ we deduce $(AB)B^{-1} = I_nB^{-1}$ and hence $A = B^{-1}$. The equation $BB^{-1} = I_n$ then gives $BA = I_n$.

Before we give the next example of the above criterion for non-singularity, we introduce an important matrix operation.

DEFINITION 2.5.3 (The transpose of a matrix) Let A be an $m \times n$ matrix. Then A^t , the *transpose* of A, is the matrix obtained by interchanging the rows and columns of A. In other words if $A = [a_{ij}]$, then $(A^t)_{ji} = a_{ij}$. Consequently A^t is $n \times m$.

The transpose operation has the following properties:

- 1. $(A^t)^t = A;$
- 2. $(A \pm B)^t = A^t \pm B^t$ if A and B are $m \times n$;
- 3. $(sA)^t = sA^t$ if s is a scalar;
- 4. $(AB)^t = B^t A^t$ if A is $m \times n$ and B is $n \times p$;
- 5. If A is non-singular, then A^t is also non-singular and

$$(A^t)^{-1} = (A^{-1})^t;$$

6. $X^{t}X = x_{1}^{2} + \ldots + x_{n}^{2}$ if $X = [x_{1}, \ldots, x_{n}]^{t}$ is a column vector.

We prove only the fourth property. First check that both $(AB)^t$ and B^tA^t have the same size $(p \times m)$. Moreover, corresponding elements of both matrices are equal. For if $A = [a_{ij}]$ and $B = [b_{jk}]$, we have

$$((AB)^{t})_{ki} = (AB)_{ik}$$
$$= \sum_{j=1}^{n} a_{ij} b_{jk}$$
$$= \sum_{j=1}^{n} (B^{t})_{kj} (A^{t})_{ji}$$
$$= (B^{t}A^{t})_{ki}.$$

There are two important classes of matrices that can be defined concisely in terms of the transpose operation. **DEFINITION 2.5.4 (Symmetric matrix)** A matrix A is symmetric if $A^t = A$. In other words A is square $(n \times n \text{ say})$ and $a_{ji} = a_{ij}$ for all $1 \le i \le n, 1 \le j \le n$. Hence

$$A = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right]$$

is a general 2×2 symmetric matrix.

DEFINITION 2.5.5 (Skew-symmetric matrix) A matrix A is called *skew-symmetric* if $A^t = -A$. In other words A is square $(n \times n \text{ say})$ and $a_{ji} = -a_{ij}$ for all $1 \le i \le n, 1 \le j \le n$.

REMARK 2.5.8 Taking i = j in the definition of skew-symmetric matrix gives $a_{ii} = -a_{ii}$ and so $a_{ii} = 0$. Hence

$$A = \left[\begin{array}{cc} 0 & b \\ -b & 0 \end{array} \right]$$

is a general 2×2 skew–symmetric matrix.

We can now state a second application of the above criterion for nonsingularity.

COROLLARY 2.5.4 Let *B* be an $n \times n$ skew-symmetric matrix. Then $A = I_n - B$ is non-singular.

Proof. Let $A = I_n - B$, where $B^t = -B$. By Theorem 2.5.10 it suffices to show that AX = 0 implies X = 0.

We have $(I_n - B)X = 0$, so X = BX. Hence $X^tX = X^tBX$. Taking transposes of both sides gives

$$(X^{t}BX)^{t} = (X^{t}X)^{t}$$
$$X^{t}B^{t}(X^{t})^{t} = X^{t}(X^{t})^{t}$$
$$X^{t}(-B)X = X^{t}X$$
$$-X^{t}BX = X^{t}X = X^{t}BX$$

Hence $X^{t}X = -X^{t}X$ and $X^{t}X = 0$. But if $X = [x_{1}, ..., x_{n}]^{t}$, then $X^{t}X = x_{1}^{2} + ... + x_{n}^{2} = 0$ and hence $x_{1} = 0, ..., x_{n} = 0$.

2.6 Least squares solution of equations

Suppose AX = B represents a system of linear equations with real coefficients which may be inconsistent, because of the possibility of experimental errors in determining A or B. For example, the system

$$\begin{array}{rcl} x &=& 1\\ y &=& 2\\ x+y &=& 3.001 \end{array}$$

is inconsistent.

