
Solving x2 − Dy2 = N in integers, where D > 0 is not a perfect
square.

Keith Matthews

We describe a neglected algorithm, based on simple continued
fractions, due to Lagrange, for deciding the solubility of
x2 − Dy2 = N, with gcd(x , y) = 1, where D > 0 and is not a
perfect square. In the case of solubility, the fundamental solutions
are also constructed.



Lagrange’s well-known algorithm

In 1768, Lagrange showed that if x2 − Dy2 = N,
x > 0, y > 0, gcd(x , y) = 1 and |N| <

√
D, then x/y is a

convergent An/Bn of the simple continued fraction of
√
D. For we

have

(x +
√
Dy)(x −

√
Dy) = N

|x −
√
Dy | =

|N|
x +
√
Dy

<

√
D

x +
√
Dy

.

Hence
x

y
>
√
D =⇒

∣∣∣∣xy −√D
∣∣∣∣ < 1

2y2

and
x

y
<
√
D =⇒

∣∣∣∣yx − 1√
D

∣∣∣∣ < 1

2x2
.



If
√
D = [a0, a1, . . . , al ], due to periodicity of (−1)n+1(A2

n − DB2
n),

for solubility, we need only check the values for the range
0 ≤ n ≤ bl/2c − 1. To find all solutions, we check the range
0 ≤ n ≤ l − 1.



Example: x2 − 13y 2 = 3.

√
13 = [3, 1, 1, 1, 1, 6].

n An/Bn A2
n − 13B2

n

0 3/1 −4

1 4/1 3

2 7/2 −3

3 11/3 4

4 18/5 −1

The positive solutions (x , y) are given by

x + y
√

13 =

{
η2n(4 +

√
13), n ≥ 0,

η2n+1(7 + 2
√

13), n ≥ 0,

where η = 18 + 5
√

13.
Note: 7 + 2

√
13 = −η(−4 +

√
13).



Example: x2 − 221y 2 = 4.
√

221 = [14, 1, 6, 2, 6, 1, 28].

n An/Bn A2
n − 221B2

n

0 14/1 −25

1 15/1 4

2 104/7 −13

3 223/15 4

4 1442/97 −25

5 1665/112 1

The positive solutions (x , y), gcd(x , y) = 1, are given by

x + y
√

221 =

{
ηn(15 +

√
221), n ≥ 0,

ηn(223 + 15
√

221), n ≥ 0,

where η = 1665 + 112
√

221.
Note: (i) x2 − 221y2 = −4 has no solution in positive (x , y) with
gcd(x , y) = 1.
(ii) 223 + 15

√
221 = −η(−15 +

√
221).



In 1770, Lagrange gave a neglected algorithm for solving
x2 − Dy2 = N for arbitrary N 6= 0, using the continued fraction
expansions of (P ±

√
D)/|N|, where P2 ≡ D (mod |N|),

−|N|/2 < P ≤ |N|/2.
The difficulty is to show that all solutions arise from the continued
fractions and Lagrange’s discussion of this was hard to follow.
My contribution was to give a short proof using a unimodular
matrix lemma (Theorem 172 of Hardy and Wright) which gives a
sufficient test for a rational to be a convergent of a simple
continued fraction.



Pell’s equation

The special case N = 1 is known as Pell’s equation. If
η0 = x0 + y0

√
D denotes the fundamental solution of

x2 −Dy2 = 1, ie, the solution with least positive x and y , then the
general solution is given by

x + y
√
D = ±ηn0 , n ∈ Z.

We can calculate (x0, y0) by expanding
√
D as a periodic

continued fraction:

√
D = [a0, a1, . . . , al ].

Then

x0/y0 =

{
Al−1

Bl−1
, if l is even

A2l−1

B2l−1
, if l is odd,



Equivalence classes of primitive solutions of x2 −Dy 2 = N .

The identity

(x2 − Dy2)(u2 − Dv2) = (xu + yvD)2 − D(uy + vx)2

shows that primitive solutions (x , y) of x2 −Dy2 = N and (u, v) of
Pell’s equation u2 − Dv2 = 1, produce a primitive solution

(x ′, y ′) = (xu + yvD, uy + vx)

of x ′2 − Dy ′2 = N.
Note that the equation

x ′ + y ′
√
D = (x + y

√
D)(u + v

√
D)

defines an equivalence relation on the set of all primitive solutions
of x2 − Dy2 = N.



Associating a congruence class mod |N | to each
equivalence class

If x2 − Dy2 = N with gcd(x , y) = 1, then gcd(y ,N) = 1.

We define P by x ≡ yP (mod |N|). Then

x2 − Dy2 ≡ 0 (mod |N|)
y2P2 − Dy2 ≡ 0 (mod |N|)

P2 − D ≡ 0 (mod |N|)
P2 ≡ D (mod |N|).



