Chapter 2

MATRICES

2.1 Matrix arithmetic

A matrix over a field F is a rectangular array of elements from F. The symbol $M_{m \times n}(F)$ denotes the collection of all $m \times n$ matrices over F. Matrices will usually be denoted by capital letters and the equation $A=\left[a_{i j}\right]$ means that the element in the i-th row and j-th column of the matrix A equals $a_{i j}$. It is also occasionally convenient to write $a_{i j}=(A)_{i j}$. For the present, all matrices will have rational entries, unless otherwise stated.

EXAMPLE 2.1.1 The formula $a_{i j}=1 /(i+j)$ for $1 \leq i \leq 3,1 \leq j \leq 4$ defines a 3×4 matrix $A=\left[a_{i j}\right]$, namely

$$
A=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right]
$$

DEFINITION 2.1.1 (Equality of matrices) Matrices A, B are said to be equal if A and B have the same size and corresponding elements are equal; i.e., A and $B \in M_{m \times n}(F)$ and $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$, with $a_{i j}=b_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq n$.

DEFINITION 2.1.2 (Addition of matrices) Let $A=\left[a_{i j}\right]$ and $B=$ $\left[b_{i j}\right]$ be of the same size. Then $A+B$ is the matrix obtained by adding corresponding elements of A and B; that is

$$
A+B=\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right] .
$$

DEFINITION 2.1.3 (Scalar multiple of a matrix) Let $A=\left[a_{i j}\right]$ and $t \in F$ (that is t is a scalar). Then $t A$ is the matrix obtained by multiplying all elements of A by t; that is

$$
t A=t\left[a_{i j}\right]=\left[t a_{i j}\right] .
$$

DEFINITION 2.1.4 (Additive inverse of a matrix) Let $A=\left[a_{i j}\right]$. Then $-A$ is the matrix obtained by replacing the elements of A by their additive inverses; that is

$$
-A=-\left[a_{i j}\right]=\left[-a_{i j}\right] .
$$

DEFINITION 2.1.5 (Subtraction of matrices) Matrix subtraction is defined for two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of the same size, in the usual way; that is

$$
A-B=\left[a_{i j}\right]-\left[b_{i j}\right]=\left[a_{i j}-b_{i j}\right] .
$$

DEFINITION 2.1.6 (The zero matrix) For each m, n the matrix in $M_{m \times n}(F)$, all of whose elements are zero, is called the zero matrix (of size $m \times n)$ and is denoted by the symbol 0 .

The matrix operations of addition, scalar multiplication, additive inverse and subtraction satisfy the usual laws of arithmetic. (In what follows, s and t will be arbitrary scalars and A, B, C are matrices of the same size.)

1. $(A+B)+C=A+(B+C)$;
2. $A+B=B+A$;
3. $0+A=A$;
4. $A+(-A)=0$;
5. $(s+t) A=s A+t A, \quad(s-t) A=s A-t A$;
6. $t(A+B)=t A+t B, \quad t(A-B)=t A-t B$;
7. $s(t A)=(s t) A$;
8. $1 A=A, \quad 0 A=0, \quad(-1) A=-A$;
9. $t A=0 \Rightarrow t=0$ or $A=0$.

Other similar properties will be used when needed.

DEFINITION 2.1.7 (Matrix product) Let $A=\left[a_{i j}\right]$ be a matrix of size $m \times n$ and $B=\left[b_{j k}\right]$ be a matrix of size $n \times p$; (that is the number of columns of A equals the number of rows of B). Then $A B$ is the $m \times p$ matrix $C=\left[c_{i k}\right]$ whose $(i, k)-$ th element is defined by the formula

$$
c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}=a_{i 1} b_{1 k}+\cdots+a_{i n} b_{n k}
$$

EXAMPLE 2.1.2

1. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=\left[\begin{array}{ll}1 \times 5+2 \times 7 & 1 \times 6+2 \times 8 \\ 3 \times 5+4 \times 7 & 3 \times 6+4 \times 8\end{array}\right]=\left[\begin{array}{ll}19 & 22 \\ 43 & 50\end{array}\right]$;
2. $\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}23 & 34 \\ 31 & 46\end{array}\right] \neq\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5 & 6 \\ 7 & 8\end{array}\right] ;$
3. $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{ll}3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 4 \\ 6 & 8\end{array}\right]$;
4. $\left[\begin{array}{ll}3 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=[11]$;
5. $\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Matrix multiplication obeys many of the familiar laws of arithmetic apart from the commutative law.

1. $(A B) C=A(B C)$ if A, B, C are $m \times n, n \times p, p \times q$, respectively;
2. $t(A B)=(t A) B=A(t B), \quad A(-B)=(-A) B=-(A B)$;
3. $(A+B) C=A C+B C$ if A and B are $m \times n$ and C is $n \times p$;
4. $D(A+B)=D A+D B$ if A and B are $m \times n$ and D is $p \times m$.

We prove the associative law only:
First observe that $(A B) C$ and $A(B C)$ are both of size $m \times q$.
Let $A=\left[a_{i j}\right], B=\left[b_{j k}\right], C=\left[c_{k l}\right]$. Then

$$
\begin{aligned}
((A B) C)_{i l} & =\sum_{k=1}^{p}(A B)_{i k} c_{k l}=\sum_{k=1}^{p}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) c_{k l} \\
& =\sum_{k=1}^{p} \sum_{j=1}^{n} a_{i j} b_{j k} c_{k l}
\end{aligned}
$$

Similarly

$$
(A(B C))_{i l}=\sum_{j=1}^{n} \sum_{k=1}^{p} a_{i j} b_{j k} c_{k l}
$$

However the double summations are equal. For sums of the form

$$
\sum_{j=1}^{n} \sum_{k=1}^{p} d_{j k} \quad \text { and } \quad \sum_{k=1}^{p} \sum_{j=1}^{n} d_{j k}
$$

represent the sum of the $n p$ elements of the rectangular array $\left[d_{j k}\right]$, by rows and by columns, respectively. Consequently

$$
((A B) C)_{i l}=(A(B C))_{i l}
$$

for $1 \leq i \leq m, 1 \leq l \leq q$. Hence $(A B) C=A(B C)$.
The system of m linear equations in n unknowns

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

is equivalent to a single matrix equation

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{r}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

that is $A X=B$, where $A=\left[a_{i j}\right]$ is the coefficient matrix of the system,
$X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is the vector of unknowns and $B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right]$ is the vector of constants.

Another useful matrix equation equivalent to the above system of linear equations is

$$
x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

EXAMPLE 2.1.3 The system

$$
\begin{aligned}
& x+y+z=1 \\
& x-y+z=0
\end{aligned}
$$

is equivalent to the matrix equation

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

and to the equation

$$
x\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+z\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

2.2 Linear transformations

An n-dimensional column vector is an $n \times 1$ matrix over F. The collection of all n-dimensional column vectors is denoted by F^{n}.

Every matrix is associated with an important type of function called a linear transformation.

