Solving $x^2 - Dy^2 = N$ in integers, where D > 0 is not a perfect square.

Keith Matthews

We describe a neglected algorithm, based on simple continued fractions, due to Lagrange, for deciding the solubility of $x^2 - Dy^2 = N$, with $\gcd(x,y) = 1$, where D > 0 and is not a perfect square. In the case of solubility, the fundamental solutions are also constructed.

Lagrange's well-known algorithm

In 1768, Lagrange showed that if $x^2 - Dy^2 = N$, $x > 0, y > 0, \gcd(x,y) = 1$ and $|N| < \sqrt{D}$, then x/y is a convergent A_n/B_n of the simple continued fraction of \sqrt{D} . For we have

$$(x + \sqrt{D}y)(x - \sqrt{D}y) = N$$

 $|x - \sqrt{D}y| = \frac{|N|}{x + \sqrt{D}y} < \frac{\sqrt{D}}{x + \sqrt{D}y}.$

Hence

$$\left| \frac{x}{y} > \sqrt{D} \right| \Longrightarrow \left| \frac{x}{y} - \sqrt{D} \right| < \frac{1}{2y^2}$$

and

$$\frac{x}{y} < \sqrt{D} \implies \left| \frac{y}{x} - \frac{1}{\sqrt{D}} \right| < \frac{1}{2x^2}.$$

If $\sqrt{D} = [a_0, \overline{a_1, \ldots, a_I}]$, due to periodicity of $(-1)^{n+1}(A_n^2 - DB_n^2)$, for solubility, we need only check the values for the range $0 \le n \le \lfloor I/2 \rfloor - 1$. To find all solutions, we check the range $0 \le n \le I - 1$.

Example: $x^2 - 13y^2 = 3$.

$$\sqrt{13}=[3,\overline{1,1,1,1,6}].$$

n	A_n/B_n	$A_n^2 - 13B_n^2$
0	3/1	-4
1	4/1	3
2	7/2	-3
3	11/3	4
4	18/5	-1

The positive solutions (x, y) are given by

$$x + y\sqrt{13} = \begin{cases} \eta^{2n}(4 + \sqrt{13}), & n \ge 0, \\ \eta^{2n+1}(7 + 2\sqrt{13}), & n \ge 0, \end{cases}$$

where $\eta = 18 + 5\sqrt{13}$.

Note: $7 + 2\sqrt{13} = -\eta(-4 + \sqrt{13})$.

Example: $x^2 - 221y^2 = 4$.

$$\sqrt{221} = [14, \overline{1, 6, 2, 6, 1, 28}].$$

n	A_n/B_n	$A_n^2 - 221B_n^2$
0	14/1	-25
1	15/1	4
2	104/7	-13
3	223/15	4
4	1442/97	-25
5	1665/112	1

The positive solutions (x, y), gcd(x, y) = 1, are given by

$$x + y\sqrt{221} = \begin{cases} \eta^{n}(15 + \sqrt{221}), & n \ge 0, \\ \eta^{n}(223 + 15\sqrt{221}), & n \ge 0, \end{cases}$$

where $\eta = 1665 + 112\sqrt{221}$.

Note: (i) $x^2 - 221y^2 = -4$ has no solution in positive (x, y) with gcd(x, y) = 1.

(ii)
$$223 + 15\sqrt{221} = -\eta(-15 + \sqrt{221})$$
.

In 1770, Lagrange gave a neglected algorithm for solving $x^2 - Dy^2 = N$ for arbitrary $N \neq 0$, using the continued fraction expansions of $(P \pm \sqrt{D})/|N|$, where $P^2 \equiv D \pmod{|N|}$, $-|N|/2 < P \leq |N|/2$.

The difficulty is to show that all solutions arise from the continued fractions and Lagrange's discussion of this was hard to follow. My contribution was to give a short proof using a unimodular matrix lemma (Theorem 172 of Hardy and Wright) which gives a sufficient test for a rational to be a convergent of a simple continued fraction.

