Solving x2 — Dy? = N in integers, where D > 0 is not a perfect
square.

Keith Matthews

We describe a neglected algorithm, based on simple continued
fractions, due to Lagrange, for deciding the solubility of

x? — Dy? = N, with gcd(x,y) =1, where D > 0 and is not a
perfect square. In the case of solubility, the fundamental solutions
are also constructed.



Lagrange’s well-known algorithm

In 1768, Lagrange showed that if x> — Dy? = N,
x>0,y > 0,gcd(x,y) =1 and |[N| < VD, then x/y is a
convergent A, /B, of the simple continued fraction of v/ D. For we

have
(x+VDy)(x —VDy) = N
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If /D = [a9,31,..-, 4], due to periodicity of (—1)"T1(A2 — DB?),
for solubility, we need only check the values for the range
0<n<|//2] —1. To find all solutions, we check the range
0<n</-1.



Example: x> — 13y? = 3.

V13 =[3,1,1,1,1, 6].

n| A,/B,| A2 —13B2
0] 3/1 —4
1] 441 3
2| 7/2 -3
3] 11/3 4
41 18/5 —1

The positive solutions (x, y) are given by

2n
"4+ V13), n>0,
x+yvi _{ 7?7 4+2V13), n>0

where n = 18 + 5/13.
Note: 7 4+ 2v/13 = —n(—4 +/13).



Example: x? — 221y? = 4.
V221 = [14,1,6, 2,6, 1, 28].

n| A,/B, | A2-221B2
0| 14/1 -25

1] 15/1 4

2| 104/7 -13

3| 223/15 4

4| 1442/97 —25

5| 1665/112 1

The positive solutions (x, y), ged(x,y) = 1, are given by

1"(15 + v/221), n>0,
V221 =
Xty { n"(223 + 15v/221), n >0,

where 1 = 1665 + 1124/221.

Note: (i) x? —221y? = —4 has no solution in positive (x, y) with
ged(x,y) = 1.

(ii) 223 + 15v/221 = —n(—15 4 /221).



In 1770, Lagrange gave a neglected algorithm for solving

x? — Dy? = N for arbitrary N # 0, using the continued fraction
expansions of (P 4 +/D)/|N|, where P? = D (mod |N|),

—[N|/2 < P < |N|/2.

The difficulty is to show that all solutions arise from the continued
fractions and Lagrange's discussion of this was hard to follow.

My contribution was to give a short proof using a unimodular
matrix lemma (Theorem 172 of Hardy and Wright) which gives a
sufficient test for a rational to be a convergent of a simple
continued fraction.



Pell’s equation

The special case N =1 is known as Pell’s equation. If

N0 = Xo +yg\/5 denotes the fundamental solution of

x? — Dy? = 1, ie, the solution with least positive x and y, then the

general solution is given by
x+yVD==+nj,necZ.

We can calculate (xg, yo) by expanding v/D as a periodic
continued fraction:

\/5: [ao,al,...,a/].

Then

A if | is even

X0/¥0 =14 At
=, if 'is odd,

2/—1



Equivalence classes of primitive solutions of x> — Dy? = N.

The identity
(x*> — Dy?)(u? — Dv?) = (xu + yvD)? — D(uy + vx)?

shows that primitive solutions (x, y) of x> — Dy? = N and (u, v) of
Pell's equation u?> — Dv? = 1, produce a primitive solution

(x',y") = (xu+ yvD, uy + vx)

of X2 — Dy = N.
Note that the equation

X' +y'VD = (x + yVD)(u+ vvD)

defines an equivalence relation on the set of all primitive solutions
of x> — Dy? = N.



Associating a congruence class mod || to each
equivalence class

If x> — Dy? = N with gcd(x,y) = 1, then gcd(y, N) = 1.
We define P by x = yP (mod |[N|). Then

x> —Dy? = 0(mod|N|)
y?P? — Dy? = 0(mod|N|)
P> - D = 0(mod|N|)

P> = D(mod|N|).



Primitive solutions (x,y) and (x’, y’) are equivalent if and only if

xx'—yy'D = 0(mod|N|)
yx' —xy’ = 0(mod|N|).