Primitive solutions (x , y) and (x ′, y ′) are equivalent if and only if

xx ′ − yy ′D ≡ 0 (mod |N|)
yx ′ − xy ′ ≡ 0 (mod |N|).

Then (x , y) and (x ′, y ′) are equivalent if and only if
P ≡ P ′ (mod |N|).

Hence the number of equivalence classes is finite.



If (x , y) is a solution for a class C , then (−x , y) is a solution for
the conjugate class C ∗.

It can happen that C ∗ = C , in which case C is called an
ambiguous class.

A class is ambiguous if and only if P ≡ 0 or |N|/2 (mod |N|).

The solution (x , y) in a class with least y > 0 is called a
fundamental solution.

For an ambiguous class, there are either two (x , y) and (−x , y)
with least y > 0 if x > 0 and one if x = 0, namely (0, 1) and we
choose the one with x ≥ 0.



.

Let ω = P0+
√
D

Q0
= [a0, a1, . . . , ], where Q0|(P2

0 − D).

Then the n–th complete quotient
xn = [an, an+1, . . . , ] = (Pn +

√
D)/Qn.

There is a simple algorithm for calculating an, Pn and Qn:

an =
⌊
Pn+
√
D

Qn

⌋
, (2)

Pn+1 = anQn − Pn,

Qn+1 =
D−P2

n+1

Qn
.

We also note the following important identity

G 2
n−1 − DB2

n−1 = (−1)nQ0Qn,

where Gn−1 = Q0An−1 − P0Bn−1.

With ω∗ = P0−
√
D

Q0
, we have

G 2
n−1 − DB2

n−1 = (−1)n+1Q0Qn.



Necessary conditions for solubility of x2 − Dy 2 = N

Suppose x2 − Dy2 = N, gcd(x , y) = 1, y > 0.

Let x ≡ yP (mod |N|). Then by dealing with the conjugate class
instead, if necessary, we can assume 0 ≤ P ≤ |N|/2. Also
P2 ≡ D (mod |N|).

Let x = Py + |N|X .

Lagrange substituted for x = Py + |N|X in the equation
x2 − Dy2 = N to get

|N|X 2 + 2PXy + (P2−D)
|N| y2 = N

|N| .

He then appealed to a result on a general homogeneous equation
f (X , y) = 1 and deduced that X/y is a convergent to a root λ of
the equation f (λ, 1) = 0.



Our main result is:

(i) If x ≥ 0, then X/y is a convergent An−1/Bn−1 to ω = −P+
√
D

|N| ,

x = Gn−1 = PBn−1 + |N|An−1 and Qn = (−1)n N
|N| .

(ii) If x <= 0, then X/y is a convergent Am−1/Bm−1 to

ω∗ = −P−
√
D

|N| , x = −Gm−1 = PBm−1 + |N|Am−1 and

Qm = (−1)m+1 N
|N| .



We prove (i) and (ii) by using the following extension of Theorem
172 in Hardy and Wright’s book:

Lemma. If ω = Uζ+R
V ζ+S , where ζ > 1 and U,V ,R,S are integers

such that V > 0, S > 0 and US − VR = ±1, or S = 0 and
V = R = 1, then U/V is a convergent to ω.



We apply the Lemma to the matrix[
U R
V S

]
=

[
X −Px+Dy

|N|
y x

]
.

The matrix has integer entries. For

x ≡ yP (mod |N|) and P2 ≡ D (mod |N|).

Hence

−Px + Dy ≡ −P2y + Dy (mod |N|)
≡ (D − P2)y ≡ 0 (mod |N|).



The matrix

[
X −Px+Dy

|N|
y x

]
has determinant

∆ = Xx − y(−Px + Dy)

|N|

=
(x − Py)x − y(−Px + Dy)

|N|

=
x2 − Dy2

|N|
=

N

|N|
= ±1.



Also if ζ =
√
D and ω = (−P +

√
D)/|N|, it is easy to verify that

ω =
Uζ + R

V ζ + S
.

The lemma now implies that U/V = X/y is a convergent
An−1/Bn−1 to ω. Also

Gn−1 = Q0An−1 − P0Bn−1 = |N|X + Py = x . Hence

N = x2 − Dy2 = G 2
n−1 − DB2

n−1 = (−1)n|N|Qn,

so Qn = (−1)nN/|N|.



There is a similar proof for (ii) by considering the matrix[
X Px−Dy

|N|
y −x

]
.



Refining the necessary condition for solubility
Lemma. An equivalence class of solutions contains an (x , y) with
x ≥ 0 and y > 0.

Proof. Let (x0, y0) be fundamental solution of a class C . Then if
x0 ≥ 0 we are finished. So suppose x0 < 0 and let u + v

√
D,

u > 0, v > 0, be a solution of Pell’s equation.

