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Abstract

This talk is about the nearest square continued fraction of A.A.K.
Ayyangar (1941) and its use in finding the smallest positive
solution of Pell’s equation x? — Dy? = 1.

Contrary to the 1944 review by D.H. Lehmer, its "slight blemishes”
are indeed compensated by the its period length being about 70%

of that of the regular continued fraction of v/D and also having a

3-case mid-point criterion for solving Pell's equation.



Hugh Williams and Peter Buhr (1979) gave a 6-case midpoint
criterion in terms of Hurwitz' continued fraction of the first kind.
Their paper was rather complicated.

It was after studying their paper that Jim White and John
Robertson came up with a 3-case midpoint criterion using the
nearest square continued fraction.



Euler (1765) gave a two-case midpoint criterion for solving Pell's
equation x2 — Dy? = +1 using the regular continued fraction
(RCF) expansion of v/D.

VD=a+———
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where a9 = |V/D| and a; > 1 for all i.
We write

\/B = [ao, ai,az,.. ]



The n-th convergent is defined by

An/Bn = ag +

Ap and B, can be computed recursively:
Ao = aop, BO = ]_,Al = qpai + 1, B = ai,
Ait1 = ait1Ai + Aica
Bitv1 = ai11Bi + Bi-1,

for i > 1.



The RCF for v/D is periodic with period-length k:

o [30,81,...,3;,,1,3;,,1,...,31,230] Ifk:2h—]_,
\/5 - { [ao,al, ...,dph—1,dp,dh—1,- - .,31,230] if k=2h.

The smallest positive integer solution of x> — Dy? = =41 is given by
(Xay) = (Ak—la Bk—1)7

where A, /B, is the n-th convergent to \/D.



Euler observed that if k =2h — 1,

Ak—1=An-1Bh1+An2Bh2
Bi-1= Bi_y + Bji_s,

while if kK = 2h,

A1 = Bp_1(Ap + Ap2) + (-1)"
Bk—1 = Bh_1(Bn + Bh—2).



Also if
gn = (Pn + \/5)/Qn = [an, ant1, - - ]

is the n-th complete quotient of the RCF expansion of v/D, then
the equations

Qn= Qu1 if k=2h—1,
Pp=Pp1  if k=2h,

enable us to determine h, as Q, = Q,+1 (k odd) and P, = P, 41,
(k even), 1 < v < k imply k = h.



The nearest square continued fraction (NSCF) of a quadratic surd
&o was introduced by A.A.K. Ayyangar (AAK) in 1940 and based
on the cyclic method of solving Pell’s equation due to Bhaskara in
1150.

The NSCF is a half-regular continued fraction. ie.

€1
& =ao +
€2

a -

a +

where the a; are integers and

aj>1le,==+land aj + €41 >1ifi > 1.

We write the continued fraction as

a1 a2



Let & = P+T VD he a quadratic surd in standard form.
D—P?
o are

ie. D is a non-square positive integer and P, Q # 0,
integers, having no common factor other than 1.

Then with a = [£p], the integer part of £y, we can represent &y in
one of two forms (positive or negative representations)

P+ +vD Q' Q
—— =at+t——==a+1- ———~,
Q P'++vD P’ ++vD

where & J“F > 1 and P gf > 1 are also standard surds.

"



These equations imply

/

(1) P=aQ-P;, (2) PP=(a+1)Q—-P,
(3) PP=R-QQ; (4) P*=R+QQ".
These in turn imply

"

(5) PP—P =Qand(6) P'+P =Q +Q".

We get P’ and @' from (1) and (3), then P” and Q" from (5) and
(6), respectively.



AAK chose the partial denominator ag and numerator €; of the
new continued fraction development as follows:

(a) ap=aif |Q| < |Q"], or |Q|=|Q"| and @ <0,
(b) ap=a+1if|Q|>|Q"| or |Q|=|Q"| and Q > 0.