Then (x,y) and (X, y’) are equivalent if and only if
P = P’ (mod |N|).

Hence the number of equivalence classes is finite.



If (x,y) is a solution for a class C, then (—x, y) is a solution for
the conjugate class C*.

It can happen that C* = C, in which case C is called an
ambiguous class.

A class is ambiguous if and only if P =0 or [N|/2(mod |N|).

The solution (x, y) in a class with least y > 0 is called a
fundamental solution.

For an ambiguous class, there are either two (x,y) and (—x, y)
with least y > 0 if x > 0 and one if x = 0, namely (0,1) and we
choose the one with x > 0.



Let w = ’3057;5 = [a0, a1, - - -, ], where Qo|(P§ — D).

Then the n—th complete quotient
Xn = [3nyan+17- . '7] = (Pn+ \/5)/Qn

There is a simple algorithm for calculating a,, P, and Q,:
an= | E52|, (2)

Pn+1 :anQn_Pny

D— P2
— n+1
Qn+1 — Qn

We also note the following important identity
G3—1 - DB%—l = (=1)"QoQn,
where Gn—l = Q()An_l — P()B,,_l.

With w* = P"%Oﬁr we have

Gp1— DBp 1 = (~1)"" Qo Qn.



Necessary conditions for solubility of x> — Dy? = N

Suppose x2 — Dy? = N, gcd(x,y) =1,y > 0.

Let x = yP (mod |N|). Then by dealing with the conjugate class
instead, if necessary, we can assume 0 < P < |N|/2. Also
P2 = D (mod |N|).

Let x = Py + |N|X.

Lagrange substituted for x = Py + |N|X in the equation
x> — Dy? = N to get

2_
INIX2 +2Pxy + EpPly2 = N

He then appealed to a result on a general homogeneous equation
f(X,y) =1 and deduced that X/y is a convergent to a root A of
the equation f(\,1) = 0.



Our main result is:

(i) If x > 0, then X/y is a convergent A,_1/By_1 to w = =£HYD

N
X = Gn—l = PBn_]_ + |N‘An_1 and Qn — (_1)n%

(ii) If x <=0, then X/y is a convergent A;,—1/Bm-1 to
w* = —P‘m@, x=—Gm_1 = PBm_1+ |N|An_1 and
Qm = (71)m+1%.




We prove (i) and (ii) by using the following extension of Theorem
172 in Hardy and Wright's book:

Lemma. If w = %i’g where ( > 1 and U, V,R, S are integers
such that V > 0,5 >0and US— VR =41, 0or § =0 and
V =R =1, then U/V is a convergent to w.



We apply the Lemma to the matrix

U R]_| X B¢
VS o y X )

The matrix has integer entries. For
x = yP (mod |N|) and P? = D (mod | N|).
Hence

—Px + Dy = —P?y + Dy (mod |N|)
= (D — P?)y = 0(mod|N|).



X —Px+Dy
The matrix IN| has determinant
y X
“Px+D
A = Xx— w
[N
(x — Py)x — y(—Px + Dy)
||
2 D 2 N
S +1.

NN



Also if ¢ = /D and w = (—P + v/D)/|N|, it is easy to verify that

UC + R
VE+S

The lemma now implies that U/V = X/y is a convergent
An-1/Bn-1 to w. Also

Gn-1 = QoAn_1 — PoB,—1 = |N|X + Py = x. Hence
N=x2— Dy2 = Gr%—l - DBr21—1 = (—1)”|N]Qn,
so Qn = (—1)"N/|N]|.



There is a similar proof for (ii) by considering the matrix

X Px—Dy ]

IN|
y  —x




Refining the necessary condition for solubility
Lemma. An equivalence class of solutions contains an (x, y) with
x>0andy>0.

Proof. Let (xp, yo) be fundamental solution of a class C. Then if
xp > 0 we are finished. So suppose xp < 0 and let u + vv/D,
u>0,v >0, be a solution of Pell's equation.

Define X and Y by
X + YVD = (xo + yoVD)(u+ vV D).
Then it can be shown that
(a) X <0and Y <0if N >0,
(b) X >0and Y > 0if N < 0.
Hence C contains a solution (X', Y’) with X’ > 0 and Y’ > 0.

