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Abstract

This talk is about the nearest square continued fraction of A.A.K.
Ayyangar (1941) and its use in finding the smallest positive
solution of Pell’s equation x2 − Dy2 = ±1.

Contrary to the 1944 review by D.H. Lehmer, its ”slight blemishes”
are indeed compensated by the its period length being about 70%
of that of the regular continued fraction of

√
D and also having a

3-case mid-point criterion for solving Pell’s equation.



Hugh Williams and Peter Buhr (1979) gave a 6-case midpoint
criterion in terms of Hurwitz’ continued fraction of the first kind.
Their paper was rather complicated.

It was after studying their paper that Jim White and John
Robertson came up with a 3-case midpoint criterion using the
nearest square continued fraction.



Euler (1765) gave a two-case midpoint criterion for solving Pell’s
equation x2 − Dy2 = ±1 using the regular continued fraction
(RCF) expansion of

√
D.

√
D = a0 +

1

a1 +
1

a2 + · · ·

where a0 = b
√

Dc and ai ≥ 1 for all i .
We write √

D = [a0, a1, a2, . . .].



The n-th convergent is defined by

An/Bn = a0 +
1

a1 +
1

. . . +
1

an−1 +
1

an

An and Bn can be computed recursively:

A0 = a0,B0 = 1,A1 = a0a1 + 1,B1 = a1,

Ai+1 = ai+1Ai + Ai−1

Bi+1 = ai+1Bi + Bi−1,

for i ≥ 1.



The RCF for
√

D is periodic with period-length k:

√
D =

{
[a0, a1, . . . , ah−1, ah−1, . . . , a1, 2a0] if k = 2h − 1,
[a0, a1, . . . , ah−1, ah, ah−1, . . . , a1, 2a0] if k = 2h.

The smallest positive integer solution of x2−Dy2 = ±1 is given by

(x , y) = (Ak−1,Bk−1),

where An/Bn is the n-th convergent to
√

D.



Euler observed that if k = 2h − 1,

Ak−1 = Ah−1Bh−1 + Ah−2Bh−2

Bk−1 = B2
h−1 + B2

h−2,

while if k = 2h,

Ak−1 = Bh−1(Ah + Ah−2) + (−1)h

Bk−1 = Bh−1(Bh + Bh−2).



Also if
ξn = (Pn +

√
D)/Qn = [an, an+1, . . .]

is the n-th complete quotient of the RCF expansion of
√

D, then
the equations

Qh = Qh−1 if k = 2h − 1,
Ph = Ph+1 if k = 2h,

enable us to determine h, as Qv = Qv+1 (k odd) and Pv = Pv+1,
(k even), 1 ≤ v < k imply k = h.



The nearest square continued fraction (NSCF) of a quadratic surd
ξ0 was introduced by A.A.K. Ayyangar (AAK) in 1940 and based
on the cyclic method of solving Pell’s equation due to Bhaskara in
1150.
The NSCF is a half-regular continued fraction. ie.

ξ0 = a0 +
ε1

a1 +
ε2

a2 + · · ·

where the ai are integers and

ai ≥ 1, εi = ±1 and ai + εi+1 ≥ 1 if i ≥ 1.

We write the continued fraction as

ξ0 = a0 +
ε1|
|a1

+
ε2|
|a2

+ · · ·



Let ξ0 = P+
√

D
Q be a quadratic surd in standard form.

ie. D is a non-square positive integer and P,Q 6= 0, D−P2

Q are
integers, having no common factor other than 1.

Then with a = bξ0c, the integer part of ξ0, we can represent ξ0 in
one of two forms (positive or negative representations)

P +
√

D

Q
= a +

Q ′

P ′ +
√

D
= a + 1− Q

′′

P ′′ +
√

D
,

where P′+
√

D
Q′ > 1 and P

′′
+
√

D
Q′′

> 1 are also standard surds.



These equations imply

(1) P ′ = aQ − P; (2) P
′′

= (a + 1)Q − P,

(3) P ′2 = R − QQ ′; (4) P
′′2

= R + QQ
′′
.

These in turn imply

(5) P
′′ − P ′ = Q and (6) P

′′
+ P ′ = Q ′ + Q

′′
.

We get P ′ and Q ′ from (1) and (3), then P
′′

and Q
′′

from (5) and
(6), respectively.



AAK chose the partial denominator a0 and numerator ε1 of the
new continued fraction development as follows:

(a) a0 = a if |Q ′| < |Q ′′ |, or |Q ′| = |Q ′′ | and Q < 0,

(b) a0 = a + 1 if |Q ′| > |Q ′′ |, or |Q ′| = |Q ′′ | and Q > 0.