Also
e1=1 and & = P%@ in case (a),

and 51 — P”+\/5

ol in case (b).

€1 =—1



Then § = ag + ¢ and

€1 = 1,39 is an integer and £ =
We proceed similarly with & and so on:

€n+1
§n+1

é.n =an+
and

€1l e

P +vD
Ql > 1.

fo=ao+ —+—+--

la1 a2

&ny1 is called the successor of &,.



Relations analogous to those for regular continued fractions hold
for P,, Q, and a,,n > 0:

Pn+1+Pn:anQn
Pf%—&-l + €nt1 QnQn—l—l =D.
The |@,| successively diminish as long as |Q,| > v/D and so

eventually, we have |Q,| < v'D. When this stage is reached,
0<Pi<2y/Dand 0< Q; < VD fori>n+1.

This implies eventual periodicity of the complete quotients and
hence the partial quotients.



AAK defines £, to be a special surd if
Q1 +3Q <D, Q+3;Q7,<D.

A semi-reduced surd is the successor of a special surd.
A reduced surd to the successor of a semi-reduced surd.
Properties:

1. A semi-reduced surd is a special surd.

2. A quadratic surd has a purely periodic NSCF expansion if and
only if it is reduced.

3. If &, is reduced, then P, > 0,Q, > 0 and a, > 2.

Examples: (i) Lppbﬂf,p >2q > 0,gcd(p, q) = 1,

(ii) the successor of v/D.



The NSCF development of v/D has the form

€ €
\/5:30+i‘+...L|’ (1)
‘31 ‘230

*

where the asterisks denote a period of length k and &, = {,4«,
€p = €ptk, ap = aptk for p > 1.

Note: ag is the nearest integer to v/D.
There are two types of NSCF expansions of v/D:



pP+a++/p?+4?

(1) No complete quotient of the cycle has the form . ,

where p > 2g > 0, gcd(p, q) = 1.
This type possesses the classical symmetries of the regular
continued fraction if k > 1:

a, = a-y, (1<v<k-1)
Q = Qk—v (1§V§k_1)
e = €1 (1<v<k)
P, = Py (L<v<k).

Note: If k =2h+ 1, then Qp = Qh+1-
Conversely Q, = Q,+1,1 < v < k implies v = h.

If k =2h, then Py, = Pp1.
Conversely P, = P,41,1 < v < k implies v = h.



Examples.

R (R T TR
Vi =4+t H- -3t R

V73 =9- |2|
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(even period)
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8" (odd period)



(I1) There is one complete quotient &, in the cycle of the form

/ n2 2
M, where p > 2g > 0,gcd(p, g) = 1. In this case k > 4
is even and h = k/2. This type also possesses the symmetries of
Type |, apart from a central set of three unsymmetrical terms:

ag I2,€g = —1,€§+1 = 1,3%_1 = a%_’_l"i‘l-
€ x4 1 1 €
ﬁ:ao+i|+...+ 2 _J 7|+...+L|.
\al ’3571 ’2 ‘3571 -1 ‘230
* 2 2 *

Forexample\@=5+%—|1§‘+lj‘+%-

Other examples are 53,58, 85, 97.



E, is the number of D < 10" of Type | with even period.
O, is the number of D < 10" of Type | with odd period.
Fp is the number of D < 10" of Type II.

N, is the number of D < 10".

n E, On Fn N,
2 60 25 5 90

3 762 165 42 969

4 8252 1266 382 9900
5 85856 10465 3363 99684
6 878243 90533 30224 999000



Note: P, # P,11,1 < v < k.

en=—1, Qu_1 is even and P, = Qn + 1 Qp_1
(observed by John Robertson and Jim White).

Conversely if ¢, = —1, Q,_1 is even and
P, =Q,+1Qy-1,1 < v <k, then D is of Type Il and v = h.