DEFINITION 2.2.1 (Linear transformation) We can associate with $A \in M_{m \times n}(F)$, the function $T_{A}: F^{n} \rightarrow F^{m}$, defined by $T_{A}(X)=A X$ for all $X \in F^{n}$. More explicitly, using components, the above function takes the form

$$
\begin{aligned}
y_{1} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
y_{2} & =a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
& \vdots \\
y_{m} & =a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{aligned}
$$

where $y_{1}, y_{2}, \cdots, y_{m}$ are the components of the column vector $T_{A}(X)$.
The function just defined has the property that

$$
\begin{equation*}
T_{A}(s X+t Y)=s T_{A}(X)+t T_{A}(Y) \tag{2.1}
\end{equation*}
$$

for all $s, t \in F$ and all n-dimensional column vectors X, Y. For

$$
T_{A}(s X+t Y)=A(s X+t Y)=s(A X)+t(A Y)=s T_{A}(X)+t T_{A}(Y)
$$

REMARK 2.2.1 It is easy to prove that if $T: F^{n} \rightarrow F^{m}$ is a function satisfying equation 2.1, then $T=T_{A}$, where A is the $m \times n$ matrix whose columns are $T\left(E_{1}\right), \ldots, T\left(E_{n}\right)$, respectively, where E_{1}, \ldots, E_{n} are the $n-$ dimensional unit vectors defined by

$$
E_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \ldots \quad, E_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

One well-known example of a linear transformation arises from rotating the (x, y)-plane in 2-dimensional Euclidean space, anticlockwise through θ radians. Here a point (x, y) will be transformed into the point $\left(x_{1}, y_{1}\right)$, where

$$
\begin{aligned}
& x_{1}=x \cos \theta-y \sin \theta \\
& y_{1}=x \sin \theta+y \cos \theta .
\end{aligned}
$$

In 3-dimensional Euclidean space, the equations

$$
\begin{aligned}
& x_{1}=x \cos \theta-y \sin \theta, y_{1}=x \sin \theta+y \cos \theta, z_{1}=z \\
& x_{1}=x, y_{1}=y \cos \phi-z \sin \phi, z_{1}=y \sin \phi+z \cos \phi \\
& x_{1}=x \cos \psi+z \sin \psi, y_{1}=y, z_{1}=-x \sin \psi+z \cos \psi
\end{aligned}
$$

correspond to rotations about the positive z, x and y axes, anticlockwise through θ, ϕ, ψ radians, respectively.

The product of two matrices is related to the product of the corresponding linear transformations:

If A is $m \times n$ and B is $n \times p$, then the function $T_{A} T_{B}: F^{p} \rightarrow F^{m}$, obtained by first performing T_{B}, then T_{A} is in fact equal to the linear transformation $T_{A B}$. For if $X \in F^{p}$, we have

$$
T_{A} T_{B}(X)=A(B X)=(A B) X=T_{A B}(X) .
$$

The following example is useful for producing rotations in 3-dimensional animated design. (See [27, pages 97-112].)

EXAMPLE 2.2.1 The linear transformation resulting from successively rotating 3 -dimensional space about the positive z, x, y-axes, anticlockwise through θ, ϕ, ψ radians respectively, is equal to $T_{A B C}$, where

Figure 2.1: Reflection in a line.

$$
\begin{aligned}
C & =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right] . \\
A & =\left[\begin{array}{ccc}
\cos \psi & 0 & \sin \psi \\
0 & 1 & 0 \\
-\sin \psi & 0 & \cos \psi
\end{array}\right] .
\end{aligned}
$$

The matrix $A B C$ is quite complicated:

$$
\begin{aligned}
& A(B C)=\left[\begin{array}{ccc}
\cos \psi & 0 & \sin \psi \\
0 & 1 & 0 \\
-\sin \psi & 0 & \cos \psi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\cos \phi \sin \theta & \cos \phi \cos \theta & -\sin \phi \\
\sin \phi \sin \theta & \sin \phi \cos \theta & \cos \phi
\end{array}\right] \\
&=\left[\begin{array}{ccc}
\cos \psi \cos \theta+\sin \psi \sin \phi \sin \theta & -\cos \psi \sin \theta+\sin \psi \sin \phi \cos \theta & \sin \psi \cos \phi \\
\cos \phi \sin \theta & \cos \phi \cos \theta & -\sin \phi \\
-\sin \psi \cos \theta+\cos \psi \sin \phi \sin \theta & \sin \psi \sin \theta+\cos \psi \sin \phi \cos \theta & \cos \psi \cos \phi
\end{array}\right] .
\end{aligned}
$$

EXAMPLE 2.2.2 Another example from geometry is reflection of the plane in a line l inclined at an angle θ to the positive x-axis.

We reduce the problem to the simpler case $\theta=0$, where the equations of transformation are $x_{1}=x, y_{1}=-y$. First rotate the plane clockwise through θ radians, thereby taking l into the x-axis; next reflect the plane in the x-axis; then rotate the plane anticlockwise through θ radians, thereby restoring l to its original position.

Figure 2.2: Projection on a line.

In terms of matrices, we get transformation equations

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] } & =\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
\end{aligned}
$$

The more general transformation

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=a\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad a>0
$$

represents a rotation, followed by a scaling and then by a translation. Such transformations are important in computer graphics. See [23, 24].

EXAMPLE 2.2.3 Our last example of a geometrical linear transformation arises from projecting the plane onto a line l through the origin, inclined at angle θ to the positive x-axis. Again we reduce that problem to the simpler case where l is the x-axis and the equations of transformation are $x_{1}=x, y_{1}=0$.

In terms of matrices, we get transformation equations

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{rr}
\cos \theta & 0 \\
\sin \theta & 0
\end{array}\right]\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

2.3 Recurrence relations

DEFINITION 2.3.1 (The identity matrix) The $n \times n$ matrix $I_{n}=$ [$\delta_{i j}$], defined by $\delta_{i j}=1$ if $i=j, \delta_{i j}=0$ if $i \neq j$, is called the $n \times n$ identity matrix of order n. In other words, the columns of the identity matrix of order n are the unit vectors E_{1}, \cdots, E_{n}, respectively.

$$
\text { For example, } I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

THEOREM 2.3.1 If A is $m \times n$, then $I_{m} A=A=A I_{n}$.
DEFINITION 2.3.2 (k - th power of a matrix) If A is an $n \times n$ matrix, we define A^{k} recursively as follows: $A^{0}=I_{n}$ and $A^{k+1}=A^{k} A$ for $k \geq 0$.

For example $A^{1}=A^{0} A=I_{n} A=A$ and hence $A^{2}=A^{1} A=A A$.
The usual index laws hold provided $A B=B A$:

1. $A^{m} A^{n}=A^{m+n}, \quad\left(A^{m}\right)^{n}=A^{m n}$;
2. $(A B)^{n}=A^{n} B^{n}$;
3. $A^{m} B^{n}=B^{n} A^{m}$;
4. $(A+B)^{2}=A^{2}+2 A B+B^{2}$;
5. $(A+B)^{n}=\sum_{i=0}^{n}\binom{n}{i} A^{i} B^{n-i}$;
6. $(A+B)(A-B)=A^{2}-B^{2}$.

