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ax2 + bxy + cy2 = n
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Abstract. Stolt defined an equivalence relation on the integer solutions of

x2− dy2 = 4n, d > 0 and non–square, n non–zero, that can result in a smaller

number of equivalence classes than Nagell equivalence, which is the standard

equivalence relation. We give a method of calculating class representatives

called the Stolt fundamental solutions. This can then be used to solve the

diophantine equation ax2 + bxy + cy2 = N , where d = b2 − 4ac > 0, a > 0,

and is not a perfect square and N is non–zero.

1. Introduction

Let d > 0 and n be integers, d non–square, n nonzero. We study the

diophantine equation

(1) x2 − dy2 = 4n.

This is relevant, because the equation ax2 + bxy + cy2 = N reduces to

X2 − dY 2 = 4aN under the transformation X = 2ax+ by, Y = y.

Suppose (x, y) is an integer solution of (1). Then if (x′, y′) is defined by

(2) x′ + y′
√
d = (x+ y

√
d)(u+ v

√
d)/2,

equivalently

(3) x′ = (xu+ dyv)/2, y′ = (xv + yu)/2,

where (u, v) is an integer solution of u2 − dv2 = 4, then (x′, y′) is also an

integer solution of (1).

(The fact that x′ and y′ are integers follows from the congruences

x ≡ dy (mod 2), x′ ≡ dy′ (mod 2), u ≡ dv (mod 2).)
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Then (2) gives an equivalence relation on the set of integer solutions of

(1) which we call Stolt equivalence.

The standard Nagell equivalence of solutions of (1) ([5, p. 204]) is defined

by

(4) x′ + y′
√
d = (x+ y

√
d)(u+ v

√
d),

where (u, v) is an integer solution of u2 − dv2 = 1.

LEMMA 1.1. ([6, Theorem 4]). A necessary and sufficient condition for

solutions (x1, y1) and (x2, y2) of x2− dy2 = 4n to be Stolt–equivalent is that

x1y2 − x2y1 ≡ 0 (mod 2|n|).

REMARK 1.1. This result is due to Stolt and is analogous to a similar

criterion for Nagell–equivalence, where 2|n| is replaced by 4|n|.

Let ε1 = u1 +v1

√
d, where (u1, v1) is the minimal positive integer solution

to u2 − dv2 = 1.

Let ε4 = (u4 + v4

√
d)/2, where (u4, v4) is the minimal positive integer

solution to u2 − dv2 = 4.

Stolt ([6, Theorem 1]) gave a connection between the two types of equiv-

alence classes in terms of ε1 and ε4.

THEOREM 1.1. (i) If d ≡ 1 (mod 8) or d ≡ 2 (mod 4) or d ≡ 3

(mod 4), then ε1 = ε4.

(ii) If d ≡ 5 (mod 8), then ε1 = ε4 if v4 is even; whereas if v4 is odd,

then ε1 = ε34.

(iii) If d ≡ 0 (mod 4), then ε1 = ε4 if v4 is even; whereas if v4 is odd,

then ε1 = ε24.

If ε1 = ε4, the Stolt and Nagell equivalence classes are the same. However

if ε1 = ε24 (resp. ε34), each Stolt class consists of two (resp. three) Nagell

classes.

A Stolt fundamental solution is the solution in a class with the minimal

non-negative y. If there are two solutions in a class with the same minimal
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non-negative y, then the solution with x > 0 is taken as the fundamental

solution.

If d ≡ 1 (mod 8) or d ≡ 2 (mod 4) or d ≡ 3 (mod 4), then the Stolt and

Nagell fundamental solutions are identical. However when d ≡ 5 (mod 8) or

d ≡ 0 (mod 4), if ε1 6= ε4, one has to determine which Nagell fundamental

solutions belong to the same Stolt class. This can be done by first finding the

Nagell fundamental solutions using the LMM (Lagrange-Mollin-Matthews)

continued fraction–based algorithm in [2], and using Lemma 1.1 to select

the Stolt fundamental solutions.

The Stolt fundamental solutions can also be computed for small d and

n using the following result, which is similar to Theorem 4.1 of [4], which

characterises the Nagell fundamental solutions.

THEOREM 1.2. Let (x1, y1) be the least positive solution of x2−dy2 = 4.

An integer pair (u, v) satisfying (1) is an SFS, if and only if one of the

following holds:

(a) If n > 0,

(i) 0 < v < y1

√
n

x1+2 ,

(ii) v = 0 and u =
√

4n,

(iii) v = y1

√
n

x1+2 and u =
√
n(x1 + 2).

(b) If n < 0, then

(i)

√
|4n|
d ≤ v < y1

√
|n|
x1−2 ,

(ii) v = y1

√
|n|
x1−2 and u =

√
|n|(x1 − 2).

