Solving 22 — Dy? = N in integers, where
D > 0 is not a perfect square.

Keith Matthews

Abstract

We describe a neglected algorithm, based on
simple continued fractions, due to Lagrange,
for deciding the solubility of 2 — Dy2 = N,
with gcd(z,y) = 1, where D > 0 and is not a
perfect square. In the case of solubility, the
fundamental solutions are also constructed.



Lagrange’s well-known algorithim

In 1768, Lagrange showed that if

22 — Dy? =N, >0,y > 0,gcd(z,y) = 1 and

IN| < /D, then z/y is a convergent A, /B, of
the simple continued fraction of v D. For we
have

(x 4+ VDy)(z —VDy) = N

| V| D
lx — vV Dy| = < :
x + vV Dy x + vV Dy
Hence
1
E>\/l):> g—\/l)|<—2
Y Y 2y
and
x Y 1 1
— < VD= |5 < —=.
Yy x \/D‘ D2




If VD = [ag,a71,...,a;], due to periodicity of
(1)1 A2 _ DB2, for solubility, we need only
check the values for the range

0<n<|l/2] —1. To find all solutions, we
check the range 0 <n<I[—-1.

Example: z2 — 13y2 = 3.

V13 =1[3,1,1,1,1,6].

n | An/Bn | A5 — 1383
0| 3/1 —4
1| 4/1 3
2| 7/2 -3
3] 11/3 4
4] 18/5 —1

The positive solutions (x,y) are given by

2n
_ | (44 V13), n >0,
x+ym_{n2n+1<7+2mx n >0,

where n = 18 + 5v/13.
Note: 7 + 2v/13 = —n(—4 + v/13).



Example: z2 — 221y2 =

V221 = [14,1,6, 2,6, 1,28].

n| Apn/Bn | A; —221B;7
0 14/1 —25

1 15/1 4

2| 104/7 —~13

3| 223/15 4

4| 1442/97 —25

5] 1665/112 1

The positive solutions (z,vy), gcd(x,y) = 1,
are given by

o nn(15+\/ﬁ), n =0,
x -l-y\/ﬁ — { n" (223 + 15@)7 n 2> 0,

where n = 1665 + 112v/221.

Note: (i) z2 — 221y2 = —4 has no solution in
positive (z,y) with gcd(z,y) = 1.

(i) 223 4+ 15v/221 = —n(—15 + +/221).



In 1770, Lagrange gave a neglected algorithm
for solving 22 — Dy?2 = N for arbitrary N # 0,
using the continued fraction expansions of
(P ++/D)/|N|, where P2 = D (mod|N]),
—|N|/2 < P <|NJ/2.

The difficulty is to show that all solutions
arise from the continued fractions and
LLagrange’s discussion of this was hard to
follow.

My contribution was to give a short proof
using a unimodular matrix lemma (Theorem
172 of Hardy and Wright) which gives a
sufficient test for a rational to be a
convergent of a simple continued fraction.



Pell’s equation

The special case N =1 is known as Pell’s

equation. If ng = zg + yov' D denotes the
fundamental solution of z2 — Dy? = 1, ie, the
solution with least positive x and y, then the
general solution is given by

r+yvVD = +n8,n € Z

We can calculate (zqg,yg) by expanding v D as
a periodic continued fraction:

VD = [ag,a1,...,a.

Then
g;j, if [ is even
/Y0 =1 Anty it s odd

Bo;_q1’



Equivalence classes of primitive solutions
of 2 — Dy? = N.

The identity
(2°—Dy?) (u?—Dv?) = (zutyvD)?—D(uy+vz)?

shows that primitive solutions (z,y) of
22 — Dy?2 = N and (u,v) of Pell's equation
u? — Dv2 = 1, produce a primitive solution

(@,y") = (zu+ yvD, uy + va)
of /2 — Dy? = N.

Note that
' +y'vVD = (z+yvVD)(u+vvD). (1)

Equation (1) defines an equivalence relation
on the set of all primitive solutions of
2 — Dy2 = N.



Associating a congruence class mod |IV|
to each equivalence class.

If 22 — Dy?2 = N with gcd(z,y) = 1, then
gcd(y, N) = 1.

We define P by z = yP (mod |N|). Then

z° — Dy? = 0(mod|N|)
y°P? — Dy?> = 0(mod|N])
P2—D = 0(mod|N|)

P? = D(mod|N|)



Primitive solutions (z,y) and (z/,vy’) are
equivalent if and only if
zr' —yy'D = 0(mod|N|)
yr' —xy’ = 0(mod|N|).
Then (x,y) and (2/,y’) are equivalent if and
only if P = P’ (mod |N|).

Hence the number of equivalence classes is
finite.



If (x,y) is a solution for a class C, then (—=z,vy)
is a solution for the conjugate class C*.

It can happen that C* = C, in which case C is
called an ambiguous class.

