
Solving x2 −Dy2 = N in integers, where

D > 0 is not a perfect square.

Keith Matthews

In 1769, Lagrange showed how to solve this

equation if |N | <
√
D and gave a recursive

method when |N | >
√
D. He gave another

method which has not appeared in modern

number theory books until R.A. Mollin

rediscovered it and included it in his 1998

textbook Fundamental Number Theory with

Applications.

Mollin’s approach is via ideal theory in

quadratic fields.

The main difficulty is showing that all

solutions arise from continued fractions of

certain quadratic irrationalities. Lagrange’s

proof is not valid. We supply a simple proof.
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Pell’s equation

The special case N = 1 is known as Pell’s

equation. If (x0, y0) denotes the fundamental

solution of x2 −Dy2 = 1, ie, the solution with

least positive x and y, then the general

solution (x, y) is given by

x+ y
√
D = ±(x0 + y0

√
D)n, n ∈ Z.

We can calculate (x0, y0) by expanding
√
D as

a periodic continued fraction:
√
D = [a0, a1, . . . , al].

Then

x0/y0 =


Al−1
Bl−1

, if l is even
A2l−1
B2l−1

, if l is odd,

where An/Bn denotes the n–th convergent to√
D.
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Equivalence classes of solutions of

x2 −Dy2 = N.

It suffices to consider only solutions (x, y) of

x2 −Dy2 = N with gcd(x, y) = 1, ie. primitive

solutions. For d = gcd(x, y), x = dX, y = dY

give X2 −DY 2 = N/d2 and gcd(X,Y ) = 1.

The identity

(x2−Dy2)(u2−vy2) = (xu+yvD)2−D(uy+vx)2

shows that solutions (x, y) of x2 −Dy2 = N

and (u, v) of u2 −Dv2 = 1 produce another

primitive solution (x′, y′) = (xu+ yvD, uy+ vx)

of x′2 −Dy′2 = N , or equivalently

x′+ y′
√
D = (x+ y

√
D)(u+ v

√
D), (1)

where u2 −Dv2 = 1.

Equation (1) defines an equivalence relation

on the set of all primitive solutions of

x2 −Dy2 = N .
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Finiteness of the number of equivalence

classes.

There are only finitely many equivalence

classes: each class contains a solution (x1, y1)

with least positive y1 (a fundamental

solution), where

(i) 0 < y1 ≤ y0

√
|N |

2(x0+ε)

(ii) 0 < |x1| ≤
√

(x0+ε)|N |
2 ,

where ε = N/|N |.
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Associating a congruence class mod |N |
to each equivalence class.

If (x, y) is a solution for a class C, then (−x, y)

is a solution for the conjugate class C∗.

Primitive solutions (x, y) and (x′, y′) are

equivalent if and only if

xx′−yy′D ≡ 0 (mod |N |) and yx′−xy′ ≡ 0 (mod |N |).

If x2 −Dy2 = N with gcd(x, y) = 1 and P is

defined by x ≡ yP (mod |N |), then

P2 ≡ D (mod |N |).

If x′2 −Dy′2 = N with gcd(x′, y′) = 1 and

x′ ≡ y′P ′ (mod |N |), then (x, y) and (x′, y′) are

equivalent if and only if P ≡ P ′ (mod |N |).

It can happen that C∗ = C, in which case C is

called an ambiguous class.

A class is ambiguous if and only if P ≡ 0 or

|N |/2 (mod |N |).
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Continued fractions of quadratic
irrationalities.

We need to introduce the n–th convergent xn:

If ω = [a0, a1, . . .], then

xn = [an, an+1, . . . , ], n ≥ 0,

is called the n–th convergent of ω.

If ω = P0+
√
D

Q0
, where Q0|(P2

0 −D), then

xn =
Pn +

√
D

Qn

and there is a simple algorithm for calculating
an, Pn and Qn:

an =
⌊
Pn+

√
D

Qn

⌋
,

Pn+1 = anQn − Pn,

Qn+1 =
D−P2

n+1
Qn

.