We now state a basic property of the natural numbers.
AXIOM 2.3.1 (MATHEMATICAL INDUCTION) If \mathcal{P}_{n} denotes a mathematical statement for each $n \geq 1$, satisfying
(i) \mathcal{P}_{1} is true,
(ii) the truth of \mathcal{P}_{n} implies that of \mathcal{P}_{n+1} for each $n \geq 1$,
then \mathcal{P}_{n} is true for all $n \geq 1$.
EXAMPLE 2.3.1 Let $A=\left[\begin{array}{rr}7 & 4 \\ -9 & -5\end{array}\right]$. Prove that

$$
A^{n}=\left[\begin{array}{cc}
1+6 n & 4 n \\
-9 n & 1-6 n
\end{array}\right] \quad \text { if } n \geq 1
$$

Solution. We use the principle of mathematical induction.
Take \mathcal{P}_{n} to be the statement

$$
A^{n}=\left[\begin{array}{cc}
1+6 n & 4 n \\
-9 n & 1-6 n
\end{array}\right]
$$

Then \mathcal{P}_{1} asserts that

$$
A^{1}=\left[\begin{array}{cc}
1+6 \times 1 & 4 \times 1 \\
-9 \times 1 & 1-6 \times 1
\end{array}\right]=\left[\begin{array}{rr}
7 & 4 \\
-9 & -5
\end{array}\right]
$$

which is true. Now let $n \geq 1$ and assume that \mathcal{P}_{n} is true. We have to deduce that

$$
A^{n+1}=\left[\begin{array}{cc}
1+6(n+1) & 4(n+1) \\
-9(n+1) & 1-6(n+1)
\end{array}\right]=\left[\begin{array}{cc}
7+6 n & 4 n+4 \\
-9 n-9 & -5-6 n
\end{array}\right]
$$

Now

$$
\begin{aligned}
A^{n+1} & =A^{n} A \\
& =\left[\begin{array}{cc}
1+6 n & 4 n \\
-9 n & 1-6 n
\end{array}\right]\left[\begin{array}{rr}
7 & 4 \\
-9 & -5
\end{array}\right] \\
& =\left[\begin{array}{cc}
(1+6 n) 7+(4 n)(-9) & (1+6 n) 4+(4 n)(-5) \\
(-9 n) 7+(1-6 n)(-9) & (-9 n) 4+(1-6 n)(-5)
\end{array}\right] \\
& =\left[\begin{array}{cc}
7+6 n & 4 n+4 \\
-9 n-9 & -5-6 n
\end{array}\right]
\end{aligned}
$$

and "the induction goes through".
The last example has an application to the solution of a system of recurrence relations:

EXAMPLE 2.3.2 The following system of recurrence relations holds for all $n \geq 0$:

$$
\begin{aligned}
x_{n+1} & =7 x_{n}+4 y_{n} \\
y_{n+1} & =-9 x_{n}-5 y_{n}
\end{aligned}
$$

Solve the system for x_{n} and y_{n} in terms of x_{0} and y_{0}.
Solution. Combine the above equations into a single matrix equation

$$
\left[\begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{rr}
7 & 4 \\
-9 & -5
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right],
$$

or $X_{n+1}=A X_{n}$, where $A=\left[\begin{array}{rr}7 & 4 \\ -9 & -5\end{array}\right]$ and $X_{n}=\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right]$.
We see that

$$
\begin{aligned}
X_{1} & =A X_{0} \\
X_{2} & =A X_{1}=A\left(A X_{0}\right)=A^{2} X_{0} \\
& \vdots \\
X_{n} & =A^{n} X_{0} .
\end{aligned}
$$

(The truth of the equation $X_{n}=A^{n} X_{0}$ for $n \geq 1$, strictly speaking follows by mathematical induction; however for simple cases such as the above, it is customary to omit the strict proof and supply instead a few lines of motivation for the inductive statement.)

Hence the previous example gives

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=X_{n} } & =\left[\begin{array}{cc}
1+6 n & 4 n \\
-9 n & 1-6 n
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =\left[\begin{array}{c}
(1+6 n) x_{0}+(4 n) y_{0} \\
(-9 n) x_{0}+(1-6 n) y_{0}
\end{array}\right],
\end{aligned}
$$

and hence $x_{n}=(1+6 n) x_{0}+4 n y_{0}$ and $y_{n}=(-9 n) x_{0}+(1-6 n) y_{0}$, for $n \geq 1$.

2.4 PROBLEMS

1. Let A, B, C, D be matrices defined by

$$
A=\left[\begin{array}{rr}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 1 & 0 \\
-4 & 1 & 3
\end{array}\right]
$$

$$
C=\left[\begin{array}{rr}
-3 & -1 \\
2 & 1 \\
4 & 3
\end{array}\right], \quad D=\left[\begin{array}{rr}
4 & -1 \\
2 & 0
\end{array}\right]
$$

Which of the following matrices are defined? Compute those matrices which are defined.

$$
A+B, A+C, A B, B A, C D, D C, D^{2}
$$

[Answers: $A+C, B A, C D, D^{2}$;

$$
\left.\left[\begin{array}{rr}
0 & -1 \\
1 & 3 \\
5 & 4
\end{array}\right], \quad\left[\begin{array}{rr}
0 & 12 \\
-4 & 2 \\
-10 & 5
\end{array}\right], \quad\left[\begin{array}{rr}
-14 & 3 \\
10 & -2 \\
22 & -4
\end{array}\right], \quad\left[\begin{array}{rr}
14 & -4 \\
8 & -2
\end{array}\right] \cdot\right]
$$

2. Let $A=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$. Show that if B is a 3×2 such that $A B=I_{2}$, then

$$
B=\left[\begin{array}{cc}
a & b \\
-a-1 & 1-b \\
a+1 & b
\end{array}\right]
$$

for suitable numbers a and b. Use the associative law to show that $(B A)^{2} B=B$.
3. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, prove that $A^{2}-(a+d) A+(a d-b c) I_{2}=0$.
4. If $A=\left[\begin{array}{rr}4 & -3 \\ 1 & 0\end{array}\right]$, use the fact $A^{2}=4 A-3 I_{2}$ and mathematical induction, to prove that

$$
A^{n}=\frac{\left(3^{n}-1\right)}{2} A+\frac{3-3^{n}}{2} I_{2} \quad \text { if } n \geq 1
$$

5. A sequence of numbers $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ satisfies the recurrence relation $x_{n+1}=a x_{n}+b x_{n-1}$ for $n \geq 1$, where a and b are constants. Prove that

$$
\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right]=A\left[\begin{array}{c}
x_{n} \\
x_{n-1}
\end{array}\right]
$$

where $A=\left[\begin{array}{cc}a & b \\ 1 & 0\end{array}\right]$ and hence express $\left[\begin{array}{c}x_{n+1} \\ x_{n}\end{array}\right]$ in terms of $\left[\begin{array}{l}x_{1} \\ x_{0}\end{array}\right]$. If $a=4$ and $b=-3$, use the previous question to find a formula for x_{n} in terms of x_{1} and x_{0}.
[Answer:

$$
\left.x_{n}=\frac{3^{n}-1}{2} x_{1}+\frac{3-3^{n}}{2} x_{0} .\right]
$$

6. Let $A=\left[\begin{array}{cc}2 a & -a^{2} \\ 1 & 0\end{array}\right]$.
(a) Prove that

$$
A^{n}=\left[\begin{array}{cc}
(n+1) a^{n} & -n a^{n+1} \\
n a^{n-1} & (1-n) a^{n}
\end{array}\right] \quad \text { if } n \geq 1
$$