A class is ambiguous if and only if P =0 or
IN[/2 (mod |NJ).

The solution (x,y) in a class with least y > 0
is called a fundamental solution.

For an ambiguous class, there are either two
(z,y) and (—z,y) with least y > 0 if x > 0 and
one if x = 0, namely (0,1) and we choose the
one with x > 0.
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Continued fractions of quadratic
irrationalities.

Let w = %ﬁ = [ag,a1,...,], where
Qol(Pg — D).

Then the n—th complete quotient
Tn = lan,apt1,...,] = (Pn+ VD) /Qn.

There is a simple algorithm for calculating an,
P, and Qn:

a, = {MJ, (2)

Qn
Pn—l—l = anQn - P’n,y
D—P2
Qn—l—l — Q:-I_l-

We also note the following important identity
Gn-1—DB;_1=(-1)"QoQn,
where G,,_1 = QOAn—l — PhB,,_1.

In (2) we can replace vD by |D] or 1+ | D]
according as Qn > 0 or Qn < 0.
11



Necessary conditions for solubility of
z? — Dy? = N.

Suppose z2 — Dy? = N, gcd(z,y) = 1,y > 0.

Let x = yP (mod|N|). Then by dealing with
the conjugate class instead, if necessary, we
can assume 0 < P < |N|/2. Also

P2 = D (mod |N]).

Let z = Py + |N|X.

Lagrange substituted for x = Py 4 |N|X in
the equation z2 — Dy?2 = N to get

P2—D
INIX2 4 2PXy + ErPhy2 = 20

He then appealed to a result on a general
homogeneous equation f(X,y) =1 and
deduced that X/y is a convergent to a root of
equation f(X,y) = 0.

12



We prove

(i) If > 0, then X/y is a convergent
Ap_1/Bp—1 tOo w = —P+VD jng

V]
Qn = (—1)”’%-

(ii) If x < 0, then X/y is a convergent
Ap—1/Bm—1 1o w* = —P—vD 4pq

n
— (_1\yYm+1 N
Qm = (—1) INT
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We prove part (i) by using the following
extension of Theorem 172 in Hardy and
Wright's book:

Lemma. If w = %, where ¢ > 1 and
U V,R,S are integers such that V >0,5 >0
and US—-VR=41,orS=0and V=R=1,

then U/V is a convergent to w.
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We apply the Lemma to the matrix
[U R] lx —PHDy

The matrix has integer entries. For

r = yP (mod|N|) and P2 = D (mod|NJ).

Hence

—Pz 4+ Dy = —P?y 4 Dy (mod |N|)

(D — P2)y =0 (mod |N]).
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X —Px+Dy
The matrix | N has determinant
y €T
—P D
A — x,_ Y(Pz+Dy)
| V|
(= Py)r — y(—Px + Dy)
| V]
2 D 2 N
= v Y = — = +1.
| V] | V|

Also if ( =+/D and w = (=P ++VD)/|N|, it is

easy to verify that w = %.

The lemma now implies that U/V = X/y is a
convergent A,,_1/B,_1 to w. Also

Gn-1=QoAn—1— PoBy—1 =|N|X + Py==.
Hence

N=2x?-Dy?=G?_;—-DB2_; = (—=1)"|N|Qn,
SO Qn = (—1)"N/|NJ.
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Refining the necessary condition for
solubility

Lemma. An equivalence class of solutions
contains an (x,y) with x > 0 and y > 0.

Proof. Let (zg,yp) be fundamental solution
of a class C'. Then if zg > 0 we are finished.

So suppose xg < 0 and let u+vv D,
u > 0,v > 0, be a solution of Pell's equation.

Define X and Y by
X +YVD = (z¢ + yoVD)(u + vVD).

Then it can be shown that
(a) X <O0and Y <O if N >0,
(b) X >0and Y >0 if N <O.

Hence C contains a solution (X', Y’) with
X'">0and Y' > 0.

Hence a necessary condition for solubility of
2 — Dy? = N is that Q, = (—1)"N/|N| holds

for some n in the continued fraction for

_ —P++D
w e |N| .
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Limiting the search range when testing
for necessity Let

w = lag,...,at, G471, -, Q4]

Then by periodicity of the @;, we can assume
that Qn = (—1)"N/|N| holds for some
n<t+lifliseven, orn<t+4 2] if [ is odd.
In the latter case all we can say is that

Qn = £1 holds for some n <t+41[. This gives
us our final form of the necessary condition.
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Sufficiency.

Suppose P2 = D (mod |N|), 0 < P < |N|/2 and
let

W = |N| — [aO,...,at,at_|_1,...,at_|_l].
Suppose we have Qn, = (—1)"N/|N| for some
ninl<n<t4+lifliseven, or Qnp =€ = =*1
forsomeninl1<n<t+41if [ is odd.

