AN EQUIVALENT FORM OF THE DUJELLA UNICITY CONJECTURE

The Dujella unicity conjecture states that the diophantine equation

(1)
$$x^2 - (k^2 + 1)y^2 = k^2$$

has for k > 1 at most one positive integer solution (x, y) with y < k - 1. John Robertson has pointed out that this is equivalent to the statement that the diophantine equation

(2)
$$X^2 - (k^2 + 1)Y^2 = -k^2$$

has at most one positive integer solution (X, Y) with 1 < Y < k. In fact the equation

(3)
$$X + Y\sqrt{k^2 + 1} = (x + y\sqrt{k^2 + 1})(k - \sqrt{k^2 + 1})$$

gives a 1–1 correspondence between the positive integer solutions (x, y) of (1) with $1 \le y < k - 1$ and the positive solutions (X, Y) of (2) with 1 < Y < k.

Proof. (John Robertson) Equation (3) is equivalent to

(4)
$$X = kx - (k^2 + 1)y$$

(5) Y = x - ky.

or equivalently

(6)
$$x = (k^2 + 1)Y - kX$$

(7) y = kY - X.

We consider the mapping $(x, y) \to (X, Y)$ which maps integer points satisfying (1) into integer points of (2), as is seen by taking norms in equation (3).

(i) (into): Assume
$$1 \le x, 1 \le y < k-1$$
 and $x^2 - (k^2 + 1)y^2 = k^2$. Then $Y = x - ky > 1$. For clearly $Y > 0$. Also

$$(ky+Y)^2 = (ky+1)^2 + (k-y)^2 - 1,$$

so Y = 1 would imply k - y = 1, contradicting y < k - 1. Hence Y > 1. To see Y < k, write

$$x^2 - k^2 y^2 = k^2 + y^2.$$

Then

$$Y = x - ky = \frac{k^2 + y^2}{x + ky} < \frac{2k^2}{2ky} = \frac{k}{2ky} \le k.$$

Taking norms in equation (2) gives $X^2 - (k^2 + 1)Y^2 = -k^2$.

(ii) (onto): Now suppose $1 \le X, 1 < Y < k$ and $X^2 - (k^2 + 1)Y^2 = -k^2$. Let x and y satisfy (4) and (5). Then $k^2Y^2 - X^2 = k^2 - Y^2 > 0$, so y = kY - X > 0. Also

$$y = kY - X = \frac{k^2 - Y^2}{kY + X} < \frac{k^2}{kY} = \frac{k}{Y} \le \frac{k}{2} \le k - 1.$$

(iii) (injectivity): this follows from (3).

LEMMA 0.1. In the correspondence (4) and (5), we have $Y < k/2, X < (k^2 + 1)/2$.

Then as $X < (k^2 + 1)/2 \iff Y^2 < (k^2 + 1)/4 + k^2/(k^2 + 1)$, it follows that $X < (k^2 + 1)/2$.

Proof.

$$\begin{split} Y < k/2 & \Longleftrightarrow \ x - ky < k/2 \\ & \Longleftrightarrow \ x < k(y+1/2) \\ & \Leftrightarrow \ x^2 = (k^2+1)y^2 + k^2 < k^2(y^2+y+1/4) \\ & \Leftrightarrow \ 3k^2/4 < (k^2-y)y. \end{split}$$

Then $1 \le y \le k-2$ implies

$$(k^{2} - y)y \ge (k^{2} - (k - 2)) = k^{2} - k + 2.$$

But

$$k^{2} - k + 2 > 3k^{2}/4 \iff k^{2}/4 > k - 2$$

 $\iff k^{2} - 4k + 8 > 0$
 $\iff (k - 2)^{2} + 4 > 0$

Hence $(k^2 - y)y > 3k^2/4$ and consequently Y < k/2.

THEOREM 0.1. If $k^2 + 1 = 2^{\alpha} p_1^{\beta_1} p_2^{\beta_2}$, where p_1 and p_2 are distinct odd primes, $1 \leq \beta_1, \beta_2$, then there is at most one positive solution (X, Y) of equation (2) such that 1 < Y < k.

Proof. The congruence $X^2 \equiv 1 \pmod{(k^2+1)}$ here has four solutions in the range $1 \leq X < k^2 + 1$. Two of these are X = 1 and $X = k^2$. One of the other two solutions is in the range $1 < X < (k^2+1)/2$.

REMARK 0.1. If $k^2 + 1 = 2p^a$ or p^a , we see by the above congruence argument that there are no exceptional solutions. This was proved by A. Filipoi et. al. in 2012.

See the link http://www.numbertheory.org/php/dujella_minus.html which solves the congruence $X^2 \equiv 1 \pmod{(k^2+1)}$ and finds the solutions (X, Y) of (2) and the corresponding solutions (x, y) of (1).

 $\mathbf{2}$