For both types | and Il, we have Q, = 1. For

VD= a0+ 2%
o P1+\F
_ +61@’1(/31—\@)
P2 D
=ayg— P+ \/5

Hence P; = ag. Then

P1 = Pk (symmetry)
P1 = Pky1 (periodicity)
2a9 = 2P; = Pic + Piq1
= ak Qk
= 2a9 Q.

Note: & = M—a ++/D.



A classical result for a half-regular expansion of & = P"%;@ is

A2 — DB2 = (—1)"(e1e2 - €nt1) Qni1 Qo
In the special case &y = VD, where Qy = 1 = Qx, we have
A2 . —DB2 | =(-1)ke1er- €.

Also by periodicity, @, = 1 if k divides n.



Conversely, suppose Q, =1,n> 1.

Then &, = P, + V/D.

We prove P, = [V/D] = ao, the nearest integer to v/D.
Then &, = ap + VD = & and k divides n.



We start with P2 +¢,Q,_1Q, = D, noting that Q,_1 > 0, @, > 0.
Case 1. P, >+/D. Then ¢, = —1.

P2 — D = Qu-1 < VD (&, is reduced)
vD VD 1

0<P,—VD< < _—
! P,+vVD 2D 2

Hence P, = [V/D].



Case 2. P, </D. Thene, =1.

Q21 +1Q2<D =P+ Q1 (& is reduced)
(Qn 1= ) <P2

anl_§§Pn
anlgpn"i'%
D—P3=Qn1< Py
P, P, 1
0<vVD-P,< —”:f.
VD+P, 2P 2

Again P, = [VD].



The convergents Ayr—1/Bke—1,t > 1, in fact give all positive
integer solutions of Pell's equation x> — Dy? = +1.

For if x2 — Dy? = +1, x > 0,y > 0, we can prove that x/y is an
NSCF convergent to /D, as follows.

It is certainly an RCF convergent.

We now introduce a transformation ¥ of Perron, which converts a
half-regular continued fraction to an RCF:



To get the RCF partial quotients:

+1f

Before a negative partial numerator, insert the term T

Replace each a,, n > 0 by:

(a) ap if €= +1, €np1= +1,

(b) an —1if €= 41, €pp1= -1, or €= -1, €py1= +1,
(c) an—2if ep=-1, €py1=-1.

Here ¢g = 1.

Note: If £, and £,41 are NSCF reduced quadratic surds and
€, = —1and €,41 = —1, then a, > 3.

Hence ¥; produces a "genuine” RCF, ie. with no zero partial
quotients.



For n > 0,

(i) €nt1 = —1 gives rise to RCF convergents

A:n—l/B/ (An - An—l)/(Bn - Bn—l)a Ai‘n/BI/TI = An/Bn

m—1—
and RCF complete quotients

P, + D P .1+ VD
= = &np1/(Enr1 — 1), —o——

—m =& — L
Q{‘n m—+1 !

(ii) €ny1 =1 gives rise to RCF convergent A,/B, and RCF
complete quotient &,11.



It is not difficult to show that x/y does not have the form
(An — An—1)/(Bn — Ba—1) and hence x/y must also be an NSCF

convergent.

Remark. Arguing along these lines shows that the period length of
the RCF expansion of V/D is k + r, where r is the number of

€n = —1 occurring in the period partial numerators €1, ..., €, of
the NSCF expansion of v/D.



Example. D = 97. The NSCF expansion of /97 is of type Il, with
period-length 6. There are five ¢, = —1 in the period range
1 <7 <6 and the period-length of the RCF expansion is 11.