Hence a necessary condition for solubility of x> — Dy? = N is that

Qn = (—1)"N/|N| holds for some n in the continued fraction for

—P+VD

w =
IN]




Limiting the search range when testing for necessity

Let w = [ao, ..., at, 3t41, - - > drtl)-

Then by periodicity of the Q;, we can assume that
Qn = (—1)"N/|N]| holds for some n < t + [ if | is even, or
n<t-+2/if |is odd.



Sufficiency

Suppose P? = D (mod|N|), 0 < P < |N|/2 and that

—P+VD .
W= \ETF:[ao""aat,at+17--.,at+/].

(i) Suppose Q, = (—1)"N/|N| for some nin1 <n<t+/iflis
even,or 1 < n<t+2/iflis odd.

Then with G,_1 = |[N|A,_1 + PB,_1, the equation x*> — Dy?> = N
has the solution (G,—1, Bp—1).

(ii) Also let w* = =E2¥/D = [by, ..., b, bsi1, ..., bs1/] and
suppose Qn = (—=1)"TIN/|N| for some min 1 < m<s+/if l'is
even, or 1 < m<s+2/if | is odd. Then x2 — Dy2 = N also has
the solution (Gpm—1, Bm-1).

(iii) The solution (x,y) in (i) and (ii) with smaller y, will be a
fundamental solution for the class P.



Primitivity of solutions

For w = (—P ++/D)/|N]|,
ged (Gpo1,Bp-1) = 1if Q, = —1)"N/|N|. For
ged (Gp-1,Bp—1) = ged (QoAn—1 — PoBn—1,Bn-1)

ng (QOAn—b Bn—l)
= gecd (Qo, Br-1)-

Also

(QoAn—1— PoBp_1)> —DB}_; = N
Q3A2_1 — 2QoPoAn1Bp 1+ (P§ — D)B2_; = N
(P§ — D)

% B2 , = N/IN| = +1.

QA% | —2PyA,_1Bn 1+

Hence ged(Qo, Bp—1) = 1.



An example: x?> —221y? =217 and — 217

We find the solutions of P? = 221 (mod 217) satisfying
0<P<103are P=2and P=33.

(a) =25/22L = [0,16,1,6,2,6,1,28].

217
i 0 1] 2 3 7 5 6 7
B, | —2 | 2| 14 | 11 | 13 3 11 4
Q | 217 | 1| 25 | 4 3 7 25 i
A | 0 T 1 7 5 97 112 | 3233
B; T | 16 | 17 | 118 | 253 | 1636 | 1889 | 54528

The period length is 6 and @ = 1 = (—1)}(—217)/| — 217|.

Hence (Go, Bo) = (2,1) is a solution of x?> — 221y? = —217 and

this is clearly a fundamental one, so there is no need to examine

the continued fraction expansion of _2% V7221



(b) =33¥22L _ [_1 1 10,T,28,1,6,2,6].

217
i 0 1 2 3 4 5 6 7 8
P; —33 —184 29 11 14 14 11 13 13
Q; 217 —155 4 25 1 25 4 13 4
Aj —1 0 —1 —1 —29 —30 —209 —448 —2897
B, 1 1 11 12 347 359 2501 5361 34667

We observe that Q = 1 = (—1)*-217/|217] and the period length
is 6. Hence (Gs, B3) = (179,12) is a solution of x> — 221y? = 217.



c) =3=¥22L _[_11,31,1,6,1,28,1,6,2].

7 0 1 2 3 4 5 6 7
P; 33 | 184 | —29 17 0 13 1 14
Q | —217 | 155 —4 17 13 4 25 1
A —1 0 —1 | -1 | —2 | —13 | —15 | —433
B; T 1 7 5 9 590 68 1963
7 B 9 10
P; 14 11 13
O; 25 4 13

A; | —448 | —3121 | —6690

B; 2031 14149 30329

We observe that Q; = 1 = (—1)% - 217//217|. Hence
(—Gs, Bg) = (1011, 68) is a solution of x2 — 221y? = 217.

It follows from (b) and (c) that (179, 12) is a fundamental solution.