We also note the following important identity

G2
n−1 −DB

2
n−1 = (−1)nQ0Qn,

where Gn−1 = Q0An−1 − P0Bn−1.
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The classical case |N | <
√
D.

If x2 −Dy2 = N , with gcd(x, y) = 1,

x > 0, y > 0, then it is easy to show that∣∣∣∣∣xy −
√
D

∣∣∣∣∣ < 1

2y2
if
x

y
>
√
D,

∣∣∣∣∣yx − 1√
D

∣∣∣∣∣ < 1

2x2
if
x

y
<
√
D

and consequently by a theorem of Lagrange,

x/y is a convergent An−1/Bn−1 of
√
D. Then

N = x2 −Dy2 = A2
n−1 −DB

2
n−1 = (−1)nQn.

If
√
D = [a0, a1, . . . , al], it turns out that we

need only check the range n ≤ l to see which

Qn, if any, satisfy Qn = (−1)nN . (If l is odd,

we have Ql−1
2 −r

= Ql+1
2 +r

for r = 0, . . . , l−3
2

and the subscripts have opposite parity.)

The corresponding (An−1, Bn−1) will be

fundamental solutions.
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An example: x2 − 241y2 = ±15.
√

241 = [15,1,1,9,1,5,3,3,1,1,3,3,5,1,9,1,1,30]

period length = 17

P[0]=0, Q[0]=1
P[1]=15, Q[1]=16
P[2]=1, Q[2]=15 << A[1]^2-241*B[1]^2=15
P[3]=14, Q[3]=3
P[4]=13, Q[4]=24
P[5]=11, Q[5]=5,
P[6]=14, Q[6]=9,
P[7]=13, Q[7]=8,
P[8]=11, Q[8]=15, << A[7]^2-241*B[7]^2 =15
P[9]=4, Q[9]=15, << A[8]^2-241*B[8]^2 =-15
P[10]=11, Q[10]=8,
P[11]=13, Q[11]=9,
P[12]=14, Q[12]=5,
P[13]=11, Q[13]=24,
P[14]=13, Q[14]=3,
P[15]=14, Q[15]=15, << A[14]^2-241*B[14]^2=-15
P[16]=1, Q[16]=16,
P[17]=15, Q[17]=1, << A[16]^2-241*B[16]^2=-1
P[18]=15, Q[18]=16,
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A[0]/B[0]=15/1 A[9]/B[9]=46557/2999
A[1]/B[1]=16/1 A[10]/B[10]=166000/10693
A[2]/B[2]=31/2 A[11]/B[11]=544557/35078
A[3]/B[3]=295/19 A[12]/B[12]=2888785/186083
A[4]/B[4]=326/21 A[13]/B[13]=3433342/221161
A[5]/B[5]=1925/124 A[14]/B[14]=33788863/2176532
A[6]/B[6]=6101/393 A[15]/B[15]=37222205/2397693
A[7]/B[7]=20228/1303 A[16]/B[16]=71011068/4574225
A[8]/B[8]=26329/1696 A[17]/B[17]=2167554245/139624443

(A1, B1) = (16,1) and (A7, B7) = (20228,1303) are
fundamental solutions of x2 − 241y2 = 15;

(A8, B8) = (26329,1696) and
(A14, B14) = (33788863,2176532) are fundamental
solutions of x2 − 241y2 = −15;

(A16, B16) = (71011068,4574225) is the smallest
solution of x2 − 241y2 = −1

(A23, B23) = (10085143557001249,649641205044600)
is the smallest solution of x2 − 241y2 = 1

Hence if η0 = A23 +B23
√

241, the general solution of
x2 − 241y2 = 15 is given by

x+ y
√

241 =

{
±(±16 +

√
241)ηn0

±(±20228 + 1303
√

241)ηn0.