(b) A sequence $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ satisfies $x_{n+1}=2 a x_{n}-a^{2} x_{n-1}$ for $n \geq 1$. Use part (a) and the previous question to prove that $x_{n}=n a^{n-1} x_{1}+(1-n) a^{n} x_{0}$ for $n \geq 1$.
7. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and suppose that λ_{1} and λ_{2} are the roots of the quadratic polynomial $x^{2}-(a+d) x+a d-b c$. (λ_{1} and λ_{2} may be equal.) Let k_{n} be defined by $k_{0}=0, k_{1}=1$ and for $n \geq 2$

$$
k_{n}=\sum_{i=1}^{n} \lambda_{1}^{n-i} \lambda_{2}^{i-1}
$$

Prove that

$$
k_{n+1}=\left(\lambda_{1}+\lambda_{2}\right) k_{n}-\lambda_{1} \lambda_{2} k_{n-1}
$$

if $n \geq 1$. Also prove that

$$
k_{n}= \begin{cases}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) /\left(\lambda_{1}-\lambda_{2}\right) & \text { if } \lambda_{1} \neq \lambda_{2} \\ n \lambda_{1}^{n-1} & \text { if } \lambda_{1}=\lambda_{2}\end{cases}
$$

Use mathematical induction to prove that if $n \geq 1$,

$$
A^{n}=k_{n} A-\lambda_{1} \lambda_{2} k_{n-1} I_{2}
$$

[Hint: Use the equation $A^{2}=(a+d) A-(a d-b c) I_{2}$.]
8. Use Question 7 to prove that if $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then

$$
A^{n}=\frac{3^{n}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{(-1)^{n-1}}{2}\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

if $n \geq 1$.
9. The Fibonacci numbers are defined by the equations $F_{0}=0, F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ if $n \geq 1$. Prove that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

if $n \geq 0$.
10. Let $r>1$ be an integer. Let a and b be arbitrary positive integers. Sequences x_{n} and y_{n} of positive integers are defined in terms of a and b by the recurrence relations

$$
\begin{aligned}
x_{n+1} & =x_{n}+r y_{n} \\
y_{n+1} & =x_{n}+y_{n}
\end{aligned}
$$

for $n \geq 0$, where $x_{0}=a$ and $y_{0}=b$.
Use Question 7 to prove that

$$
\frac{x_{n}}{y_{n}} \rightarrow \sqrt{r} \quad \text { as } n \rightarrow \infty
$$

2.5 Non-singular matrices

DEFINITION 2.5.1 (Non-singular matrix) A matrix $A \in M_{n \times n}(F)$ is called non-singular or invertible if there exists a matrix $B \in M_{n \times n}(F)$ such that

$$
A B=I_{n}=B A
$$

Any matrix B with the above property is called an inverse of A. If A does not have an inverse, A is called singular.

THEOREM 2.5.1 (Inverses are unique) If A has inverses B and C, then $B=C$.

Proof. Let B and C be inverses of A. Then $A B=I_{n}=B A$ and $A C=$ $I_{n}=C A$. Then $B(A C)=B I_{n}=B$ and $(B A) C=I_{n} C=C$. Hence because $B(A C)=(B A) C$, we deduce that $B=C$.

REMARK 2.5.1 If A has an inverse, it is denoted by A^{-1}. So

$$
A A^{-1}=I_{n}=A^{-1} A
$$

Also if A is non-singular, it follows that A^{-1} is also non-singular and

$$
\left(A^{-1}\right)^{-1}=A
$$

THEOREM 2.5.2 If A and B are non-singular matrices of the same size, then so is $A B$. Moreover

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Proof.

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I_{n} A^{-1}=A A^{-1}=I_{n}
$$

Similarly

$$
\left(B^{-1} A^{-1}\right)(A B)=I_{n}
$$

REMARK 2.5.2 The above result generalizes to a product of m nonsingular matrices: If A_{1}, \ldots, A_{m} are non-singular $n \times n$ matrices, then the product $A_{1} \ldots A_{m}$ is also non-singular. Moreover

$$
\left(A_{1} \ldots A_{m}\right)^{-1}=A_{m}^{-1} \ldots A_{1}^{-1}
$$

(Thus the inverse of the product equals the product of the inverses in the reverse order.)

EXAMPLE 2.5.1 If A and B are $n \times n$ matrices satisfying $A^{2}=B^{2}=$ $(A B)^{2}=I_{n}$, prove that $A B=B A$.

Solution. Assume $A^{2}=B^{2}=(A B)^{2}=I_{n}$. Then $A, B, A B$ are nonsingular and $A^{-1}=A, B^{-1}=B,(A B)^{-1}=A B$.

But $(A B)^{-1}=B^{-1} A^{-1}$ and hence $A B=B A$.
EXAMPLE 2.5.2 $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right]$ is singular. For suppose $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an inverse of A. Then the equation $A B=I_{2}$ gives

$$
\left[\begin{array}{ll}
1 & 2 \\
4 & 8
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and equating the corresponding elements of column 1 of both sides gives the system

$$
\begin{array}{r}
a+2 c=1 \\
4 a+8 c=0
\end{array}
$$

which is clearly inconsistent.
THEOREM 2.5.3 Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\Delta=a d-b c \neq 0$. Then A is non-singular. Also

$$
A^{-1}=\Delta^{-1}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

REMARK 2.5.3 The expression $a d-b c$ is called the determinant of A and is denoted by the symbols $\operatorname{det} A$ or $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$.

Proof. Verify that the matrix $B=\Delta^{-1}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ satisfies the equation $A B=I_{2}=B A$.

EXAMPLE 2.5.3 Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
5 & 0 & 0
\end{array}\right]
$$

Verify that $A^{3}=5 I_{3}$, deduce that A is non-singular and find A^{-1}.
Solution. After verifying that $A^{3}=5 I_{3}$, we notice that

$$
A\left(\frac{1}{5} A^{2}\right)=I_{3}=\left(\frac{1}{5} A^{2}\right) A
$$

Hence A is non-singular and $A^{-1}=\frac{1}{5} A^{2}$.
THEOREM 2.5.4 If the coefficient matrix A of a system of n equations in n unknowns is non-singular, then the system $A X=B$ has the unique solution $X=A^{-1} B$.

Proof. Assume that A^{-1} exists.

1. (Uniqueness.) Assume that $A X=B$. Then

$$
\begin{aligned}
\left(A^{-1} A\right) X & =A^{-1} B \\
I_{n} X & =A^{-1} B \\
X & =A^{-1} B
\end{aligned}
$$

2. (Existence.) Let $X=A^{-1} B$. Then

$$
A X=A\left(A^{-1} B\right)=\left(A A^{-1}\right) B=I_{n} B=B
$$

THEOREM 2.5.5 (Cramer's rule for 2 equations in 2 unknowns)
The system

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

has a unique solution if $\Delta=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right| \neq 0$, namely

$$
x=\frac{\Delta_{1}}{\Delta}, \quad y=\frac{\Delta_{2}}{\Delta}
$$

where

$$
\Delta_{1}=\left|\begin{array}{cc}
e & b \\
f & d
\end{array}\right| \quad \text { and } \quad \Delta_{2}=\left|\begin{array}{cc}
a & e \\
c & f
\end{array}\right|
$$

Proof. Suppose $\Delta \neq 0$. Then $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has inverse

$$
A^{-1}=\Delta^{-1}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

and we know that the system

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

has the unique solution

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=A^{-1}\left[\begin{array}{l}
e \\
f
\end{array}\right] } & =\frac{1}{\Delta}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
e \\
f
\end{array}\right] \\
& =\frac{1}{\Delta}\left[\begin{array}{r}
d e-b f \\
-c e+a f
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right]=\left[\begin{array}{c}
\Delta_{1} / \Delta \\
\Delta_{2} / \Delta
\end{array}\right]
\end{aligned}
$$

Hence $x=\Delta_{1} / \Delta, y=\Delta_{2} / \Delta$.