EXAMPLE 1.1. The equation x2 − 28y2 = 72. We have ε1 = ε24. There

are six Nagell fundamental solutions (±10, 1), (±18, 3), (±38, 7) and three

Stolt fundamental solutions (±10, 1), (18, 3), as

(10, 1) ∼ (−38, 7), (−10, 1) ∼ (38, 7), (18, 3) ∼ (−18, 3),

and (10, 1), (−10, 1) and (18, 3) are not Stolt equivalent.
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EXAMPLE 1.2. The equation x2−13y2 = 48. We have ε1 = ε34. There are

six Nagell fundamental solutions (±10, 2), (±16, 4), (±94, 26) and two Stolt

fundamental solutions (±10, 2), as

(10, 2) ∼ (−16, 4) ∼ (94, 26), (−10, 2) ∼ (16, 4) ∼ (−94, 26),

and (10, 2) and (−10, 2) are not Stolt equivalent.

2. The diophantine equation ax2 + bxy + cy2 = N

Stolt [7] defined equivalence for the diophantine equation

(5) ax2 + bxy + cy2 = N,

where D = b2 − 4ac > 0 and not a perfect square.

If (x, y) is an integer solution of (5) and (x′, y′) is defined by

(6) 2ax′ + by′ + y′
√
D =

(u+ v
√
D)

2
(2ax+ by + y

√
D),

where (u, v) is an integer solution of u2 − dv2 = 4, then (x′, y′) is also an

integer solution of (5) and (6) gives an equivalence relation on the set of

integer solutions of (5).

Note that this equivalence reduces to Nagell equivalence when a = 1, b =

0, c = −d, d > 0 and nonsquare.

Equivalently

(7)

x′
y′

 = U

x
y

 ,

where

(8) U =

u−bv
2 −cv

av u+bv
2

 .

The equivalence class containing (x, y) is then given by

(9)

x′
y′

 = ±Un
x
y

 , n ∈ Z.
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LEMMA 2.1. ([7, Theorem 5]). A necessary and sufficient condition for

solutions (x1, y1) and (x2, y2) of ax2 + bxy+ cy2 = N to be equivalent is that

x1y2 − x2y1 ≡ 0 (mod |N |).

Among all solutions (x, y) in an equivalence class K, we choose a fun-

damental solution where y is the least nonnegative value of y when (x, y)

belongs to K. Let x′ = −(ax+ by)/a be the conjugate solution to x in the

equation ax2 + bxy+ cy2 = N . If x′ is not integral or if (x′, y) is not equiva-

lent to (x, y), this determines (x, y). If x′ is integral and (x′, y) is equivalent

to (x, y), we replace x by x′, if x′ > x. There are finitely many equivalence

classes, each indexed by a fundamental solution.

These were also discussed in [4], where inequalities derived by Stolt [7]

were shown to determine the fundamental solutions.

The transformation

(10) X = 2ax+ by, Y = y

transforms equation (5) into equation (11).

(11) X2 −Dy2 = 4aN,

If there are no integer solutions of (11), then there are no integer solutions

of (5).

In what follows, we assume that (11) has an integer solution and that

a > 0.

THEOREM 2.1. Let (α1, β1), . . . , (αh, βh) be the Stolt fundamental solu-

tions of (11) such that 2a divides αi−bβi. Then (α1−bβ1
2a , β1), . . . , αh−bβh

2a , βh)

are the fundamental solutions of (5).
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REMARK 2.1. The equivalence class of solutions (x, y) of (5) determined

by the fundamental solution (αi−bβi
2a , βi) is given by

x =

(
αi − bβi

2a
u+

Dβi − bαi
2a

v

)
/2,(12)

y = (βiu+ αiv)/2,(13)

Proof. (i) Let (x, y) satisfy ax2+bxy+cy2 = N . Then (X,Y ) = (2ax+by, y)

satisfies X2 −DY 2 = 4aN,D = b2 − 4ac, and hence

(2ax+ by, y) ∼ (αi, βi) for some i, 1 ≤ i ≤ h,

(2ax+ by)βi − yαi ≡ 0 (mod 2a|N |)

xβi − y
(
αi − bβi

2a

)
≡ 0 (mod |N |)

and (x, y) ∼
(
αi−bβi

2a , βi

)
.

(ii) The solutions (αi−bβi
2a , βi), 1 ≤ i ≤ h are inequivalent.

For (
αi − bβi

2a
, βi

)
∼
(
αj − bβj

2a
, βj

)
=⇒ (αi − bβi)

2a
βj −

(αj − bβj)
2a

βi ≡ 0 (mod |N |)

=⇒ αiβj − αjβi ≡ 0 (mod 2a|N |)

=⇒ (αi, βi) ∼ (αj , βj).

(iii) Let (x, y), y ≥ 0 belong to the equivalence class K of solutions of

ax2 + bxy + cy2 = N determined by
(
αi−bβi

2a , βi

)
. Then (X,Y ) = (2ax +

by, y) belongs to the equivalence class K ′ of solutions of X2 −DY 2 = 4aN

determined by (αi, βi). Hence y ≥ βi.

Let (x′, y) be the conjugate solution to (x, y) =
(
αi−bβi

2a , βi

)
.

Then

x′ = −(ax+ by)

a
=
−2ax− 2by

2a
=
−(αi − bβi)− 2bβi

2a
= −αi + bβi

2a
.

