
Solving x2 −Dy2 = N in integers, where

D > 0 is not a perfect square.

Keith Matthews

Abstract

We describe a neglected algorithm, based on

simple continued fractions, due to Lagrange,

for deciding the solubility of x2 −Dy2 = N ,

with gcd(x, y) = 1, where D > 0 and is not a

perfect square. In the case of solubility, the

fundamental solutions are also constructed.
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Lagrange’s well-known algorithm

In 1768, Lagrange showed that if

x2 −Dy2 = N , x > 0, y > 0,gcd(x, y) = 1 and

|N | <
√
D, then x/y is a convergent An/Bn of

the simple continued fraction of
√
D. For we

have

(x+
√
Dy)(x−

√
Dy) = N

|x−
√
Dy| =

|N |
x+
√
Dy

<
D

x+
√
Dy

.

Hence

x

y
>
√
D ⇒

∣∣∣∣∣xy −
√
D

∣∣∣∣∣ < 1

2y2

and

x

y
<
√
D ⇒

∣∣∣∣∣yx − 1√
D

∣∣∣∣∣ < 1

2x2
.
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If
√
D = [a0, a1, . . . , al], due to periodicity of

(−1)n+1A2
n −DB2

n, for solubility, we need only
check the values for the range
0 ≤ n ≤ bl/2c − 1. To find all solutions, we
check the range 0 ≤ n ≤ l − 1.

Example: x2 − 13y2 = 3.

√
13 = [3,1,1,1,1,6].

n An/Bn A2
n − 13B2

n
0 3/1 −4
1 4/1 3
2 7/2 −3
3 11/3 4
4 18/5 −1

The positive solutions (x, y) are given by

x+ y
√

13 =

{
η2n(4 +

√
13), n ≥ 0,

η2n+1(7 + 2
√

13), n ≥ 0,

where η = 18 + 5
√

13.

Note: 7 + 2
√

13 = −η(−4 +
√

13).
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Example: x2 − 221y2 = 4.

√
221 = [14,1,6,2,6,1,28].

n An/Bn A2
n − 221B2

n
0 14/1 −25
1 15/1 4
2 104/7 −13
3 223/15 4
4 1442/97 −25
5 1665/112 1

The positive solutions (x, y), gcd(x, y) = 1,

are given by

x+ y
√

221 =

{
ηn(15 +

√
221), n ≥ 0,

ηn(223 + 15
√

221), n ≥ 0,

where η = 1665 + 112
√

221.

Note: (i) x2 − 221y2 = −4 has no solution in

positive (x, y) with gcd(x, y) = 1.

(ii) 223 + 15
√

221 = −η(−15 +
√

221).
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In 1770, Lagrange gave a neglected algorithm

for solving x2 −Dy2 = N for arbitrary N 6= 0,

using the continued fraction expansions of

(P ±
√
D)/|N |, where P2 ≡ D (mod |N |),

−|N |/2 < P ≤ |N |/2.

The difficulty is to show that all solutions

arise from the continued fractions and

Lagrange’s discussion of this was hard to

follow.

My contribution was to give a short proof

using a unimodular matrix lemma (Theorem

172 of Hardy and Wright) which gives a

sufficient test for a rational to be a

convergent of a simple continued fraction.
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Pell’s equation

The special case N = 1 is known as Pell’s

equation. If η0 = x0 + y0
√
D denotes the

fundamental solution of x2 −Dy2 = 1, ie, the

solution with least positive x and y, then the

general solution is given by

x+ y
√
D = ±ηn0, n ∈ Z.

We can calculate (x0, y0) by expanding
√
D as

a periodic continued fraction:
√
D = [a0, a1, . . . , al].

Then

x0/y0 =


Al−1
Bl−1

, if l is even
A2l−1
B2l−1

, if l is odd,
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Equivalence classes of primitive solutions

of x2 −Dy2 = N.