It can be proved that the associated system $A^tAX = A^tB$ is always consistent and that any solution of this system minimizes the sum $r_1^2 + \ldots + r_m^2$, where r_1, \ldots, r_m (the *residuals*) are defined by

$$r_i = a_{i1}x_1 + \ldots + a_{in}x_n - b_i,$$

for i = 1, ..., m. The equations represented by $A^t A X = A^t B$ are called the *normal equations* corresponding to the system AX = B and any solution of the system of normal equations is called a *least squares* solution of the original system.

EXAMPLE 2.6.1 Find a least squares solution of the above inconsistent system.

Solution. Here
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 2 \\ 3.001 \end{bmatrix}$.
Then $A^t A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
Also $A^t B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3.001 \end{bmatrix} = \begin{bmatrix} 4.001 \\ 5.001 \end{bmatrix}$.
So the normal equations are

$$2x + y = 4.001$$

 $x + 2y = 5.001$

which have the unique solution

$$x = \frac{3.001}{3}, \quad y = \frac{6.001}{3}.$$

EXAMPLE 2.6.2 Points $(x_1, y_1), \ldots, (x_n, y_n)$ are experimentally determined and should lie on a line y = mx + c. Find a least squares solution to the problem.

Solution. The points have to satisfy

$$mx_1 + c = y_1$$

$$\vdots$$

$$mx_n + c = y_n$$

or Ax = B, where

$$A = \begin{bmatrix} x_1 & 1\\ \vdots & \vdots\\ x_n & 1 \end{bmatrix}, X = \begin{bmatrix} m\\ c \end{bmatrix}, B = \begin{bmatrix} y_1\\ \vdots\\ y_n \end{bmatrix}.$$

The normal equations are given by $(A^t A)X = A^t B$. Here

$$A^{t}A = \begin{bmatrix} x_{1} & \dots & x_{n} \\ 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_{1} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} = \begin{bmatrix} x_{1}^{2} + \dots + x_{n}^{2} & x_{1} + \dots + x_{n} \\ x_{1} + \dots + x_{n} & n \end{bmatrix}$$

Also

$$A^{t}B = \begin{bmatrix} x_{1} & \dots & x_{n} \\ 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} + \dots + x_{n}y_{n} \\ y_{1} + \dots + y_{n} \end{bmatrix}.$$

_

It is not difficult to prove that

$$\Delta = \det (A^{t}A) = \sum_{1 \le i < j \le n} (x_{i} - x_{j})^{2},$$

which is positive unless $x_1 = \ldots = x_n$. Hence if not all of x_1, \ldots, x_n are equal, $A^t A$ is non-singular and the normal equations have a unique solution. This can be shown to be

$$m = \frac{1}{\Delta} \sum_{1 \le i < j \le n} (x_i - x_j)(y_i - y_j), \ c = \frac{1}{\Delta} \sum_{1 \le i < j \le n} (x_i y_j - x_j y_i)(x_i - x_j).$$

REMARK 2.6.1 The matrix $A^t A$ is symmetric.

2.7 PROBLEMS

1. Let $A = \begin{bmatrix} 1 & 4 \\ -3 & 1 \end{bmatrix}$. Prove that A is non-singular, find A^{-1} and express A as a product of elementary row matrices.

[Answer: $A^{-1} = \begin{bmatrix} \frac{1}{13} & -\frac{4}{13} \\ \frac{3}{13} & \frac{1}{13} \end{bmatrix}$,

 $A = E_{21}(-3)E_2(13)E_{12}(4)$ is one such decomposition.]

2. A square matrix $D = [d_{ij}]$ is called *diagonal* if $d_{ij} = 0$ for $i \neq j$. (That is the *off-diagonal* elements are zero.) Prove that pre-multiplication of a matrix A by a diagonal matrix D results in matrix DA whose rows are the rows of A multiplied by the respective diagonal elements of D. State and prove a similar result for post-multiplication by a diagonal matrix.

Let diag (a_1, \ldots, a_n) denote the diagonal matrix whose *diagonal* elements d_{ii} are a_1, \ldots, a_n , respectively. Show that

$$\operatorname{diag}(a_1,\ldots,a_n)\operatorname{diag}(b_1,\ldots,b_n)=\operatorname{diag}(a_1b_1,\ldots,a_nb_n)$$

and deduce that if $a_1 \ldots a_n \neq 0$, then diag (a_1, \ldots, a_n) is non-singular and

$$(\operatorname{diag}(a_1,\ldots,a_n))^{-1} = \operatorname{diag}(a_1^{-1},\ldots,a_n^{-1}).$$

Also prove that diag (a_1, \ldots, a_n) is singular if $a_i = 0$ for some *i*.