Also
ε1 = 1 and ξ1 = P′+

√
D

Q′ in case (a),

ε1 = −1 and ξ1 = P
′′
+
√

D
Q′′

in case (b).



Then ξ0 = a0 + ε1
ξ1

and

ε1 = ±1, a0 is an integer and ξ1 = P1+
√

D
Q1

> 1.

We proceed similarly with ξ1 and so on:

ξn = an +
εn+1

ξn+1

and

ξ0 = a0 +
ε1|
|a1

+
ε2|
|a2

+ · · ·

ξn+1 is called the successor of ξn.



Relations analogous to those for regular continued fractions hold
for Pn,Qn and an, n ≥ 0:

Pn+1 + Pn = anQn

P2
n+1 + εn+1QnQn+1 = D.

The |Qn| successively diminish as long as |Qn| >
√

D and so
eventually, we have |Qn| <

√
D. When this stage is reached,

0 < Pi < 2
√

D and 0 < Qi <
√

D for i ≥ n + 1.

This implies eventual periodicity of the complete quotients and
hence the partial quotients.



AAK defines ξv to be a special surd if

Q2
v−1 + 1

4Q2
v ≤ D, Q2

v + 1
4Q2

v−1 ≤ D.

A semi-reduced surd is the successor of a special surd.
A reduced surd to the successor of a semi-reduced surd.

Properties:

1. A semi-reduced surd is a special surd.

2. A quadratic surd has a purely periodic NSCF expansion if and
only if it is reduced.

3. If ξv is reduced, then Pv > 0,Qv > 0 and av ≥ 2.

Examples: (i)
p+q+

√
p2+q2

p , p > 2q > 0, gcd(p, q) = 1,

(ii) the successor of
√

D.



The NSCF development of
√

D has the form

√
D = a0 +

ε1|
|a1
∗

+ · · · εk |
|2a0
∗

, (1)

where the asterisks denote a period of length k and ξp = ξp+k ,
εp = εp+k , ap = ap+k for p ≥ 1.

Note: a0 is the nearest integer to
√

D.

There are two types of NSCF expansions of
√

D:



(I) No complete quotient of the cycle has the form
p+q+

√
p2+q2

p ,
where p > 2q > 0, gcd(p, q) = 1.
This type possesses the classical symmetries of the regular
continued fraction if k > 1:

av = ak−v (1 ≤ v ≤ k − 1)
Qv = Qk−v (1 ≤ v ≤ k − 1)
εv = εk+1−v (1 ≤ v ≤ k)
Pv = Pk+1−v (1 ≤ v ≤ k).

Note: If k = 2h + 1, then Qh = Qh+1.
Conversely Qv = Qv+1, 1 ≤ v < k implies v = h.

If k = 2h, then Ph = Ph+1.
Conversely Pv = Pv+1, 1 ≤ v < k implies v = h.



Examples.√
73 = 9− 1|

|2
∗

+ 1|
|5 + 1|

|5 + 1|
|2 −

1|
|18
∗

. (odd period)
√

19 = 4 + 1|
|3
∗
− 1|
|5 −

1|
3 + 1|

|8
∗

. (even period)
√

n2 + 1 = n + 1|
|2n
∗

(n ≥ 1),
√

n2 − 1 = n − 1|
|2n
∗

(n > 1).



(II) There is one complete quotient ξh in the cycle of the form
p+q+

√
p2+q2

p , where p > 2q > 0, gcd(p, q) = 1. In this case k ≥ 4
is even and h = k/2. This type also possesses the symmetries of
Type I, apart from a central set of three unsymmetrical terms:

a k
2

= 2, ε k
2

= −1, ε k
2
+1 = 1, a k

2
−1 = a k

2
+1 + 1.

√
D = a0 +

ε1|
|a1
∗

+ · · ·+
ε k

2
−1|
|a k

2
−1

− 1|
|2

+
1|

|a k
2
−1 − 1

+ · · ·+ εk |
|2a0
∗

.

For example
√

29 = 5 + 1|
|3
∗
− 1|
|2 + 1|

2 + 1|
|10
∗

.

Other examples are 53, 58, 85, 97.



En is the number of D < 10n of Type I with even period.

On is the number of D < 10n of Type I with odd period.

Fn is the number of D < 10n of Type II.