Pell's equation

The special case N=1 is known as Pell's equation. If $\eta_0=x_0+y_0\sqrt{D}$ denotes the fundamental solution of $x^2-Dy^2=1$, ie, the solution with least positive x and y, then the general solution is given by

$$x + y\sqrt{D} = \pm \eta_0^n, n \in \mathbb{Z}.$$

We can calculate (x_0, y_0) by expanding \sqrt{D} as a periodic continued fraction:

$$\sqrt{D} = [a_0, \overline{a_1, \dots, a_I}].$$

Then

$$x_0/y_0 = \begin{cases} \frac{A_{l-1}}{B_{l-1}}, & \text{if } l \text{ is even} \\ \frac{A_{2l-1}}{B_{2l-1}}, & \text{if } l \text{ is odd}, \end{cases}$$

Equivalence classes of primitive solutions of $x^2 - Dy^2 = N$.

The identity

$$(x^2 - Dy^2)(u^2 - Dv^2) = (xu + yvD)^2 - D(uy + vx)^2$$

shows that primitive solutions (x, y) of $x^2 - Dy^2 = N$ and (u, v) of Pell's equation $u^2 - Dv^2 = 1$, produce a primitive solution

$$(x',y')=(xu+yvD,uy+vx)$$

of $x'^2 - Dy'^2 = N$.

Note that the equation

$$x' + y'\sqrt{D} = (x + y\sqrt{D})(u + v\sqrt{D})$$

defines an equivalence relation on the set of all primitive solutions of $x^2 - Dy^2 = N$.

Associating a congruence class mod |N| to each equivalence class

If
$$x^2 - Dy^2 = N$$
 with $\gcd(x,y) = 1$, then $\gcd(y,N) = 1$. We define P by $x \equiv yP \pmod{|N|}$. Then
$$x^2 - Dy^2 \equiv 0 \pmod{|N|}$$

$$y^2P^2 - Dy^2 \equiv 0 \pmod{|N|}$$

$$P^2 - D \equiv 0 \pmod{|N|}$$

$$P^2 \equiv D \pmod{|N|}$$
.

Primitive solutions (x, y) and (x', y') are equivalent if and only if

$$xx' - yy'D \equiv 0 \pmod{|N|}$$

 $yx' - xy' \equiv 0 \pmod{|N|}.$

Then (x, y) and (x', y') are equivalent if and only if $P \equiv P' \pmod{|N|}$.

Hence the number of equivalence classes is finite.

If (x, y) is a solution for a class C, then (-x, y) is a solution for the *conjugate* class C^* .

It can happen that $C^* = C$, in which case C is called an ambiguous class.

A class is ambiguous if and only if $P \equiv 0$ or $|N|/2 \pmod{|N|}$.

The solution (x, y) in a class with least y > 0 is called a *fundamental* solution.

For an ambiguous class, there are either two (x, y) and (-x, y) with least y > 0 if x > 0 and one if x = 0, namely (0, 1) and we choose the one with $x \ge 0$.

.

Let
$$\omega = \frac{P_0 + \sqrt{D}}{Q_0} = [a_0, a_1, \dots,]$$
, where $Q_0 | (P_0^2 - D)$.

Then the *n*-th complete quotient

$$x_n = [a_n, a_{n+1}, \dots,] = (P_n + \sqrt{D})/Q_n.$$

There is a simple algorithm for calculating a_n , P_n and Q_n :

$$a_{n} = \left\lfloor \frac{P_{n} + \sqrt{D}}{Q_{n}} \right\rfloor, \quad (2)$$

$$P_{n+1} = a_{n}Q_{n} - P_{n},$$

$$Q_{n+1} = \frac{D - P_{n+1}^{2}}{Q_{n}}.$$

We also note the following important identity

$$G_{n-1}^2 - DB_{n-1}^2 = (-1)^n Q_0 Q_n,$$

where $G_{n-1} = Q_0 A_{n-1} - P_0 B_{n-1}$.