We remark that the fundamental solution (295,19) of
x2 − 241y2 = 24 is produced above, but that
(378557,24385) is missing.
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√
103 = [10,6,1,2,1,1,9,1,1,2,1,6,20].

period length = 12

P[0]=0, Q[0]=1
P[1]=10, Q[1]=3
P[2]=8, Q[2]=13
P[3]=5, Q[3]=6
P[4]=7, Q[4]=9
P[5]=2, Q[5]=11
P[6]=9, Q[6]=2
P[7]=9, Q[7]=11
P[8]=2, Q[8]=9
P[9]=7, Q[9]=6
P[10]=5, Q[10]=13
P[11]=8, Q[11]=3
P[12]=10, Q[12]=1
P[13]=10, Q[13]=3
convergents:
A[0]/B[0]=10/1
A[1]/B[1]=61/6
A[2]/B[2]=71/7
A[3]/B[3]=203/20
A[4]/B[4]=274/27
A[5]/B[5]=477/47
A[6]/B[6]=4567/450
A[7]/B[7]=5044/497
A[8]/B[8]=9611/947
A[9]/B[9]=24266/2391
A[10]/B[10]=33877/3338
A[11]/B[11]=227528/22419
A[12]/B[12]=4584437/451718
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The case of general |N |: Necessary

conditions for solubility of x2 −Dy2 = N .

Suppose x2 −Dy2 = N , with gcd(x, y) = 1,

x > 0, y > 0.

Let x ≡ yP (mod |N |), where

−|N |/2 < P ≤ |N |/2. Then

(i) P2 ≡ D (mod |N |).

If x = Py + |N |X, then Lagrange substituted

x = Py + |N |X in the equation x2 −Dy2 = N

to get

|N |X2 + 2PXy + (P2−D)
|N | y2 = N

|N |. (2)

He then appealed to a result on a general

homogeneous equation f(x, y) = 1 and

deduced that X/y is a convergent to a root of

equation (3).

|N |λ2 + 2Pλ+ (P2−D)
|N | = 0. (3)
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In fact

(ii) X/y is a convergent An−1/Bn−1 to

ω = −P+
√
D

|N | and Qn = (−1)n N
|N |.

(iii) If ω = [a0, . . . , at, at+1, . . . , at+l],

then Qn = 1 for exactly one n in

t+ 1 ≤ n ≤ t+ l, where if l is even, then

(−1)nN/|N | = 1.
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We prove part (ii) by using the following

extension of Theorem 172 in Hardy and

Wright’s book:

Lemma. If ω = Uζ+R
V ζ+S , where ζ > 1 and

U, V,R, S are integers such that V > 0, S > 0

and US − V R = ±1, then U/V is a convergent

to ω.
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We apply the lemma to the matrix[
U R
V S

]
=

 X −Px+Dy
|N |

y x

 .
The matrix has integer entries. For

x ≡ yP (mod |N |) and hence

−Px+Dy ≡ −P2y +Dy (mod |N |)

≡ (D − P2)y ≡ 0 (mod |N |).
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The matrix

 X −Px+Dy
|N |

y x

 has determinant

∆ = Xx−
y(−Px+Dy)

|N |

=
(x− Py)x− y(−Px+Dy)

|N |

=
x2 −Dy2

|N |
=

N

|N |
.

Also if ζ =
√
D and ω = (−P +

√
D)/|N |, it is

easy to verify that ω = Uζ+R
V ζ+S .

The lemma now implies that U/V = X/y is a

convergent An−1/Bn−1 to ω.

Also if Gn−1 = |N |An−1 + PBn−1, then

N = x2−Dy2 = G2
n−1−DB

2
n−1 = (−1)n|N |Qn.

Hence Qn = (−1)nN/|N |.
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Sufficiency.

Suppose P2 ≡ D (mod |N |) and let

ω = −P+
√
D

|N | = [a0, . . . , at, at+1, . . . , at+l].