COROLLARY 2.5.1 The homogeneous system

$$
\begin{aligned}
& a x+b y=0 \\
& c x+d y=0
\end{aligned}
$$

has only the trivial solution if $\Delta=\left|\begin{array}{cc}a & b \\ c & d\end{array}\right| \neq 0$.
EXAMPLE 2.5.4 The system

$$
\begin{aligned}
& 7 x+8 y=100 \\
& 2 x-9 y=10
\end{aligned}
$$

has the unique solution $x=\Delta_{1} / \Delta, y=\Delta_{2} / \Delta$, where

$$
\Delta=\left|\begin{array}{rr}
7 & 8 \\
2 & -9
\end{array}\right|=-79, \quad \Delta_{1}=\left|\begin{array}{rr}
100 & 8 \\
10 & -9
\end{array}\right|=-980, \quad \Delta_{2}=\left|\begin{array}{rr}
7 & 100 \\
2 & 10
\end{array}\right|=-130 .
$$

So $x=\frac{980}{79}$ and $y=\frac{130}{79}$.
THEOREM 2.5.6 Let A be a square matrix. If A is non-singular, the homogeneous system $A X=0$ has only the trivial solution. Equivalently, if the homogenous system $A X=0$ has a non-trivial solution, then A is singular.

Proof. If A is non-singular and $A X=0$, then $X=A^{-1} 0=0$.
REMARK 2.5.4 If $A_{* 1}, \ldots, A_{* n}$ denote the columns of A, then the equation

$$
A X=x_{1} A_{* 1}+\ldots+x_{n} A_{* n}
$$

holds. Consequently theorem 2.5.6 tells us that if there exist x_{1}, \ldots, x_{n}, not all zero, such that

$$
x_{1} A_{* 1}+\ldots+x_{n} A_{* n}=0
$$

that is, if the columns of A are linearly dependent, then A is singular. An equivalent way of saying that the columns of A are linearly dependent is that one of the columns of A is expressible as a sum of certain scalar multiples of the remaining columns of A; that is one column is a linear combination of the remaining columns.

EXAMPLE 2.5.5

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1 \\
3 & 4 & 7
\end{array}\right]
$$

is singular. For it can be verified that A has reduced row-echelon form

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and consequently $A X=0$ has a non-trivial solution $x=-1, y=-1, z=1$.
REMARK 2.5.5 More generally, if A is row-equivalent to a matrix containing a zero row, then A is singular. For then the homogeneous system $A X=0$ has a non-trivial solution.

An important class of non-singular matrices is that of the elementary row matrices.

DEFINITION 2.5.2 (Elementary row matrices) To each of the three types of elementary row operation, there corresponds an elementary row matrix, denoted by $E_{i j}, E_{i}(t), E_{i j}(t)$:

1. $E_{i j},(i \neq j)$ is obtained from the identity matrix I_{n} by interchanging rows i and j.
2. $E_{i}(t),(t \neq 0)$ is obtained by multiplying the i-th row of I_{n} by t.
3. $E_{i j}(t),(i \neq j)$ is obtained from I_{n} by adding t times the j-th row of I_{n} to the i-th row.

EXAMPLE 2.5.6 $(n=3$.
$E_{23}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], E_{2}(-1)=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{23}(-1)=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$.
The elementary row matrices have the following distinguishing property:
THEOREM 2.5.7 If a matrix A is pre-multiplied by an elementary row matrix, the resulting matrix is the one obtained by performing the corresponding elementary row-operation on A.

EXAMPLE 2.5.7

$$
E_{23}\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
e & f \\
c & d
\end{array}\right]
$$

COROLLARY 2.5.2 Elementary row-matrices are non-singular. Indeed

1. $E_{i j}^{-1}=E_{i j}$;
2. $E_{i}^{-1}(t)=E_{i}\left(t^{-1}\right)$;
3. $\left(E_{i j}(t)\right)^{-1}=E_{i j}(-t)$.

Proof. Taking $A=I_{n}$ in the above theorem, we deduce the following equations:

$$
\begin{aligned}
E_{i j} E_{i j} & =I_{n} \\
E_{i}(t) E_{i}\left(t^{-1}\right) & =I_{n}=E_{i}\left(t^{-1}\right) E_{i}(t) \quad \text { if } t \neq 0 \\
E_{i j}(t) E_{i j}(-t) & =I_{n}=E_{i j}(-t) E_{i j}(t)
\end{aligned}
$$

EXAMPLE 2.5.8 Find the 3×3 matrix $A=E_{3}(5) E_{23}(2) E_{12}$ explicitly. Also find A^{-1}.

Solution.

$$
A=E_{3}(5) E_{23}(2)\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=E_{3}(5)\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 2 \\
0 & 0 & 5
\end{array}\right]
$$

To find A^{-1}, we have

$$
\begin{aligned}
A^{-1} & =\left(E_{3}(5) E_{23}(2) E_{12}\right)^{-1} \\
& =E_{12}^{-1}\left(E_{23}(2)\right)^{-1}\left(E_{3}(5)\right)^{-1} \\
& =E_{12} E_{23}(-2) E_{3}\left(5^{-1}\right) \\
& =E_{12} E_{23}(-2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{5}
\end{array}\right] \\
& =E_{12}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -\frac{2}{5} \\
0 & 0 & \frac{1}{5}
\end{array}\right]=\left[\begin{array}{ccr}
0 & 1 & -\frac{2}{5} \\
1 & 0 & 0 \\
0 & 0 & \frac{1}{5}
\end{array}\right]
\end{aligned}
$$

REMARK 2.5.6 Recall that A and B are row-equivalent if B is obtained from A by a sequence of elementary row operations. If E_{1}, \ldots, E_{r} are the respective corresponding elementary row matrices, then

$$
B=E_{r}\left(\ldots\left(E_{2}\left(E_{1} A\right)\right) \ldots\right)=\left(E_{r} \ldots E_{1}\right) A=P A
$$

where $P=E_{r} \ldots E_{1}$ is non-singular. Conversely if $B=P A$, where P is non-singular, then A is row-equivalent to B. For as we shall now see, P is in fact a product of elementary row matrices.

THEOREM 2.5.8 Let A be non-singular $n \times n$ matrix. Then
(i) A is row-equivalent to I_{n},
(ii) A is a product of elementary row matrices.

Proof. Assume that A is non-singular and let B be the reduced row-echelon form of A. Then B has no zero rows, for otherwise the equation $A X=0$ would have a non-trivial solution. Consequently $B=I_{n}$.