The identity

(x2−Dy2)(u2−Dv2) = (xu+yvD)2−D(uy+vx)2

shows that primitive solutions (x, y) of

x2 −Dy2 = N and (u, v) of Pell’s equation

u2 −Dv2 = 1, produce a primitive solution

(x′, y′) = (xu+ yvD, uy + vx)

of x′2 −Dy′2 = N .

Note that

x′+ y′
√
D = (x+ y

√
D)(u+ v

√
D). (1)

Equation (1) defines an equivalence relation

on the set of all primitive solutions of

x2 −Dy2 = N .
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Associating a congruence class mod |N |
to each equivalence class.

If x2 −Dy2 = N with gcd(x, y) = 1, then

gcd(y,N) = 1.

We define P by x ≡ yP (mod |N |). Then

x2 −Dy2 ≡ 0 (mod |N |)
y2P2 −Dy2 ≡ 0 (mod |N |)

P2 −D ≡ 0 (mod |N |)
P2 ≡ D (mod |N |).
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Primitive solutions (x, y) and (x′, y′) are

equivalent if and only if

xx′ − yy′D ≡ 0 (mod |N |)
yx′ − xy′ ≡ 0 (mod |N |).

Then (x, y) and (x′, y′) are equivalent if and

only if P ≡ P ′ (mod |N |).

Hence the number of equivalence classes is

finite.
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If (x, y) is a solution for a class C, then (−x, y)

is a solution for the conjugate class C∗.

It can happen that C∗ = C, in which case C is

called an ambiguous class.

A class is ambiguous if and only if P ≡ 0 or

|N |/2 (mod |N |).

The solution (x, y) in a class with least y > 0

is called a fundamental solution.

For an ambiguous class, there are either two

(x, y) and (−x, y) with least y > 0 if x > 0 and

one if x = 0, namely (0,1) and we choose the

one with x ≥ 0.
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Continued fractions of quadratic

irrationalities.

Let ω = P0+
√
D

Q0
= [a0, a1, . . . , ], where

Q0|(P2
0 −D).

Then the n–th complete quotient

xn = [an, an+1, . . . , ] = (Pn +
√
D)/Qn.

There is a simple algorithm for calculating an,

Pn and Qn:

an =
⌊
Pn+

√
D

Qn

⌋
, (2)

Pn+1 = anQn − Pn,

Qn+1 =
D−P2

n+1
Qn

.

We also note the following important identity

G2
n−1 −DB

2
n−1 = (−1)nQ0Qn,

where Gn−1 = Q0An−1 − P0Bn−1.

In (2) we can replace
√
D by bDc or 1 + bDc

according as Qn > 0 or Qn < 0.
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Necessary conditions for solubility of

x2 −Dy2 = N .

Suppose x2 −Dy2 = N,gcd(x, y) = 1, y > 0.

Let x ≡ yP (mod |N |). Then by dealing with

the conjugate class instead, if necessary, we

can assume 0 ≤ P ≤ |N |/2. Also

P2 ≡ D (mod |N |).

Let x = Py + |N |X.

Lagrange substituted for x = Py + |N |X in

the equation x2 −Dy2 = N to get

|N |X2 + 2PXy + (P2−D)
|N | y2 = N

|N |.

He then appealed to a result on a general

homogeneous equation f(X, y) = 1 and

deduced that X/y is a convergent to a root of

equation f(X, y) = 0.
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We prove

(i) If x ≥ 0, then X/y is a convergent

An−1/Bn−1 to ω = −P+
√
D

|N | and

Qn = (−1)n N
|N |.

(ii) If x < 0, then X/y is a convergent

Am−1/Bm−1 to ω∗ = −P−
√
D

|N | and

Qm = (−1)m+1 N
|N |.
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We prove part (i) by using the following

extension of Theorem 172 in Hardy and

Wright’s book:

Lemma. If ω = Uζ+R
V ζ+S , where ζ > 1 and

U, V,R, S are integers such that V > 0, S > 0

and US − V R = ±1, or S = 0 and V = R = 1,

then U/V is a convergent to ω.
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We apply the Lemma to the matrix[
U R
V S

]
=

 X −Px+Dy
|N |

y x

 .
The matrix has integer entries. For

x ≡ yP (mod |N |) and P2 ≡ D (mod |N |).