Nn is the number of D < 10n.

n En On Fn Nn

2 60 25 5 90
3 762 165 42 969
4 8252 1266 382 9900
5 85856 10465 3363 99684
6 878243 90533 30224 999000



Note: Pv 6= Pv+1, 1 ≤ v < k .

εh = −1, Qh−1 is even and Ph = Qh + 1
2
Qh−1

(observed by John Robertson and Jim White).

Conversely if εv = −1, Qv−1 is even and
Pv = Qv + 1

2
Qv−1, 1 ≤ v < k , then D is of Type II and v = h.



For both types I and II, we have Qk = 1. For

√
D = a0 +

ε1Q1

P1 +
√

D

= a0 +
ε1Q1(P1 −

√
D)

P2
1 − D

= a0 − P1 +
√

D.

Hence P1 = a0. Then

P1 = Pk (symmetry)

P1 = Pk+1 (periodicity)

2a0 = 2P1 = Pk + Pk+1

= akQk

= 2a0Qk .

Note: ξk = Pk+
√

D
Qk

= a0 +
√

D.



A classical result for a half-regular expansion of ξ0 = P0+
√

D
Q0

is

A2
n − DB2

n = (−1)n+1(ε1ε2 · · · εn+1)Qn+1Q0.

In the special case ξ0 =
√

D, where Q0 = 1 = Qk , we have

A2
k−1 − DB2

k−1 = (−1)kε1ε2 · · · εk .

Also by periodicity, Qn = 1 if k divides n.



Conversely, suppose Qn = 1, n ≥ 1.

Then ξn = Pn +
√

D.

We prove Pn = [
√

D] = a0, the nearest integer to
√

D.

Then ξn = a0 +
√

D = ξk and k divides n.



We start with P2
n + εnQn−1Qn = D, noting that Qn−1 > 0,Qn > 0.

Case 1. Pn >
√

D. Then εn = −1.

P2
n − D = Qn−1 <

√
D (ξn is reduced)

0 < Pn −
√

D <

√
D

Pn +
√

D
<

√
D

2
√

D
=

1

2
.

Hence Pn = [
√

D].



Case 2. Pn <
√

D. Then εn = 1.

Q2
n−1 + 1

4
Q2

n ≤ D = P2
n + Qn−1 (ξn is reduced)

(Qn−1 − 1
2
)2 ≤ P2

n

Qn−1 − 1
2
≤ Pn

Qn−1 ≤ Pn + 1
2

D − P2
n = Qn−1 ≤ Pn

0 <
√

D − Pn ≤
Pn√

D + Pn

<
Pn

2Pn
=

1

2
.

Again Pn = [
√

D].



The convergents Akt−1/Bkt−1, t ≥ 1, in fact give all positive
integer solutions of Pell’s equation x2 − Dy2 = ±1.

For if x2 − Dy2 = ±1, x > 0, y > 0, we can prove that x/y is an
NSCF convergent to

√
D, as follows.

It is certainly an RCF convergent.

We now introduce a transformation T1 of Perron, which converts a
half-regular continued fraction to an RCF:



To get the RCF partial quotients:

Before a negative partial numerator, insert the term +1|
|1 .

Replace each an, n ≥ 0 by:

(a) an if εn= +1, εn+1= +1,

(b) an − 1 if εn= +1, εn+1= -1, or εn= -1, εn+1= +1,

(c) an − 2 if εn= -1, εn+1= -1.

Here ε0 = 1.

Note: If ξv and ξv+1 are NSCF reduced quadratic surds and
εv = −1 and εv+1 = −1, then av ≥ 3.

Hence T1 produces a ”genuine” RCF, ie. with no zero partial
quotients.



For n ≥ 0,

(i) εn+1 = −1 gives rise to RCF convergents

A′m−1/B
′
m−1 = (An −An−1)/(Bn −Bn−1), A′m/B

′
m = An/Bn

and RCF complete quotients

P ′m +
√

D

Q ′m
= ξn+1/(ξn+1 − 1),

P ′m+1 +
√

D

Q ′m+1

= ξn+1 − 1.

(ii) εn+1 = 1 gives rise to RCF convergent An/Bn and RCF
complete quotient ξn+1.



It is not difficult to show that x/y does not have the form
(An − An−1)/(Bn − Bn−1) and hence x/y must also be an NSCF
convergent.

Remark. Arguing along these lines shows that the period length of
the RCF expansion of

√
D is k + r , where r is the number of

εn = −1 occurring in the period partial numerators ε1, . . . , εk of
the NSCF expansion of

√
D.