Suppose we have Qn = 1 for some n in

t+ 1 ≤ n ≤ t+ l. Then

G2
n−1 −DB

2
n−1 = (−1)n|N |,

where Gn−1 = |N |An−1 + PBn−1 .

(i) If l is even and (−1)nN/|N | = 1, the

equation x2 −Dy2 = N has a solution

(Gn−1, Bn−1),

(ii) If l is odd, then (Gn−1, Bn−1) is a solution

of x2 −Dy2 = (−1)n|N |, while

(Gn+l−1, Bn+l−1) will be a solution of

x2 −Dy2 = (−1)n+1|N |;

(iii) one of the (Gk−1, Bk−1) with least Bk−1

satisfying G2
k−1−DB

2
k−1 = N and arising from

the continued fraction expansions of

(−P +
√
D)/|N | and (P +

√
D)/|N |, will be a

fundamental solution of x2 −Dy2 = N .
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An example: x2 − 221y2 = ±217.

We find the solutions of P2 ≡ 221 (mod 217)

are ±2 and ±33.

(a) 2+
√

221
217 = [0,12,1,6,2,6,1,28].

i 0 1 2 3 4 5 6 7
Pi 2 −2 14 11 13 13 11 14
Qi 217 1 25 4 13 4 25 1
Ai 0 1 1 7 15 97 112 3233
Bi 1 12 13 90 193 1248 1441 41596

The period length is 6 and Q1 = Q7 = 1 and

(−1)1 = (−1)7 = −1.

Hence (G0, B0) = (−2,1) is a solution of

x2 − 221y2 = −217 and this is clearly a

fundamental one, so there is no need to

examine the continued fraction expansion of
−2+

√
221

217 .
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(b) 33+
√

221
217 = [0,4,1,1,6,1,28,1,6,2].

i 0 1 2 3 4 5 6 7 8 9
Pi 33 −33 17 0 13 11 14 14 11 13
Qi 217 −4 17 13 4 25 1 25 4 13
Ai 0 1 1 2 13 15 433 448 3121 6690
Bi 1 4 5 9 59 68 1963 2031 14149 30329

We observe that Q6 = 1. The period length

is even and (−1)6 = 1. Hence

(G5, B5) = (1011,68) is a solution of

x2 − 221y2 = 217.

18



c) −33+
√

221
217 = [−1,1,10,1,28,1,6,2,6].

i 0 1 2 3 4 5 6 7 8
Pi −33 −184 29 11 14 14 11 13 13
Qi 217 −155 4 25 1 25 4 13 4
Ai −1 0 −1 −1 −29 −30 −209 −448 −2897
Bi 1 1 11 12 347 359 2501 5361 34667

We observe that Q4 = 1. The period length

is even and (−1)4 = 1. Hence

(G3, B3) = (179,12) is a solution of

x2 − 221y2 = 217.

It follows from (b) and (c) that (179,12) is a

fundamental solution.

Summarising: The fundamental solutions for

x2 − 221y2 = −217 are (±2,1), while those

for x2 − 221y2 = 217 are (±179,12).
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Extensions

Lagrange discussed the general equation

ax2 + bxy + cy2 = N , where D = b2 − 4ac > 0

and not a perfect square and

gcd(a,N) = 1 = gcd(a, b, c).

The above analysis goes through with

suitable modifications. However an

exceptional case, not noted by Lagrange,

arises when D = 5 and aN < 0. Then there

are solutions not arising directly via

convergents. This was pointed out by Serret

in 1877 and quantified in 1984 by M. Pavone.

An example is x2 − xy − y2 = −1 where the

solution (0,1) is such an exception.

Using an extension to our lemma, we are able

to avoid using Pavone’s theorem, whose

proof is not simple.

If gcd(a,N) 6= 1, then a suitable unimodular

change of variables exists which will ensure

that gcd(a,N) = 1.
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