Hence

−Px+Dy ≡ −P2y +Dy (mod |N |)

≡ (D − P2)y ≡ 0 (mod |N |).

15



The matrix

 X −Px+Dy
|N |

y x

 has determinant

∆ = Xx−
y(−Px+Dy)

|N |

=
(x− Py)x− y(−Px+Dy)

|N |

=
x2 −Dy2

|N |
=

N

|N |
= ±1.

Also if ζ =
√
D and ω = (−P +

√
D)/|N |, it is

easy to verify that ω = Uζ+R
V ζ+S .

The lemma now implies that U/V = X/y is a

convergent An−1/Bn−1 to ω. Also

Gn−1 = Q0An−1 − P0Bn−1 = |N |X + Py = x.

Hence

N = x2−Dy2 = G2
n−1−DB

2
n−1 = (−1)n|N |Qn,

so Qn = (−1)nN/|N |.
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Refining the necessary condition for

solubility

Lemma. An equivalence class of solutions

contains an (x, y) with x ≥ 0 and y > 0.

Proof. Let (x0, y0) be fundamental solution

of a class C. Then if x0 ≥ 0 we are finished.

So suppose x0 < 0 and let u+ v
√
D,

u > 0, v > 0, be a solution of Pell’s equation.

Define X and Y by

X + Y
√
D = (x0 + y0

√
D)(u+ v

√
D).

Then it can be shown that

(a) X < 0 and Y < 0 if N > 0,

(b) X > 0 and Y > 0 if N < 0.

Hence C contains a solution (X ′, Y ′) with

X ′ > 0 and Y ′ > 0.

Hence a necessary condition for solubility of

x2 −Dy2 = N is that Qn = (−1)nN/|N | holds

for some n in the continued fraction for

ω = −P+
√
D

|N | .
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Limiting the search range when testing

for necessity Let

ω = [a0, . . . , at, at+1, . . . , at+l].

Then by periodicity of the Qi, we can assume

that Qn = (−1)nN/|N | holds for some

n ≤ t+ l if l is even, or n ≤ t+ 2l if l is odd.

In the latter case all we can say is that

Qn = ±1 holds for some n ≤ t+ l. This gives

us our final form of the necessary condition.
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Sufficiency.

Suppose P2 ≡ D (mod |N |), 0 ≤ P ≤ |N |/2 and

let

ω = −P+
√
D

|N | = [a0, . . . , at, at+1, . . . , at+l].

Suppose we have Qn = (−1)nN/|N | for some

n in 1 ≤ n ≤ t+ l if l is even, or Qn = ε = ±1

for some n in 1 ≤ n ≤ t+ l if l is odd.

Then with Gn−1 = |N |An−1 + PBn−1, we have

(i) if l is even, the equation x2 −Dy2 = N has

a primitive solution (Gn−1, Bn−1);

(ii) if l is odd, then (Gn−1, Bn−1) is a

primitive solution of x2 −Dy2 = (−1)n|N |ε,
while (Gn+l−1, Bn+l−1) will be a primitive

solution of x2 −Dy2 = (−1)n+1|N |ε;

(iii) one of the (Gk−1, Bk−1) with least Bk−1

satisfying G2
k−1−DB

2
k−1 = N and arising from

the continued fraction expansions of

(−P +
√
D)/|N | and (−P −

√
D)/|N |, will be a

fundamental solution of x2 −Dy2 = N .
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Primitivity of solutions (Peter Hackman)

Assume x2 −Dy2 = N,P2 ≡ D (modQ) and

x ≡ Py (modQ), where Q = |N |. Then

gcd(x, y) = 1.

Proof.

Px−Dy ≡ (P2 −D)y ≡ 0 (modQ)

so Px−Dy = aQ. (1)

Also − Py + x = bQ. (2)

Then adding y times (1) and x times (2)

gives:

(ay + bx)Q = −Dy2 + x2 = N.