Example. D = 97. The NSCF expansion of
√

97 is of type II, with
period-length 6. There are five εi = −1 in the period range
1 ≤ i ≤ 6 and the period-length of the RCF expansion is 11.

j i ξi ξ′j εi ai a′j Ai/Bi A′j /B
′
j

0 0 0+
√

97
1

0+
√

97
1

1 10 9 10/1 9/1

1 9+
√

97
16

1 10/1

2 1 10+
√

97
3

7+
√

97
3

−1 7 5 69/7 59/6

3 8+
√

97
11

1 69/7

4 2 11+
√

97
8

3+
√

97
8

−1 3 1 197/20 128/13

5 5+
√

97
9

1 197/20

6 3 13+
√

97
9

4+
√

97
9

−1 2 1 325/33 325/33

7 4 5+
√

97
8

5+
√

97
8

1 2 1 847/86 522/53

8 3+
√

97
11

1 847/86

9 5 11+
√

97
3

8+
√

97
3

−1 7 5 5604/569 4757/483

10 7+
√

97
16

1 5604/569

11 6 10+
√

97
1

9+
√

97
1

−1 20 18 111233/11294 105629/10725

12 9+
√

97
16

1 111233/11294

13 7 10+
√

97
3

7+
√

97
3

−1 7 5 773027/78489 661794/67195



Exactly one of the following P, Q and PQ tests will apply for any
D > 0, not a square:

P-test: For some h, 1 ≤ h < k , Ph = Ph+1, in which case k = 2h
and

Ak−1 = AhBh−1 + εhAh−1Bh−2

Bk−1 = Bh−1(Bh + εhBh−2).

In this case A2
k−1 − DB2

k−1 = 1.



Q-test: For some h, 0 ≤ h < k , Qh = Qh+1, in which case
k = 2h + 1 and

Ak−1 = AhBh + εh+1Ah−1Bh−1

Bk−1 = B2
h + εh+1B

2
h−1.

In this case A2
k−1 − DB2

k−1 = −εh+1.



PQ-test: For some h, 1 ≤ h < k , Qh−1 is even, Ph = Qh + 1
2
Qh−1

and εh = −1, in which case k = 2h and

Ak−1 = AhBh−1 − Bh−2(Ah−1 − Ah−2)

Bk−1 = 2B2
h−1 − BhBh−2.

In this case A2
k−1 − DB2

k−1 = −1.



The formulae for Ak−1 and Bk−1 depend on the following
conservation identities which are proved using ”downward”
induction on t:

(i) Let k = 2h + 1. Then for Type I and 0 ≤ t ≤ h, we have

A2h = Ah+tBh−t + εh+1+tAh+t−1Bh−t−1

B2h = Bh+tBh−t + εh+1+tBh+t−1Bh−t−1

(ii) Let k = 2h. Then for Type I and 0 ≤ t ≤ h, or Type II with
h ≥ 2 and 2 ≤ t ≤ h, we have

A2h−1 = Ah+t−1Bh−t + εh+tAh+t−2Bh−t−1

B2h−1 = Bh+t−1Bh−t + εh+tBh+t−2Bh−t−1



Let π(D) and p(D) respectively denote the periods of the NSCF
and RCF expansions of

√
D, where D is not a perfect square and

let
Π(n) =

∑
D≤n

π(D), P(n) =
∑
D≤n

p(D).

n Π(n) p(n) Π(n)/P(n)

1000000 152198657 219245100 .6941941
2000000 417839927 601858071 .6942499
3000000 755029499 1087529823 .6942609
4000000 1149044240 1655081352 .6942524
5000000 1592110649 2293328944 .6942356
6000000 2078609220 2994112273 .6942322
7000000 2604125007 3751067951 .6942356
8000000 3165696279 4559939520 .6942408
9000000 3760639205 5416886128 .6942437

10000000 4387213325 6319390242 .6942463



There are grounds for believing that

Π(n)/P(n)→
log (1+

√
5

2 )

log 2
= .6942419 · · ·

For D with a long RCF period, we expect π(D)/p(D) to be near
this value.

For example, D = 26437680473689, Daniel Shanks (1974) and
quoted by William Adams (1979).

p(D) = 18331889, π(D) = 12726394, π(D)/p(D) = .6942216 · · ·

This D obeys the PQ-test.



AAK’s paper and a LATEX version are available at

http://www.numbertheory.org/continued fractions.html

BCMATH versions of NSCF and some other continued fraction
algorithms are available at

http://www.numbertheory.org/php/CFRAC.html