Define X and Y by

X + Y
√
D = (x0 + y0

√
D)(u + v

√
D).

Then it can be shown that

(a) X < 0 and Y < 0 if N > 0,

(b) X > 0 and Y > 0 if N < 0.

Hence C contains a solution (X ′,Y ′) with X ′ > 0 and Y ′ > 0.

Hence a necessary condition for solubility of x2 − Dy2 = N is that
Qn = (−1)nN/|N| holds for some n in the continued fraction for

ω = −P+
√
D

|N| .



Limiting the search range when testing for necessity

Let ω = [a0, . . . , at , at+1, . . . , at+l ].

Then by periodicity of the Qi , we can assume that
Qn = (−1)nN/|N| holds for some n ≤ t + l if l is even, or
n ≤ t + 2l if l is odd.



Sufficiency

Suppose P2 ≡ D (mod |N|), 0 ≤ P ≤ |N|/2 and that

ω = −P+
√
D

|N| = [a0, . . . , at , at+1, . . . , at+l ].

(i) Suppose Qn = (−1)nN/|N| for some n in 1 ≤ n ≤ t + l if l is
even, or 1 ≤ n ≤ t + 2l if l is odd.

Then with Gn−1 = |N|An−1 + PBn−1, the equation x2 − Dy2 = N
has the solution (Gn−1,Bn−1).

(ii) Also let ω∗ = −P−
√
D

|N| = [b0, . . . , bs , bs+1, . . . , bs+l ] and

suppose Qm = (−1)m+1N/|N| for some m in 1 ≤ m ≤ s + l if l is
even, or 1 ≤ m ≤ s + 2l if l is odd. Then x2 − Dy2 = N also has
the solution (Gm−1,Bm−1).

(iii) The solution (x , y) in (i) and (ii) with smaller y , will be a
fundamental solution for the class P.



Primitivity of solutions

For ω = (−P +
√
D)/|N|,

gcd (Gn−1,Bn−1) = 1 if Qn = −1)nN/|N|. For

gcd (Gn−1,Bn−1) = gcd (Q0An−1 − P0Bn−1,Bn−1)

= gcd (Q0An−1,Bn−1)

= gcd (Q0,Bn−1).

Also

(Q0An−1 − P0Bn−1)2 − DB2
n−1 = N

Q2
0A

2
n−1 − 2Q0P0An−1Bn−1 + (P2

0 − D)B2
n−1 = N

Q0A
2
n−1 − 2P0An−1Bn−1 +

(P2
0 − D)

Q0
B2
n−1 = N/|N| = ±1.

Hence gcd(Q0,Bn−1) = 1.



An example: x2 − 221y 2 = 217 and − 217

We find the solutions of P2 ≡ 221 (mod 217) satisfying
0 ≤ P ≤ 103 are P = 2 and P = 33.

(a) −2+
√
221

217 = [0, 16, 1, 6, 2, 6, 1, 28].

i 0 1 2 3 4 5 6 7
Pi −2 2 14 11 13 13 11 14
Qi 217 1 25 4 13 4 25 1
Ai 0 1 1 7 15 97 112 3233
Bi 1 16 17 118 253 1636 1889 54528

The period length is 6 and Q1 = 1 = (−1)1(−217)/| − 217|.

Hence (G0,B0) = (2, 1) is a solution of x2 − 221y2 = −217 and
this is clearly a fundamental one, so there is no need to examine

the continued fraction expansion of −2−
√
221

217 .



(b) −33+
√
221

217 = [−1, 1, 10, 1, 28, 1, 6, 2, 6].

i 0 1 2 3 4 5 6 7 8
Pi −33 −184 29 11 14 14 11 13 13
Qi 217 −155 4 25 1 25 4 13 4
Ai −1 0 −1 −1 −29 −30 −209 −448 −2897
Bi 1 1 11 12 347 359 2501 5361 34667

We observe that Q4 = 1 = (−1)4 · 217/|217| and the period length
is 6. Hence (G3,B3) = (179, 12) is a solution of x2 − 221y2 = 217.



c) −33−
√
221

217 = [−1, 1, 3, 1, 1, 6, 1, 28, 1, 6, 2].

i 0 1 2 3 4 5 6 7
Pi 33 184 −29 17 0 13 11 14
Qi −217 155 −4 17 13 4 25 1
Ai −1 0 −1 −1 −2 −13 −15 −433
Bi 1 1 4 5 9 59 68 1963

i 8 9 10
Pi 14 11 13
Qi 25 4 13
Ai −448 −3121 −6690
Bi 2031 14149 30329

We observe that Q7 = 1 = (−1)8 · 217/|217|. Hence
(−G6,B6) = (1011, 68) is a solution of x2 − 221y2 = 217.

It follows from (b) and (c) that (179, 12) is a fundamental solution.