Hence ay + bx = N/Q = ±1.
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An example: x2 − 221y2 = 217 and − 217.

We find the solutions of P2 ≡ 221 (mod 217)

satisfying 0 ≤ P ≤ 103 are P = 2 and P = 33.

(a) −2+
√

221
217 = [0,16,1,6,2,6,1,28].

i 0 1 2 3 4 5 6 7
Pi −2 2 14 11 13 13 11 14
Qi 217 1 25 4 13 4 25 1
Ai 0 1 1 7 15 97 112 3233
Bi 1 16 17 118 253 1636 1889 54528

The period length is 6 and

Q1 = 1 = (−1)1(−217)/| − 217|.

Hence (G0, B0) = (2,1) is a solution of

x2 − 221y2 = −217 and this is clearly a

fundamental one, so there is no need to

examine the continued fraction expansion of
−2−

√
221

217 .
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(b) −33+
√

221
217 = [−1,1,10,1,28,1,6,2,6].

i 0 1 2 3 4 5 6 7 8
Pi −33 −184 29 11 14 14 11 13 13
Qi 217 −155 4 25 1 25 4 13 4
Ai −1 0 −1 −1 −29 −30 −209 −448 −2897
Bi 1 1 11 12 347 359 2501 5361 34667

We observe that Q4 = 1 = (−1)4 · 217/|217|
and the period length is 6. Hence

(G3, B3) = (179,12) is a solution of

x2 − 221y2 = 217.
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c) −33−
√

221
217 = [−1,1,3,1,1,6,1,28,1,6,2].

i 0 1 2 3 4 5 6 7 8 9 10
Pi 33 184 −29 17 0 13 11 14 14 11 13
Qi −217 155 −4 17 13 4 25 1 25 4 13
Ai −1 0 −1 −1 −2 −13 −15 −433 −448 −3121 −6690
Bi 1 1 4 5 9 59 68 1963 2031 14149 30329

We observe that Q7 = 1 = (−1)8 · 217/|217|.
Hence (G6, B6) = (−1011,68) is a solution of

x2 − 221y2 = 217.

It follows from (b) and (c) that (179,12) is a

fundamental solution.

Here η0 = 1665 + 112
√

221 is the

fundamental solution of Pell’s equation. Then

the complete solution of x2 − 221y2 = −217

is given by

x+ y
√

221 = ±(±2 +
√

221)ηn0, n ∈ Z.

The complete solution of x2 − 221y2 = 217 is

given by

x+ y
√

221 = ±(±179 + 12
√

221)ηn0, n ∈ Z.
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Example: Solving x2 − py2 = −
(

2
p

)
p−1

2 ,

p = 4n+ 3.

Let p be a prime of the form 4n+ 3. Then it

is classical that the equation x2 − py2 = 2
(

2
p

)
has a solution in integers.

So with

ω1 = (1 +
√
p)/2 = [λ, a1, . . . , aL−1,2λ+ 1],

there is exactly one n, 1 ≤ n ≤ L satisfying

Qn(−1)n =
(

2
p

)
. (Qn = 1 and L is even and

n = L/2.)

Now in solving the given equation, notice that

P = 1 is a solution of P2 ≡ p (mod (p− 1)/2).

So with ω2 = (−1 +
√
p)/((p− 1)/2), the first

complete quotient is in fact ω1.

It follows that the corresponding Qn+1 is the

old Qn and so now Qn(−1)n+1 = −
(

2
p

)
. hence

there is a solution of x2 − py2 = −
(

2
p

)
p−1

2 .
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John Robertson (September 2004) has

produced the following short proof of the

previous result.

Assume X2 − pY 2 = 2
(

2
p

)
, p = 4n+ 3.

Make the integer transformation

x = (pY −X)/2, y = (X − Y )/2.

Then x2 − py2 = −
(

2
p

)
(p− 1)/2.
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