It follows that there exist elementary row matrices E_{1}, \ldots, E_{r} such that $E_{r}\left(\ldots\left(E_{1} A\right) \ldots\right)=B=I_{n}$ and hence $A=E_{1}^{-1} \ldots E_{r}^{-1}$, a product of elementary row matrices.

THEOREM 2.5.9 Let A be $n \times n$ and suppose that A is row-equivalent to I_{n}. Then A is non-singular and A^{-1} can be found by performing the same sequence of elementary row operations on I_{n} as were used to convert A to I_{n}.

Proof. Suppose that $E_{r} \ldots E_{1} A=I_{n}$. In other words $B A=I_{n}$, where $B=E_{r} \ldots E_{1}$ is non-singular. Then $B^{-1}(B A)=B^{-1} I_{n}$ and so $A=B^{-1}$, which is non-singular.

Also $A^{-1}=\left(B^{-1}\right)^{-1}=B=E_{r}\left(\left(\ldots\left(E_{1} I_{n}\right) \ldots\right)\right.$, which shows that A^{-1} is obtained from I_{n} by performing the same sequence of elementary row operations as were used to convert A to I_{n}.

REMARK 2.5.7 It follows from theorem 2.5.9 that if A is singular, then A is row-equivalent to a matrix whose last row is zero.

EXAMPLE 2.5.9 Show that $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ is non-singular, find A^{-1} and express A as a product of elementary row matrices.

Solution. We form the partitioned matrix $\left[A \mid I_{2}\right]$ which consists of A followed by I_{2}. Then any sequence of elementary row operations which reduces A to I_{2} will reduce I_{2} to A^{-1}. Here

$$
\begin{gathered}
{\left[A \mid I_{2}\right]=\left[\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]} \\
R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{rr|rr}
1 & 2 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right] \\
R_{2} \rightarrow(-1) R_{2}\left[\begin{array}{ll|rr}
1 & 2 & 1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right] \\
R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{rr|rr}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & -1
\end{array}\right] .
\end{gathered}
$$

Hence A is row-equivalent to I_{2} and A is non-singular. Also

$$
A^{-1}=\left[\begin{array}{rr}
-1 & 2 \\
1 & -1
\end{array}\right]
$$

We also observe that

$$
E_{12}(-2) E_{2}(-1) E_{21}(-1) A=I_{2}
$$

Hence

$$
\begin{aligned}
A^{-1} & =E_{12}(-2) E_{2}(-1) E_{21}(-1) \\
A & =E_{21}(1) E_{2}(-1) E_{12}(2) .
\end{aligned}
$$

The next result is the converse of Theorem 2.5.6 and is useful for proving the non-singularity of certain types of matrices.

THEOREM 2.5.10 Let A be an $n \times n$ matrix with the property that the homogeneous system $A X=0$ has only the trivial solution. Then A is non-singular. Equivalently, if A is singular, then the homogeneous system $A X=0$ has a non-trivial solution.

Proof. If A is $n \times n$ and the homogeneous system $A X=0$ has only the trivial solution, then it follows that the reduced row-echelon form B of A cannot have zero rows and must therefore be I_{n}. Hence A is non-singular.

COROLLARY 2.5.3 Suppose that A and B are $n \times n$ and $A B=I_{n}$. Then $B A=I_{n}$.

Proof. Let $A B=I_{n}$, where A and B are $n \times n$. We first show that B is non-singular. Assume $B X=0$. Then $A(B X)=A 0=0$, so $(A B) X=$ $0, I_{n} X=0$ and hence $X=0$.

Then from $A B=I_{n}$ we deduce $(A B) B^{-1}=I_{n} B^{-1}$ and hence $A=B^{-1}$. The equation $B B^{-1}=I_{n}$ then gives $B A=I_{n}$.

Before we give the next example of the above criterion for non-singularity, we introduce an important matrix operation.

DEFINITION 2.5.3 (The transpose of a matrix) Let A be an $m \times n$ matrix. Then A^{t}, the transpose of A, is the matrix obtained by interchanging the rows and columns of A. In other words if $A=\left[a_{i j}\right]$, then $\left(A^{t}\right)_{j i}=a_{i j}$. Consequently A^{t} is $n \times m$.

The transpose operation has the following properties:

1. $\left(A^{t}\right)^{t}=A$;
2. $(A \pm B)^{t}=A^{t} \pm B^{t}$ if A and B are $m \times n$;
3. $(s A)^{t}=s A^{t}$ if s is a scalar;
4. $(A B)^{t}=B^{t} A^{t}$ if A is $m \times n$ and B is $n \times p$;
5. If A is non-singular, then A^{t} is also non-singular and

$$
\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}
$$

6. $X^{t} X=x_{1}^{2}+\ldots+x_{n}^{2}$ if $X=\left[x_{1}, \ldots, x_{n}\right]^{t}$ is a column vector.

We prove only the fourth property. First check that both $(A B)^{t}$ and $B^{t} A^{t}$ have the same size $(p \times m)$. Moreover, corresponding elements of both matrices are equal. For if $A=\left[a_{i j}\right]$ and $B=\left[b_{j k}\right]$, we have

$$
\begin{aligned}
\left((A B)^{t}\right)_{k i} & =(A B)_{i k} \\
& =\sum_{j=1}^{n} a_{i j} b_{j k} \\
& =\sum_{j=1}^{n}\left(B^{t}\right)_{k j}\left(A^{t}\right)_{j i} \\
& =\left(B^{t} A^{t}\right)_{k i}
\end{aligned}
$$

There are two important classes of matrices that can be defined concisely in terms of the transpose operation.

DEFINITION 2.5.4 (Symmetric matrix) A matrix A is symmetric if $A^{t}=A$. In other words A is square ($n \times n$ say) and $a_{j i}=a_{i j}$ for all $1 \leq i \leq n, 1 \leq j \leq n$. Hence

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is a general 2×2 symmetric matrix.
DEFINITION 2.5.5 (Skew-symmetric matrix) A matrix A is called skew-symmetric if $A^{t}=-A$. In other words A is square ($n \times n$ say) and $a_{j i}=-a_{i j}$ for all $1 \leq i \leq n, 1 \leq j \leq n$.

REMARK 2.5.8 Taking $i=j$ in the definition of skew-symmetric matrix gives $a_{i i}=-a_{i i}$ and so $a_{i i}=0$. Hence

$$
A=\left[\begin{array}{rr}
0 & b \\
-b & 0
\end{array}\right]
$$

is a general 2×2 skew-symmetric matrix.
We can now state a second application of the above criterion for nonsingularity.

COROLLARY 2.5.4 Let B be an $n \times n$ skew-symmetric matrix. Then $A=I_{n}-B$ is non-singular.

Proof. Let $A=I_{n}-B$, where $B^{t}=-B$. By Theorem 2.5.10 it suffices to show that $A X=0$ implies $X=0$.

We have $\left(I_{n}-B\right) X=0$, so $X=B X$. Hence $X^{t} X=X^{t} B X$.
Taking transposes of both sides gives

$$
\begin{aligned}
\left(X^{t} B X\right)^{t} & =\left(X^{t} X\right)^{t} \\
X^{t} B^{t}\left(X^{t}\right)^{t} & =X^{t}\left(X^{t}\right)^{t} \\
X^{t}(-B) X & =X^{t} X \\
-X^{t} B X & =X^{t} X=X^{t} B X
\end{aligned}
$$

Hence $X^{t} X=-X^{t} X$ and $X^{t} X=0$. But if $X=\left[x_{1}, \ldots, x_{n}\right]^{t}$, then $X^{t} X=$ $x_{1}^{2}+\ldots+x_{n}^{2}=0$ and hence $x_{1}=0, \ldots, x_{n}=0$.