T[] & g & [ ai ] 4 Ai/B; AL/E]

o 1 o o+;/<ﬁ 0+}/ﬁ 1| 10 9 10/1 9/1

) 9407 1 10/1

> |1 10+3\/97 7+%/97 1 7 5 69/7 59/6

3 8+1\1/ﬁ 1 69/7

s | 2 n+8\/ﬁ 3+g/ﬁ -1 3 1 197/20 128/13

5 5+ g/ﬁ 1 197/20

6 3 13+9\/ﬁ 4+5/ﬁ —1 2 1 325/33 325/33

7 4 5+g/9*7 5+g/ﬁ 1 2 1 847/86 522/53

8 3+1\1/ﬁ 1 847/86

9 5 11+3\/ﬁ 8+3/ﬁ —1 7 5 5604 /569 4757/483
o 7+1\6/ﬁ 1 5604 /569
1 le 1o+1\/ﬁ 9+}/ﬁ —1 | 20 | 18 | 111233/11294 | 105629/10725
1 9+1gﬁ 1 111233/11294
13 | 7 | 100007 7+5/977 _1 7 5 | 773027/78480 | 661794/67195




Exactly one of the following P, Q and PQ tests will apply for any
D > 0, not a square:

P-test: For some h, 1 < h < k, P, = Ppy1, in which case k = 2h
and

Ak—1=AnBp_1+ €pAp-1Bp_2
Bi—1 = Bh—1(Bh + €, Bh—2).

In this case A,z(_1 — DB,%_1 =1.



Q-test: For some h, 0 < h < k, Qp = Qp+1, in which case
k=2h+1 and

Ak—1 = AnBh + €nr1An-1Br_1

Bi_1 = B,z, + €h+1B;2,_1.

In this case Ai_l — DB,%_1 = —€pt1-



PQ-test: For some h, 1 < h < k, Qu_1 is even, P, = Qp + 1 Qn_1
and €, = —1, in which case kK = 2h and

Ak—1 = ApBn_1 — Bh_2(Ap—1 — An_2)
Bx_1 =2B2 | — ByBj_o.

In this case Ai_l — DB,%_1 = —1.



The formulae for Ax_1 and Bx_1 depend on the following
conservation identities which are proved using " downward”
induction on t:

(i) Let k =2h+ 1. Then for Type | and 0 < t < h, we have
Aoh = AnttBh—t + €n14tAntt-1Bh—t—1
Bop = BhttBh—t + €ny1+¢Bhryrt—1Bh—t-1

(ii) Let k =2h. Then for Type | and 0 < t < h, or Type Il with
h>2and 2 <t <h, we have

Aoh—1 = Ahtt—1Bh—t + €nttAnst—2Brt—1
Boh—1 = Bhit—1Bh—t + €nt-tBhyt—2Br_t—1



Let m(D) and p(D) respectively denote the periods of the NSCF
and RCF expansions of v/D, where D is not a perfect square and

let

N(n)=Y_=(D), P(n)=7_ p(D).

D<n D<n

n M(n) p(n) | N(n)/P(n)
1000000 | 152198657 | 219245100 | .6941941
2000000 | 417839927 | 601858071 | .6942499
3000000 | 755029499 | 1087529823 | .6942609
4000000 | 1149044240 | 1655081352 | .6942524
5000000 | 1592110649 | 2293328944 | .6942356
6000000 | 2078609220 | 2994112273 | .6942322
7000000 | 2604125007 | 3751067951 | .6942356
8000000 | 3165696279 | 4559939520 | .6942408
9000000 | 3760639205 | 5416886128 | .6942437
10000000 | 4387213325 | 6319390242 | .6942463




There are grounds for believing that

log ( 1+2\/§)

log 2

N(n)/P(n) — =.6942419.- - -

For D with a long RCF period, we expect 7(D)/p(D) to be near
this value.

For example, D = 26437680473689, Daniel Shanks (1974) and
quoted by William Adams (1979).

p(D) = 18331889, 7(D) = 12726394, w(D)/p(D) = .6942216 - - -

This D obeys the PQ-test.



AAK'’s paper and a IATEX version are available at
http://www.numbertheory.org/continued_fractions.html

BCMATH versions of NSCF and some other continued fraction
algorithms are available at

http://www.numbertheory.org/php/CFRAC.html