3. Let $A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 2 & 6 \\ 3 & 7 & 9 \end{bmatrix}$. Prove that A is non-singular, find A^{-1} and

express A as a product of elementary row matrices.

[Answers:
$$A^{-1} = \begin{bmatrix} -12 & 7 & -2 \\ \frac{9}{2} & -3 & 1 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$$
,

 $A = E_{12}E_{31}(3)E_{23}E_3(2)E_{12}(2)E_{13}(24)E_{23}(-9)$ is one such decomposition.]

- 4. Find the rational number k for which the matrix $A = \begin{bmatrix} 1 & 2 & k \\ 3 & -1 & 1 \\ 5 & 3 & -5 \end{bmatrix}$ is singular. [Answer: k = -3.]
- 5. Prove that $A = \begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$ is singular and find a non-singular matrix P such that PA has last row zero.
- 6. If $A = \begin{bmatrix} 1 & 4 \\ -3 & 1 \end{bmatrix}$, verify that $A^2 2A + 13I_2 = 0$ and deduce that $A^{-1} = -\frac{1}{13}(A 2I_2).$
- 7. Let $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 2 & 1 & 2 \end{bmatrix}$.
 - (i) Verify that $A^3 = 3A^2 3A + I_3$.
 - (ii) Express A^4 in terms of A^2 , A and I_3 and hence calculate A^4 explicitly.
 - (iii) Use (i) to prove that A is non-singular and find A^{-1} explicitly.

[Answers: (ii)
$$A^4 = 6A^2 - 8A + 3I_3 = \begin{bmatrix} -11 & -8 & -4 \\ 12 & 9 & 4 \\ 20 & 16 & 5 \end{bmatrix}$$
;
(iii) $A^{-1} = A^2 - 3A + 3I_3 = \begin{bmatrix} -1 & -3 & 1 \\ 2 & 4 & -1 \\ 0 & 1 & 0 \end{bmatrix}$.]

8. (i) Let B be an n×n matrix such that B³ = 0. If A = I_n - B, prove that A is non-singular and A⁻¹ = I_n + B + B².
Show that the system of linear equations AX = b has the solution

$$X = b + Bb + B^2b.$$

(ii) If
$$B = \begin{bmatrix} 0 & r & s \\ 0 & 0 & t \\ 0 & 0 & 0 \end{bmatrix}$$
, verify that $B^3 = 0$ and use (i) to determine $(I_3 - B)^{-1}$ explicitly.

[Answer:
$$\begin{bmatrix} 1 & r & s+rt \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix}$$
.]

- 9. Let A be $n \times n$.
 - (i) If $A^2 = 0$, prove that A is singular.
 - (ii) If $A^2 = A$ and $A \neq I_n$, prove that A is singular.
- 10. Use Question 7 to solve the system of equations

$$\begin{array}{rcl} x+y-z &=& a\\ z &=& b\\ 2x+y+2z &=& c \end{array}$$

where a, b, c are given rationals. Check your answer using the Gauss–Jordan algorithm.

[Answer: x = -a - 3b + c, y = 2a + 4b - c, z = b.]

11. Determine explicitly the following products of 3×3 elementary row matrices.

(i)
$$E_{12}E_{23}$$
 (ii) $E_1(5)E_{12}$ (iii) $E_{12}(3)E_{21}(-3)$ (iv) $(E_1(100))^{-1}$
(v) E_{12}^{-1} (vi) $(E_{12}(7))^{-1}$ (vii) $(E_{12}(7)E_{31}(1))^{-1}$.
[Answers: (i) $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 5 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (iii) $\begin{bmatrix} -8 & 3 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
(iv) $\begin{bmatrix} 1/100 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (v) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (vi) $\begin{bmatrix} 1 & -7 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (vii) $\begin{bmatrix} 1 & -7 & 0 \\ 0 & 1 & 0 \\ -1 & 7 & 1 \end{bmatrix}$.]