Here η0 = 1665 + 112
√

221 is the fundamental solution of Pell’s
equation. Then the complete solution of x2 − 221y2 = −217 is
given by

x + y
√

221 = ±(±2 +
√

221)ηn0 , n ∈ Z.

The complete solution of x2 − 221y2 = 217 is given by

x + y
√

221 = ±(±179 + 12
√

221)ηn0 , n ∈ Z.



Lagrange also discussed the general equation ax2 + bxy + cy2 = N,
where D = b2− 4ac > 0 is not a perfect square and gcd(a,N) = 1.

The continued fraction approach goes through with suitable
modifications.

However an exceptional case, not noted by Lagrange, arises when
D = 5 and aN < 0, in which there is a solution not arising directly
from convergents.

This was pointed out by Serret in 1877 and dealt with in 1986 by
M. Pavone.

An example is x2 − xy − y2 = −1, where the solution (0, 1) is such
an exception.



We use the following extension of Theorem 172 in Hardy and
Wright’s book:

Lemma. If ω = Uζ+R
V ζ+S , where ζ > 1 and U,V ,R,S are integers

such that V > 0, S > 0 and US − VR = ±1, or S = 0 and
V = R = 1, then U/V is a convergent to ω.

Moreover if Q 6= S > 0, then
R/S = (An−1 + kAn)/(Bn−1 + kBn), k ≥ 0. Also ζ + k is the
(n + 1)–th complete convergent to ω. Here k = 0 if Q > S , while
k ≥ 1 if Q < S .



Theorem. Suppose

ax2 + bxy + cy2 = N,

where N 6= 0, gcd(x , y) = 1 = gcd(a,N) and y > 0 and
D = b2 − 4ac > 0 is not a perfect square.

Let θ satisfy x ≡ yθ (mod |N|), 0 ≤ θ < |N|. Then

aθ2 + bθ + c ≡ 0 (mod |N|).

Let x = yθ + |N|X , n = 2aθ + b, Q = a|N|, ω = −n+
√
D

2Q and

ω∗ = −n−
√
D

2Q .



Also let n = 2P or 2P + 1, according as b is even or odd. Then

(i) if QX + Py > 0, X/y is a convergent Ai−1/Bi−1 to ω and
Qi = (−1)i2N/|N|.

(ii) Suppose QX + Py ≤ 0. Then

(a) If D 6= 5, or D = 5 and −(QX + Py) ≥ y , then X/y is a
convergent Ai−1/Bi−1 to ω∗ and Qi = (−1)i+12N/|N|.



(b) If D = 5 and y > −(QX + Py) ≥ 0, then aN < 0. Also

X

y
=

Ar − Ar−1
Br − Br−1

=
A′s − A′s−1
B ′s − B ′s−1

,

where Ar/Br and A′s/B
′
s denote convergents to ω and ω∗,

respectively and

ω = [a0, . . . , ar , 1 ], ω∗ = [b0, . . . , bs , 1 ],

where ar > 1 if r > 0 and bs > 1 if s > 0.

Moreover X/y is not a convergent to ω or ω∗.



The assumption that gcd(a,N) = 1 involves no loss of generality.
For as pointed out by Gauss in his Disquisitiones, if
gcd(a, b, c) = 1, there exist relatively prime integers α, γ such that
aα2 + bαγ + cγ2 = A, where gcd(A,N) = 1.

Then if αδ − βγ = 1, the unimodular transformation
x = αX + βY , y = γX + δY converts ax2 + bxy + cy2 to
AX 2 + BXY + CY 2. Also the two forms represent the same
integers.



Example: Solving x2 − py 2 = −
(

2
p

)
p−1

2 , p = 4n + 3

Let p be a prime of the form 4n + 3. Then it is classical that the

equation x2 − py2 = 2
(
2
p

)
has a solution in integers.

So with ω1 = (1 +
√
p)/2 = [λ, a1, . . . , aL−1, 2λ+ 1], there is

exactly one n, 1 ≤ n ≤ L satisfying Qn(−1)n =
(
2
p

)
. (Qn = 1 and

L is even and n = L/2.)

Now in solving the given equation, notice that P = 1 is a solution
of P2 ≡ p (mod (p − 1)/2).

So with ω2 = (−1 +
√
p)/((p − 1)/2), the first complete quotient

is in fact ω1.

It follows that the corresponding Qn+1 is the old Qn and so now

Qn(−1)n+1 = −
(
2
p

)
. hence there is a solution of

x2 − py2 = −
(
2
p

)
p−1
2 .



John Robertson (September 2004) has produced the following
short proof of the previous result.

Assume X 2 − pY 2 = 2
(
2
p

)
, p = 4n + 3.

Make the integer transformation

x = (pY − X )/2, y = (X − Y )/2.

Then x2 − py2 = −
(
2
p

)
(p − 1)/2.