Here ng = 1665 + 1124/221 is the fundamental solution of Pell's
equation. Then the complete solution of x? — 221y? = —217 is
given by

x+yv221 = £(£2 4+ V221)nf, n € Z.
The complete solution of x? — 221y? = 217 is given by
x4+ yv221 = £(£179 4 12v221)nf, n € Z.



Lagrange also discussed the general equation ax? + bxy + cy® = N,
where D = b%? — 4ac > 0 is not a perfect square and gcd(a, N) = 1.

The continued fraction approach goes through with suitable
modifications.

However an exceptional case, not noted by Lagrange, arises when
D =5 and aN < 0, in which there is a solution not arising directly
from convergents.

This was pointed out by Serret in 1877 and dealt with in 1986 by
M. Pavone.

2

An example is x> — xy — y? = —1, where the solution (0, 1) is such

an exception.



We use the following extension of Theorem 172 in Hardy and
Wright's book:

Lemma. If w = (\%i’;, where ( > 1 and U, V,R,S are integers

such that V > 0,5 >0and US— VR ==1,0or S=0 and
V =R =1, then U/V is a convergent to w.

Moreover if @ # S > 0, then

R/S = (An—1 + kAn)/(Bn_1 + kBa), k > 0. Also ¢ + k is the

(n 4 1)-th complete convergent to w. Here k =0 if Q > S, while
k>1if Q<S.




Theorem. Suppose
2 2 __
ax“ + bxy + cy“ = N,

where N # 0, ged(x,y) = 1 = gecd(a, N) and y > 0 and
D = b? — 4ac > 0 is not a perfect square.

Let 6 satisfy x = yf (mod |N|), 0 < 6 < |N|. Then
a0?> + b +c=0 (mod |N|).

Let x =y + |N|X, n=2a0 + b, Q = 3|N|, w = =P and

_ —n-D
w* — HZQ .




Also let n = 2P or 2P + 1, according as b is even or odd. Then

(i) if @X + Py >0, X/y is a convergent A;_1/B;_1 to w and
Qi = (=1)"2N/|N].

(i) Suppose QX + Py < 0. Then

(a)If D#5, or D=5 and —(QX + Py) > y, then X/y is a
convergent A;_1/B;_1 to w* and Q; = (—1)F*2N/|N|.



(b) If D=5 and y > —(QX + Py) > 0, then alN < 0. Also

X _A-Aa  A-A

y B B — B B Bé_B;—l7

where A, /B, and A./B. denote convergents to w and w*,
respectively and

W = [ao,.. .,ar,T], w* = [bo,.. .,bs,T],

where a, > 1if r >0and bs > 1if s > 0.

Moreover X /y is not a convergent to w or w*.



The assumption that gcd(a, N) = 1 involves no loss of generality.
For as pointed out by Gauss in his Disquisitiones, if

gcd(a, b, c) = 1, there exist relatively prime integers «,y such that
aa® + bay + ¢y? = A, where gcd(A, N) = 1.

Then if @d — By = 1, the unimodular transformation
x=aX+BY,y =X + Y converts ax?> + bxy + cy? to
AX? 4+ BXY + CY?. Also the two forms represent the same
integers.



: : 2 2 _ 2\ p—1 _
Example: Solving x* — py* = — (/_o) S, p=4n+3
Let p be a prime of the form 4n+ 3. Then it is classical that the

equation x> — py? =2 (%) has a solution in integers.

So with wy = (1+./p)/2=[A,a1,...,a.-1,2X + 1], there is
exactly one n, 1 < n < L satisfying Q,(—1)" = (%) . (Qy=1and
Lis even and n=L/2.)

Now in solving the given equation, notice that P = 1 is a solution
of P2 = p(mod (p —1)/2).

So with wp = (=1 + /p)/((p — 1)/2), the first complete quotient

is in fact wy.
It follows that the corresponding Q41 is the old @, and so now
Qn(—1)" = — (%) hence there is a solution of
2\ p—1
xX* —py? = - P pT-



John Robertson (September 2004) has produced the following
short proof of the previous result.

Assume X2 — pY?2 = 2 (%) p=4n+3.
Make the integer transformation

x=(pY = X)/2.y = (X = Y)/2.

Then x2 — py? = — (%) (p—1)/2.