12. Let A be the following product of 4×4 elementary row matrices:

$$A = E_3(2)E_{14}E_{42}(3).$$

Find A and A^{-1} explicitly.

$$\begin{bmatrix} \text{Answers:} \ A = \begin{bmatrix} 0 & 3 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \ A^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 1 & -3 & 0 & 0 \end{bmatrix}.$$

13. Determine which of the following matrices over \mathbb{Z}_2 are non-singular and find the inverse, where possible.

	1	1	0	1 -		1	1	0	1		1	1	1	1	1
(a)	0	0	1	1	(1.)	0	1	1	1	. [Answer: (a)	1	0	0	1	
	1	1	1	1	(d)	1	0	1	0	. [Allswei. (a)	1	0	1	0	
	1	0	0	1		1	1	0	1		1	1	1	0	

14. Determine which of the following matrices are non-singular and find the inverse, where possible.

$$(a) \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 2 & 0 & 0 \end{bmatrix} (b) \begin{bmatrix} 2 & 2 & 4 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} (c) \begin{bmatrix} 4 & 6 & -3 \\ 0 & 0 & 7 \\ 0 & 0 & 5 \end{bmatrix}$$

$$(d) \begin{bmatrix} 2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 7 \end{bmatrix} (e) \begin{bmatrix} 1 & 2 & 4 & 6 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix} (f) \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 7 & 9 \end{bmatrix} .$$

$$[Answers: (a) \begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 1 & -1 & -1 \end{bmatrix} (b) \begin{bmatrix} -1/2 & 2 & 1 \\ 0 & 0 & 1 \\ 1/2 & -1 & -1 \end{bmatrix} (d) \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & -1/5 & 0 \\ 0 & 0 & 1/7 \end{bmatrix}$$

$$(e) \begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1/2 \end{bmatrix} .]$$

- 15. Let A be a non-singular $n \times n$ matrix. Prove that A^t is non-singular and that $(A^t)^{-1} = (A^{-1})^t$.
- 16. Prove that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has no inverse if ad bc = 0.

[Hint: Use the equation $A^2 - (a+d)A + (ad-bc)I_2 = 0.$]

- 17. Prove that the real matrix $A = \begin{bmatrix} 1 & a & b \\ -a & 1 & c \\ -b & -c & 1 \end{bmatrix}$ is non-singular by proving that A is row-equivalent to I_3 .
- 18. If $P^{-1}AP = B$, prove that $P^{-1}A^nP = B^n$ for $n \ge 1$.

19. Let
$$A = \begin{bmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 3 \\ -1 & 4 \end{bmatrix}$. Verify that $P^{-1}AP = \begin{bmatrix} 5/12 & 0 \\ 0 & 1 \end{bmatrix}$ and deduce that
$$A^{n} = \frac{1}{7} \begin{bmatrix} 3 & 3 \\ 4 & 4 \end{bmatrix} + \frac{1}{7} \left(\frac{5}{12}\right)^{n} \begin{bmatrix} 4 & -3 \\ -4 & 3 \end{bmatrix}.$$

20. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a *Markov* matrix; that is a matrix whose elements are non-negative and satisfy a+c = 1 = b+d. Also let $P = \begin{bmatrix} b & 1 \\ c & -1 \end{bmatrix}$. Prove that if $A \neq I_2$ then

(i) P is non–singular and $P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & a+d-1 \end{bmatrix}$, (ii) $A^n \to \frac{1}{b+c} \begin{bmatrix} b & b \\ c & c \end{bmatrix}$ as $n \to \infty$, if $A \neq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

21. If
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 and $Y = \begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix}$, find XX^t, X^tX, YY^t, Y^tY .
[Answers: $\begin{bmatrix} 5 & 11 & 17 \\ 11 & 25 & 39 \\ 17 & 39 & 61 \end{bmatrix}$, $\begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix}$, $\begin{bmatrix} 1 & -3 & -4 \\ -3 & 9 & 12 \\ -4 & 12 & 16 \end{bmatrix}$, 26.]

22. Prove that the system of linear equations

is inconsistent and find a least squares solution of the system. [Answer: x = 6, y = -7/6.]

23. The points (0, 0), (1, 0), (2, -1), (3, 4), (4, 8) are required to lie on a parabola $y = a + bx + cx^2$. Find a least squares solution for a, b, c. Also prove that no parabola passes through these points.

[Answer: $a = \frac{1}{5}, b = -2, c = 1.$]

- 24. If A is a symmetric $n \times n$ real matrix and B is $n \times m$, prove that $B^t A B$ is a symmetric $m \times m$ matrix.
- 25. If A is $m \times n$ and B is $n \times m$, prove that AB is singular if m > n.
- 26. Let A and B be $n \times n$. If A or B is singular, prove that AB is also singular.