With $\omega^* = \frac{P_0 - \sqrt{D}}{Q_0}$, we have

$$G_{n-1}^2 - DB_{n-1}^2 = (-1)^{n+1}Q_0Q_n$$

Necessary conditions for solubility of $x^2 - Dy^2 = N$

Suppose $x^2 - Dy^2 = N, \gcd(x, y) = 1, y > 0.$

Let $x \equiv yP \pmod{|N|}$. Then by dealing with the conjugate class instead, if necessary, we can assume $0 \le P \le |N|/2$. Also $P^2 \equiv D \pmod{|N|}$.

Let x = Py + |N|X.

Lagrange substituted for x = Py + |N|X in the equation $x^2 - Dy^2 = N$ to get

$$|N|X^2 + 2PXy + \frac{(P^2 - D)}{|N|}y^2 = \frac{N}{|N|}.$$

He then appealed to a result on a general homogeneous equation f(X,y)=1 and deduced that X/y is a convergent to a root λ of the equation $f(\lambda,1)=0$.

Our main result is:

(i) If
$$x \ge 0$$
, then X/y is a convergent A_{n-1}/B_{n-1} to $\omega = \frac{-P + \sqrt{D}}{|N|}$, $x = G_{n-1} = PB_{n-1} + |N|A_{n-1}$ and $Q_n = (-1)^n \frac{N}{|N|}$.

(ii) If
$$x<=0$$
, then X/y is a convergent A_{m-1}/B_{m-1} to $\omega^*=\frac{-P-\sqrt{D}}{|N|}$, $x=-G_{m-1}=PB_{m-1}+|N|A_{m-1}$ and $Q_m=(-1)^{m+1}\frac{N}{|N|}$.

We prove (i) and (ii) by using the following extension of Theorem 172 in Hardy and Wright's book:

Lemma. If $\omega=\frac{U\zeta+R}{V\zeta+S}$, where $\zeta>1$ and U,V,R,S are integers such that V>0,S>0 and $US-VR=\pm 1$, or S=0 and V=R=1, then U/V is a convergent to ω .

We apply the Lemma to the matrix

$$\left[\begin{array}{cc} U & R \\ V & S \end{array}\right] = \left[\begin{array}{cc} X & \frac{-Px + Dy}{|N|} \\ y & x \end{array}\right].$$

The matrix has integer entries. For

$$x \equiv yP \pmod{|N|}$$
 and $P^2 \equiv D \pmod{|N|}$.

Hence

$$-Px + Dy \equiv -P^{2}y + Dy \pmod{|N|}$$
$$\equiv (D - P^{2})y \equiv 0 \pmod{|N|}.$$

The matrix $\begin{vmatrix} X & \frac{-Px+Dy}{|N|} \\ y & x \end{vmatrix}$ has determinant

$$\Delta = Xx - \frac{y(-Px + Dy)}{|N|}$$

$$= \frac{(x - Py)x - y(-Px + Dy)}{|N|}$$

$$= \frac{x^2 - Dy^2}{|N|} = \frac{N}{|N|} = \pm 1.$$

Also if
$$\zeta=\sqrt{D}$$
 and $\omega=(-P+\sqrt{D})/|N|$, it is easy to verify that
$$\omega=\frac{U\zeta+R}{V\zeta+S}.$$

The lemma now implies that U/V=X/y is a convergent A_{n-1}/B_{n-1} to ω . Also

$$G_{n-1}=Q_0A_{n-1}-P_0B_{n-1}=|N|X+Py=x.$$
 Hence $N=x^2-Dy^2=G_{n-1}^2-DB_{n-1}^2=(-1)^n|N|Q_n,$ so $Q_n=(-1)^nN/|N|.$

There is a similar proof for (ii) by considering the matrix

$$\left[\begin{array}{cc} X & \frac{Px-Dy}{|N|} \\ y & -x \end{array}\right].$$

Refining the necessary condition for solubility

Lemma. An equivalence class of solutions contains an (x, y) with $x \ge 0$ and y > 0.