2.6 Least squares solution of equations

Suppose $A X=B$ represents a system of linear equations with real coefficients which may be inconsistent, because of the possibility of experimental errors in determining A or B. For example, the system

$$
\begin{aligned}
x & =1 \\
y & =2 \\
x+y & =3.001
\end{aligned}
$$

is inconsistent.
It can be proved that the associated system $A^{t} A X=A^{t} B$ is always consistent and that any solution of this system minimizes the sum $r_{1}^{2}+\ldots+$ r_{m}^{2}, where r_{1}, \ldots, r_{m} (the residuals) are defined by

$$
r_{i}=a_{i 1} x_{1}+\ldots+a_{i n} x_{n}-b_{i}
$$

for $i=1, \ldots, m$. The equations represented by $A^{t} A X=A^{t} B$ are called the normal equations corresponding to the system $A X=B$ and any solution of the system of normal equations is called a least squares solution of the original system.

EXAMPLE 2.6.1 Find a least squares solution of the above inconsistent system.
Solution. Here $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right], B=\left[\begin{array}{c}1 \\ 2 \\ 3.001\end{array}\right]$.
Then $A^{t} A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
Also $A^{t} B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 2 \\ 3.001\end{array}\right]=\left[\begin{array}{l}4.001 \\ 5.001\end{array}\right]$.
So the normal equations are

$$
\begin{aligned}
& 2 x+y=4.001 \\
& x+2 y=5.001
\end{aligned}
$$

which have the unique solution

$$
x=\frac{3.001}{3}, \quad y=\frac{6.001}{3} .
$$

EXAMPLE 2.6.2 Points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are experimentally determined and should lie on a line $y=m x+c$. Find a least squares solution to the problem.

Solution. The points have to satisfy

$$
\begin{aligned}
m x_{1}+c & =y_{1} \\
& \vdots \\
m x_{n}+c & =y_{n}
\end{aligned}
$$

or $A x=B$, where

$$
A=\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right], X=\left[\begin{array}{c}
m \\
c
\end{array}\right], B=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

The normal equations are given by $\left(A^{t} A\right) X=A^{t} B$. Here

$$
A^{t} A=\left[\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
1 & \ldots & 1
\end{array}\right]\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]=\left[\begin{array}{cc}
x_{1}^{2}+\ldots+x_{n}^{2} & x_{1}+\ldots+x_{n} \\
x_{1}+\ldots+x_{n} & n
\end{array}\right]
$$

Also

$$
A^{t} B=\left[\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
1 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} y_{1}+\ldots+x_{n} y_{n} \\
y_{1}+\ldots+y_{n}
\end{array}\right]
$$

It is not difficult to prove that

$$
\Delta=\operatorname{det}\left(A^{t} A\right)=\sum_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2}
$$

which is positive unless $x_{1}=\ldots=x_{n}$. Hence if not all of x_{1}, \ldots, x_{n} are equal, $A^{t} A$ is non-singular and the normal equations have a unique solution. This can be shown to be

$$
m=\frac{1}{\Delta} \sum_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right), c=\frac{1}{\Delta} \sum_{1 \leq i<j \leq n}\left(x_{i} y_{j}-x_{j} y_{i}\right)\left(x_{i}-x_{j}\right)
$$

REMARK 2.6.1 The matrix $A^{t} A$ is symmetric.

2.7 PROBLEMS

1. Let $A=\left[\begin{array}{rr}1 & 4 \\ -3 & 1\end{array}\right]$. Prove that A is non-singular, find A^{-1} and express A as a product of elementary row matrices.
[Answer: $A^{-1}=\left[\begin{array}{rr}\frac{1}{13} & -\frac{4}{13} \\ \frac{3}{13} & \frac{1}{13}\end{array}\right]$, $A=E_{21}(-3) E_{2}(13) E_{12}(4)$ is one such decomposition.]
2. A square matrix $D=\left[d_{i j}\right]$ is called diagonal if $d_{i j}=0$ for $i \neq j$. (That is the off-diagonal elements are zero.) Prove that pre-multiplication of a matrix A by a diagonal matrix D results in matrix $D A$ whose rows are the rows of A multiplied by the respective diagonal elements of D. State and prove a similar result for post-multiplication by a diagonal matrix.
Let $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ denote the diagonal matrix whose diagonal elements $d_{i i}$ are a_{1}, \ldots, a_{n}, respectively. Show that

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)=\operatorname{diag}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

and deduce that if $a_{1} \ldots a_{n} \neq 0$, then $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is non-singular and

$$
\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)\right)^{-1}=\operatorname{diag}\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)
$$

Also prove that $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is singular if $a_{i}=0$ for some i.
3. Let $A=\left[\begin{array}{lll}0 & 0 & 2 \\ 1 & 2 & 6 \\ 3 & 7 & 9\end{array}\right]$. Prove that A is non-singular, find A^{-1} and express A as a product of elementary row matrices.
[Answers: $A^{-1}=\left[\begin{array}{rrr}-12 & 7 & -2 \\ \frac{9}{2} & -3 & 1 \\ \frac{1}{2} & 0 & 0\end{array}\right]$,
$A=E_{12} E_{31}(3) E_{23} E_{3}(2) E_{12}(2) E_{13}(24) E_{23}(-9)$ is one such decomposition.]
4. Find the rational number k for which the matrix $A=\left[\begin{array}{rrr}1 & 2 & k \\ 3 & -1 & 1 \\ 5 & 3 & -5\end{array}\right]$ is singular. [Answer: $k=-3$.]
5. Prove that $A=\left[\begin{array}{rr}1 & 2 \\ -2 & -4\end{array}\right]$ is singular and find a non-singular matrix P such that $P A$ has last row zero.
6. If $A=\left[\begin{array}{rr}1 & 4 \\ -3 & 1\end{array}\right]$, verify that $A^{2}-2 A+13 I_{2}=0$ and deduce that $A^{-1}=-\frac{1}{13}\left(A-2 I_{2}\right)$.
7. Let $A=\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & 0 & 1 \\ 2 & 1 & 2\end{array}\right]$.
(i) Verify that $A^{3}=3 A^{2}-3 A+I_{3}$.
(ii) Express A^{4} in terms of A^{2}, A and I_{3} and hence calculate A^{4} explicitly.
(iii) Use (i) to prove that A is non-singular and find A^{-1} explicitly.
[Answers: (ii) $A^{4}=6 A^{2}-8 A+3 I_{3}=\left[\begin{array}{rrr}-11 & -8 & -4 \\ 12 & 9 & 4 \\ 20 & 16 & 5\end{array}\right]$;
(iii) $\left.A^{-1}=A^{2}-3 A+3 I_{3}=\left[\begin{array}{rrr}-1 & -3 & 1 \\ 2 & 4 & -1 \\ 0 & 1 & 0\end{array}\right].\right]$
8. (i) Let B be an $n \times n$ matrix such that $B^{3}=0$. If $A=I_{n}-B$, prove that A is non-singular and $A^{-1}=I_{n}+B+B^{2}$.
Show that the system of linear equations $A X=b$ has the solution

$$
X=b+B b+B^{2} b
$$

(ii) If $B=\left[\begin{array}{lll}0 & r & s \\ 0 & 0 & t \\ 0 & 0 & 0\end{array}\right]$, verify that $B^{3}=0$ and use (i) to determine $\left(I_{3}-B\right)^{-1}$ explicitly.