If x′ is not an integer, or (x′, y) is not equivalent to (x, y), then (x, y) is a

fundamental solution for K. But if (x′, y) is an integer solution of K, then
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(x′, y) maps to (−αi, βi) and (x, y) maps to (αi, βi) and these are equivalent

solutions of K ′. Hence αi ≥ 0 and −(αi + bβi)/2a ≤ (αi − bβi)/2a. Hence

x′ ≤ x and (x, y) is a fundamental solution of K.

�

3. Examples

EXAMPLE 3.1. ([3, p. 266–267]). The equation 42x2+62xy+21y2 = 585.

Here D = 316. This equation becomes X2 − 316Y 2 = 98280 under the

transformation X = 84x + 62y, Y = y. This has ten Stolt fundamental so-

lutions: (314,1), (-634,31), (634,31), (-314,1), (-318,3), (1578,87), (1266,69),

(-1266,69), (-1578,87), (318,3), of which only (314, 1), (−318, 3), (−1266, 69)

and (−1578, 87) satisfy the condition that 84 divides α − 62β. These give

the following four solution families of the equation 42x2 +62xy+21y2 = 585:

(i) (α1, β1) = (314, 1): Fundamental solution (3, 1).

x = (3u− 228v)/2

y = (u+ 314v)/2.

(ii) (α2, β2) = (−318, 3): Fundamental solution (−6, 3).

x = (−6u+ 246v)/2

y = (3u− 318v)/2.

(iii) (α3, β3) = (−1266, 69): Fundamental solution (−66, 69).

x = (−66u+ 1194v)/2

y = (69u− 1266v)/2.

(iv) (α4, β4) = (−1578, 87): Fundamental solution (−83, 87)

x = (−83u+ 1492v)/2

y = (87u− 1578v)/2.

Here u2 − 316v2 = 4.
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EXAMPLE 3.2. The equation 2x2 + 5xy + y2 = 16. Here D = 17. This

becomes X2 − 17Y 2 = 128 under the transformation X = 4x + 5y, Y = y.

There are 6 Stolt fundamental solutions:

(31, 7), (−31, 7), (14, 2), (−14, 2), (20, 4), (−20, 4),

and only 5 for which 4 divides α− 5β:

(31, 7), (14, 2), (−14, 2), (20, 4), (−20, 4).

(i) (α1, β1) = (31, 7): Fundamental solution (−1, 7).

x = (−u− 9v)/2

y = (7u+ 31v)/2.

(ii) (α2, β2) = (14, 2): Fundamental solution (−6, 2).

x = (−6u+ 26v)/2

y = (2u− 14v)/2.

(iii) (α3, β3) = (−14, 2): Fundamental solution (1, 2).

x = (u− 9v)/2

y = (2u+ 14v)/2.

(iv) (α4, β4) = (20, 4): Fundamental solution (−10, 4).

x = (−10u+ 42v)/2

y = (4u− 20v)/2.

(v) (α5, β5) = (−20, 4): Fundamental solution (0, 4).

x = (0u− 8v)/2

y = (4u+ 20v)/2.

Here u2 − 17v2 = 4.
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EXAMPLE 3.3. ([3, p. 267]) The equation 19x2 − 85xy + 95y2 = −671.

Here D = 5. This becomes X2 − 5Y 2 = −50996 under the transformation

X = 38x− 85y, Y = y. There are eight Stolt fundamental solutions (α, β):

(±3, 101), (±32, 102), (±72, 106), (±103, 111).

Only four satisfy the condition that 38 divides α + 85β and these give the

following four solution families of the equation 19x2 − 85xy+ 95y2 = −671:

(i) (α1, β1) = (3, 101): Fundamental solution (226, 101).

x = (226u+ 20v)/2

y = (101u+ 3v)/2.

(ii) (α1, β1) = (32, 102): Fundamental solution (229, 102).

x = (229u+ 85v)/2

y = (102u+ 32v)/2.

(iii) (α1, β1) = (72, 106): Fundamental solution (239, 106).

x = (239u+ 175v)/2

y = (106u+ 72v)/2.

(iv) (α1, β1) = (103, 111): Fundamental solution (251, 111).

x = (251u+ 245v)/2

y = (111u+ 103v)/2.

Here u2 − 5v2 = 4.

EXAMPLE 3.4. ([1, pp. 93–94]) The equation x2 − 5xy + y2 = −3.

Here D = 21. This becomes X2 − 21Y 2 = −12 under the transformation

X = 2x − 5y, Y = y. This has one Stolt fundamental solution (3, 1). It
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satisfies the condition that 2 divides α+ 5β, resulting in the solution family

for the equation x2 − 5xy + y2 = −3:

x = 2u+ 9v

y = (u+ 3v)/2,

where u2 − 21v2 = 4.

4. Acknowledgment

I am indebted to John Robertson for his contribution to Section 1.

References

[1] T Andreescu and D. Andrica, Quadratic Diophantine equations, Springer 2015.

[2] K.R Matthews, The Diophantine equation x2−Dy2 = N,D > 0, Expositiones Mathematicae,

18 (2000), 323–331.

[3] K.R. Matthews, The Diophantine equation ax2 + bxy + cy2 = N,D = b2 − 4ac > 0, Journal
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