Proof. Let (x_0, y_0) be fundamental solution of a class C. Then if $x_0 \ge 0$ we are finished. So suppose $x_0 < 0$ and let $u + v\sqrt{D}$, u > 0, v > 0, be a solution of Pell's equation.

Define X and Y by

$$X + Y\sqrt{D} = (x_0 + y_0\sqrt{D})(u + v\sqrt{D}).$$

Then it can be shown that

- (a) X < 0 and Y < 0 if N > 0,
- (b) X > 0 and Y > 0 if N < 0.

Hence C contains a solution (X', Y') with X' > 0 and Y' > 0.

Hence a necessary condition for solubility of $x^2 - Dy^2 = N$ is that $Q_n = (-1)^n N/|N|$ holds for some n in the continued fraction for $\omega = \frac{-P + \sqrt{D}}{|N|}$.

Limiting the search range when testing for necessity

Let
$$\omega = [a_0, \ldots, a_t, \overline{a_{t+1}, \ldots, a_{t+l}}].$$

Then by periodicity of the Q_i , we can assume that $Q_n = (-1)^n N/|N|$ holds for some $n \le t+I$ if I is even, or $n \le t+2I$ if I is odd.

Sufficiency

Suppose $P^2 \equiv D \pmod{|N|}$, $0 \le P \le |N|/2$ and that

$$\omega = \frac{-P + \sqrt{D}}{|N|} = [a_0, \dots, a_t, \overline{a_{t+1}, \dots, a_{t+l}}].$$

(i) Suppose $Q_n = (-1)^n N/|N|$ for some n in $1 \le n \le t+l$ if l is even, or $1 \le n \le t+2l$ if l is odd.

Then with $G_{n-1} = |N|A_{n-1} + PB_{n-1}$, the equation $x^2 - Dy^2 = N$ has the solution (G_{n-1}, B_{n-1}) .

- (ii) Also let $\omega^* = \frac{-P \sqrt{D}}{|N|} = [b_0, \dots, b_s, \overline{b_{s+1}, \dots, b_{s+l}}]$ and suppose $Q_m = (-1)^{m+1} N/|N|$ for some m in $1 \le m \le s+l$ if l is even, or $1 \le m \le s+2l$ if l is odd. Then $x^2 Dy^2 = N$ also has the solution (G_{m-1}, B_{m-1}) .
- (iii) The solution (x, y) in (i) and (ii) with smaller y, will be a fundamental solution for the class P.

Primitivity of solutions

For
$$\omega = (-P + \sqrt{D})/|N|$$
, $\gcd(G_{n-1}, B_{n-1}) = 1$ if $Q_n = -1)^n N/|N|$. For
$$\gcd(G_{n-1}, B_{n-1}) = \gcd(Q_0 A_{n-1} - P_0 B_{n-1}, B_{n-1})$$
$$= \gcd(Q_0 A_{n-1}, B_{n-1})$$
$$= \gcd(Q_0, B_{n-1}).$$

Also

$$\begin{split} &(Q_0A_{n-1}-P_0B_{n-1})^2-DB_{n-1}^2=N\\ &Q_0^2A_{n-1}^2-2Q_0P_0A_{n-1}B_{n-1}+(P_0^2-D)B_{n-1}^2=N\\ &Q_0A_{n-1}^2-2P_0A_{n-1}B_{n-1}+\frac{(P_0^2-D)}{Q_0}B_{n-1}^2=N/|N|=\pm 1. \end{split}$$

Hence $gcd(Q_0, B_{n-1}) = 1$.

An example: $x^2 - 221y^2 = 217$ and -217

We find the solutions of $P^2 \equiv 221 \pmod{217}$ satisfying $0 \le P \le 103$ are P = 2 and P = 33.