Then with G,,_1 = |N|A,,_1 + PB,,_1, we have

(i) if L is even, the equation 2 — Dy?2 = N has
a primitive solution (G,,_1,B,_1);

(ii) if [ is odd, then (G,,_1,B,,_1) is a
primitive solution of 22 — Dy? = (—1)"|N]e,
while (G,,41-1, Bp+41—1) Will be a primitive
solution of 22 — Dy2 = (—1)"T1|N|e;

(iii) one of the (Gj_1, By_1) with least By _1
satisfying G¢_, — DBZ_, = N and arising from
the continued fraction expansions of

(=P ++D)/|N| and (=P —+/D)/|N|, will be a
fundamental solution of z2 — Dy?2 = N.
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Primitivity of solutions (Peter Hackman)

Assume z2 — Dy? = N, P2 =D (mod Q) and
x = Py (mod Q), where Q = |N|. Then
gcd(zx,y) = 1.

Proof.

Pr—Dy = (P?—D)y=0(modQ)
a@. (1)
bQ. (2)

SO Px — Dy
Also — Py—+«x

Then adding y times (1) and z times (2)
gives:

(ay + bx)Q = —Dy? + 2° = N.
Hence ay + bx = N/Q = +1.
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An example: 2 — 221y? = 217 and — 217.

We find the solutions of P2 =221 (mod 217)
satisfying 0 < P < 103 are P =2 and P = 33.

(a) =2tv221 —10.16,1,6,2,6, 1,28].

217
; 0 I 2 3 ) 5 6 7
D —2 | 214 11 | 13 13 11 14
Q. [ 217 | 125 4 13 4 25 1
A, [ O T 1 7 15 o7 112 | 3233
B, | 1 |16 | 17 | 118 | 253 | 1636 | 1889 | 54528

The period length is 6 and
Qi=1=(-1)1(-217)/| — 217].

Hence (Gg, Bg) = (2,1) is a solution of

2 — 221y2 = —217 and this is clearly a
fundamental one, so there is no need to
examine the continued fraction expansion of

—2—+/221
217 '
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(b)

—33+v221

=[-1,1,10,1,28,1,6,2,6].

217
1 o) 1 2 3 4 5 6 I4 8
P =33 | —-184 | 29 | 11 14 14 11 13 13
Q: | 217 | —155 4 | 25 1 25 4 13 4
A; —1 O|-1]-1|-29| -30 | —209 | —448 | —2897
B; 1 1 11 12 | 347 | 359 | 2501 | 5361 | 34667

We observe that Q4 =1 = (—1)%.217/|217|

and the period length is 6. Hence

(G3,B3) = (179,12) is a solution of

12 — 221y2 = 217.
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—33—V/221

c) =23:¥221 =1.1,1,3,1,1,6,1,28, 1,6, 2].
7 0 1 2 3 4 5 6 7 8 9 10
P, 33 | 184 | —29 17 0 13 11 14 14 11 13
Q; | =217 | 155 -4 17 13 4 25 1 25 4 13
A; —1 0] -1 | -1 | -2 ]| —-13 | —15 | —433 | —448 | —3121 | —6690
B; 1 1 4 5 9 59 68 1963 2031 14149 30329

We observe that Q7 =1 = (—1)%.217//217|.
Hence (Gg, Bg) = (—1011,68) is a solution of
2 _221y? = 217.

It follows from (b) and (c) that (179,12) is a
fundamental solution.

Here ng = 1665 + 112+/221 is the
fundamental solution of Pell's equation. Then
the complete solution of 22 — 221y2 = —217

IS given by

x4+ yv/221 = £(£2 + /221)n8,n € Z.
The complete solution of z2 — 221y2 = 217 is
given by

r + yv221 = £(£179 + 12v/221)nk,n € Z.
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Example: Solving z2 — py? = — (2) p%l,

b
p = 4n 4 3.

Let p be a prime of the form 4n 4+ 3. Then it
is classical that the equation z2 — py2 = 2 <%)
has a solution in integers.

So with

w1 = (1+.p)/2=1[Na1,...,ar_1,2X+ 1],
there is exactly one n, 1 < n < L satisfying
Qn(—1)" = <%) (Qrn =1 and L is even and
n=1L/2.)

Now in solving the given equation, notice that
P =1 is a solution of P2 =p(mod(p—1)/2).

So with wp = (=14 /p)/((p —1)/2), the first
complete quotient is in fact w;.

It follows that the corresponding @, 41 is the

old Qn and so now Qn(—1)"tl = — (%) hence
- - 2 2 (2)p-1
there is a solution of z© — py= = — (5) ==
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John Robertson (September 2004) has
produced the following short proof of the
previous result.

Assume X2 — pY2 =2 (%) p=4n+ 3.
Make the integer transformation
r=(pY — X)/2,y= (X -Y)/2.

Then z2 — py? = — (%) (p—1)/2.
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