$$
\text { [Answer: } \left.\left[\begin{array}{rrr}
1 & r & s+r t \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right] .\right]
$$

9. Let A be $n \times n$.
(i) If $A^{2}=0$, prove that A is singular.
(ii) If $A^{2}=A$ and $A \neq I_{n}$, prove that A is singular.
10. Use Question 7 to solve the system of equations

$$
\begin{aligned}
x+y-z & =a \\
z & =b \\
2 x+y+2 z & =c
\end{aligned}
$$

where a, b, c are given rationals. Check your answer using the GaussJordan algorithm.
[Answer: $x=-a-3 b+c, y=2 a+4 b-c, z=b$.]
11. Determine explicitly the following products of 3×3 elementary row matrices.
(i) $E_{12} E_{23}$
(ii) $E_{1}(5) E_{12}$
(iii) $E_{12}(3) E_{21}(-3) \quad$ (iv) $\left(E_{1}(100)\right)^{-1}$
(v) E_{12}^{-1}
(vi) $\left(E_{12}(7)\right)^{-1}$
(vii) $\left(E_{12}(7) E_{31}(1)\right)^{-1}$.
[Answers: (i) $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ (ii) $\left[\begin{array}{lll}0 & 5 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ (iii) $\left[\begin{array}{rrr}-8 & 3 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(iv) $\left[\begin{array}{ccc}1 / 100 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (v) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ (vi) $\left[\begin{array}{rrr}1 & -7 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (vii) $\left[\begin{array}{rrr}1 & -7 & 0 \\ 0 & 1 & 0 \\ -1 & 7 & 1\end{array}\right]$.]
12. Let A be the following product of 4×4 elementary row matrices:

$$
A=E_{3}(2) E_{14} E_{42}(3)
$$

Find A and A^{-1} explicitly.
[Answers: $\left.A=\left[\begin{array}{llll}0 & 3 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0\end{array}\right], A^{-1}=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 / 2 & 0 \\ 1 & -3 & 0 & 0\end{array}\right].\right]$
13. Determine which of the following matrices over \mathbb{Z}_{2} are non-singular and find the inverse, where possible.
(a) $\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$
[Answer: (a) $\left.\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0\end{array}\right].\right]$
14. Determine which of the following matrices are non-singular and find the inverse, where possible.
(a) $\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & 0 \\ 2 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}2 & 2 & 4 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{rrr}4 & 6 & -3 \\ 0 & 0 & 7 \\ 0 & 0 & 5\end{array}\right]$
(d) $\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 7\end{array}\right]$ (e) $\left[\begin{array}{llll}1 & 2 & 4 & 6 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 7 & 9\end{array}\right]$.
[Answers: (a) $\left[\begin{array}{rrr}0 & 0 & 1 / 2 \\ 0 & 1 & 1 / 2 \\ 1 & -1 & -1\end{array}\right]$ (b) $\left[\begin{array}{ccc}-1 / 2 & 2 & 1 \\ 0 & 0 & 1 \\ 1 / 2 & -1 & -1\end{array}\right]$ (d) $\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & -1 / 5 & 0 \\ 0 & 0 & 1 / 7\end{array}\right]$
(e) $\left.\left[\begin{array}{rrrr}1 & -2 & 0 & -3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 / 2\end{array}\right].\right]$
15. Let A be a non-singular $n \times n$ matrix. Prove that A^{t} is non-singular and that $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
16. Prove that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has no inverse if $a d-b c=0$.
[Hint: Use the equation $A^{2}-(a+d) A+(a d-b c) I_{2}=0$.]
17. Prove that the real matrix $A=\left[\begin{array}{rrr}1 & a & b \\ -a & 1 & c \\ -b & -c & 1\end{array}\right]$ is non-singular by proving that A is row-equivalent to I_{3}.
18. If $P^{-1} A P=B$, prove that $P^{-1} A^{n} P=B^{n}$ for $n \geq 1$.
19. Let $A=\left[\begin{array}{ll}2 / 3 & 1 / 4 \\ 1 / 3 & 3 / 4\end{array}\right], P=\left[\begin{array}{rr}1 & 3 \\ -1 & 4\end{array}\right]$. Verify that $P^{-1} A P=$ $\left[\begin{array}{cc}5 / 12 & 0 \\ 0 & 1\end{array}\right]$ and deduce that

$$
A^{n}=\frac{1}{7}\left[\begin{array}{ll}
3 & 3 \\
4 & 4
\end{array}\right]+\frac{1}{7}\left(\frac{5}{12}\right)^{n}\left[\begin{array}{rr}
4 & -3 \\
-4 & 3
\end{array}\right]
$$

20. Let $A=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$ be a Markov matrix; that is a matrix whose elements are non-negative and satisfy $a+c=1=b+d$. Also let $P=\left[\begin{array}{rr}b & 1 \\ c & -1\end{array}\right]$. Prove that if $A \neq I_{2}$ then
(i) P is non-singular and $P^{-1} A P=\left[\begin{array}{cc}1 & 0 \\ 0 & a+d-1\end{array}\right]$,
(ii) $A^{n} \rightarrow \frac{1}{b+c}\left[\begin{array}{ll}b & b \\ c & c\end{array}\right]$ as $n \rightarrow \infty$, if $A \neq\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
21. If $X=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ and $Y=\left[\begin{array}{r}-1 \\ 3 \\ 4\end{array}\right]$, find $X X^{t}, X^{t} X, Y Y^{t}, Y^{t} Y$.
[Answers: $\left.\left[\begin{array}{rrr}5 & 11 & 17 \\ 11 & 25 & 39 \\ 17 & 39 & 61\end{array}\right],\left[\begin{array}{ll}35 & 44 \\ 44 & 56\end{array}\right],\left[\begin{array}{rrr}1 & -3 & -4 \\ -3 & 9 & 12 \\ -4 & 12 & 16\end{array}\right], 26.\right]$
22. Prove that the system of linear equations

$$
\begin{aligned}
x+2 y & =4 \\
x+y & =5 \\
3 x+5 y & =12
\end{aligned}
$$

is inconsistent and find a least squares solution of the system.
[Answer: $x=6, y=-7 / 6$.]
23. The points $(0,0),(1,0),(2,-1),(3,4),(4,8)$ are required to lie on a parabola $y=a+b x+c x^{2}$. Find a least squares solution for a, b, c. Also prove that no parabola passes through these points.
[Answer: $a=\frac{1}{5}, b=-2, c=1$.]
24. If A is a symmetric $n \times n$ real matrix and B is $n \times m$, prove that $B^{t} A B$ is a symmetric $m \times m$ matrix.
25. If A is $m \times n$ and B is $n \times m$, prove that $A B$ is singular if $m>n$.
26. Let A and B be $n \times n$. If A or B is singular, prove that $A B$ is also singular.