(a)
$$\frac{-2+\sqrt{221}}{217} = [0, 16, \overline{1, 6, 2, 6, 1, 28}].$$

i	0	1	2	3	4	5	6	7
Pi	-2	2	14	11	13	13	11	14
Qi	217	1	25	4	13	4	25	1
A_i	0	1	1	7	15	97	112	3233
Bi	1	16	17	118	253	1636	1889	54528

The period length is 6 and $Q_1 = 1 = (-1)^1(-217)/|-217|$.

Hence $(G_0, B_0) = (2, 1)$ is a solution of $x^2 - 221y^2 = -217$ and this is clearly a fundamental one, so there is no need to examine the continued fraction expansion of $\frac{-2-\sqrt{221}}{217}$.

(b)
$$\frac{-33+\sqrt{221}}{217} = [-1, 1, 10, \overline{1, 28, 1, 6, 2, 6}].$$

i	0	1	2	3	4	5	6	7	8
P_i	-33	-184	29	11	14	14	11	13	13
Q_i	217	-155	4	25	1	25	4	13	4
A_i	-1	0	-1	-1	-29	-30	-209	-448	-2897
B_i	1	1	11	12	347	359	2501	5361	34667

We observe that $Q_4 = 1 = (-1)^4 \cdot 217/|217|$ and the period length is 6. Hence $(G_3, B_3) = (179, 12)$ is a solution of $x^2 - 221y^2 = 217$.

c)
$$\frac{-33-\sqrt{221}}{217} = [-1, 1, 3, 1, 1, \overline{6, 1, 28, 1, 6, 2}].$$

i	0	1	2	3	4	5	6	7
P_i	33	184	-29	17	0	13	11	14
Q_i	-217	155	-4	17	13	4	25	1
A_i	-1	0	-1	-1	-2	-13	-15	-433
B _i	1	1	4	5	9	59	68	1963

i	8	9	10
P_i	14	11	13
Q_i	25	4	13
A_i	-448	-3121	-6690
B _i	2031	14149	30329

We observe that $Q_7 = 1 = (-1)^8 \cdot 217/|217|$. Hence $(-G_6, B_6) = (1011, 68)$ is a solution of $x^2 - 221y^2 = 217$.

It follows from (b) and (c) that (179, 12) is a fundamental solution.

Here $\eta_0=1665+112\sqrt{221}$ is the fundamental solution of Pell's equation. Then the complete solution of $x^2-221y^2=-217$ is given by

$$x + y\sqrt{221} = \pm(\pm 2 + \sqrt{221})\eta_0^n, n \in \mathbb{Z}.$$

The complete solution of $x^2 - 221y^2 = 217$ is given by

$$x + y\sqrt{221} = \pm(\pm 179 + 12\sqrt{221})\eta_0^n, n \in \mathbb{Z}.$$

Lagrange also discussed the general equation $ax^2 + bxy + cy^2 = N$, where $D = b^2 - 4ac > 0$ is not a perfect square and gcd(a, N) = 1.

The continued fraction approach goes through with suitable modifications.

However an exceptional case, not noted by Lagrange, arises when D=5 and aN<0, in which there is a solution not arising directly from convergents.

This was pointed out by Serret in 1877 and dealt with in 1986 by M. Pavone.

An example is $x^2 - xy - y^2 = -1$, where the solution (0,1) is such an exception.

We use the following extension of Theorem 172 in Hardy and Wright's book:

Lemma. If $\omega = \frac{U\zeta + R}{V\zeta + S}$, where $\zeta > 1$ and U, V, R, S are integers such that V > 0, S > 0 and $US - VR = \pm 1$, or S = 0 and V = R = 1, then U/V is a convergent to ω .

Moreover if $Q \neq S > 0$, then $R/S = (A_{n-1} + kA_n)/(B_{n-1} + kB_n), k \geq 0$. Also $\zeta + k$ is the (n+1)-th complete convergent to ω . Here k=0 if Q > S, while $k \geq 1$ if Q < S.

Theorem. Suppose

$$ax^2 + bxy + cy^2 = N,$$

where $N \neq 0$, gcd(x, y) = 1 = gcd(a, N) and y > 0 and $D = b^2 - 4ac > 0$ is not a perfect square.

Let θ satisfy $x \equiv y\theta \pmod{|N|}$, $0 \le \theta < |N|$. Then

$$a\theta^2 + b\theta + c \equiv 0 \pmod{|N|}.$$

Let
$$x=y\theta+|N|X$$
, $n=2a\theta+b$, $Q=a|N|$, $\omega=\frac{-n+\sqrt{D}}{2Q}$ and $\omega^*=\frac{-n-\sqrt{D}}{2Q}$.

Also let n = 2P or 2P + 1, according as b is even or odd. Then

- (i) if QX + Py > 0, X/y is a convergent A_{i-1}/B_{i-1} to ω and $Q_i = (-1)^i 2N/|N|$.
- (ii) Suppose $QX + Py \leq 0$. Then
- (a) If $D \neq 5$, or D = 5 and $-(QX + Py) \geq y$, then X/y is a convergent A_{i-1}/B_{i-1} to ω^* and $Q_i = (-1)^{i+1} 2N/|N|$.

(b) If
$$D=5$$
 and $y>-(QX+Py)\geq 0$, then $aN<0$. Also

$$\frac{X}{y} = \frac{A_r - A_{r-1}}{B_r - B_{r-1}} = \frac{A'_s - A'_{s-1}}{B'_s - B'_{s-1}},$$

where A_r/B_r and A_s'/B_s' denote convergents to ω and ω^* , respectively and

$$\omega = [a_0, \ldots, a_r, \overline{1}], \ \omega^* = [b_0, \ldots, b_s, \overline{1}],$$

where $a_r > 1$ if r > 0 and $b_s > 1$ if s > 0.

Moreover X/y is not a convergent to ω or ω^* .

The assumption that $\gcd(a,N)=1$ involves no loss of generality. For as pointed out by Gauss in his Disquisitiones, if $\gcd(a,b,c)=1$, there exist relatively prime integers α,γ such that $a\alpha^2+b\alpha\gamma+c\gamma^2=A$, where $\gcd(A,N)=1$.

Then if $\alpha\delta-\beta\gamma=1$, the unimodular transformation $x=\alpha X+\beta Y,y=\gamma X+\delta Y$ converts $ax^2+bxy+cy^2$ to $AX^2+BXY+CY^2$. Also the two forms represent the same integers.

Example: Solving
$$x^2 - py^2 = -(\frac{2}{p})^{\frac{p-1}{2}}, \ p = 4n + 3$$

Let p be a prime of the form 4n+3. Then it is classical that the equation $x^2-py^2=2\left(\frac{2}{p}\right)$ has a solution in integers.

So with $\omega_1=(1+\sqrt{p})/2=[\lambda,\overline{a_1,\ldots,a_{L-1},2\lambda+1}]$, there is exactly one $n,\ 1\leq n\leq L$ satisfying $Q_n(-1)^n=\left(\frac{2}{p}\right)$. $(Q_n=1)$ and L is even and n=L/2.

Now in solving the given equation, notice that P=1 is a solution of $P^2 \equiv p \pmod{(p-1)/2}$.

So with $\omega_2 = (-1 + \sqrt{p})/((p-1)/2)$, the first complete quotient is in fact ω_1 .

It follows that the corresponding Q_{n+1} is the old Q_n and so now $Q_n(-1)^{n+1}=-\left(\frac{2}{p}\right)$. hence there is a solution of $x^2-py^2=-\left(\frac{2}{p}\right)\frac{p-1}{2}$.

John Robertson (September 2004) has produced the following short proof of the previous result.

Assume
$$X^2 - pY^2 = 2\left(\frac{2}{p}\right), p = 4n + 3.$$

Make the integer transformation

$$x = (pY - X)/2, y = (X - Y)/2.$$

Then
$$x^2 - py^2 = -\left(\frac{2}{p}\right)(p-1)/2$$
.