FINDING THE FUNDAMENTAL SOLUTIONS OF
ar® + by +cy? =n

K.R. MATTHEWS

ABSTRACT. Stolt defined an equivalence relation on the integer solutions of
22 —dy? = 4n, d > 0 and non-square, n non-zero, that can result in a smaller
number of equivalence classes than Nagell equivalence, which is the standard
equivalence relation. We give a method of calculating class representatives
called the Stolt fundamental solutions. This can then be used to solve the
diophantine equation ax? + bxy + cy?> = N, where d = b? — 4ac > 0,a > 0,

and is not a perfect square and N is non—zero.

1. INTRODUCTION

Let d > 0 and n be integers, d non—square, n nonzero. We study the

diophantine equation
(1) 22 — dy? = 4n.

This is relevant, because the equation ax? + bxy + cy> = N reduces to
X2 — dY? = 4aN under the transformation X = 2ax + by, Y = y.
Suppose (x,y) is an integer solution of . Then if (2/,y) is defined by

(2) o +y'Vd = (z+yVd)(u+vVd)/2,
equivalently
(3) 2 = (zu+dyo)/2, o = (v +yu)/2,

where (u,v) is an integer solution of u? — dv? = 4, then (2/,y') is also an
integer solution of .

(The fact that 2’ and 3y’ are integers follows from the congruences
r=dy (mod?2), 2'=dy (mod?2), u=dv (mod?2).)
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Then (2)) gives an equivalence relation on the set of integer solutions of
which we call Stolt equivalence.

The standard Nagell equivalence of solutions of (1)) ([5, p. 204]) is defined
by

(4) 4y Vd = (z +yVd)(u+vVd),
where (u,v) is an integer solution of u? — dv? = 1.

LEMMA 1.1. ([6, Theorem 4]). A necessary and sufficient condition for
solutions (z1,y1) and (x2,y2) of 2% — dy? = 4n to be Stolt-equivalent is that
z1y2 — x2y1 =0 (mod 2|n|).

REMARK 1.1. This result is due to Stolt and is analogous to a similar

criterion for Nagell-equivalence, where 2|n| is replaced by 4|n|.

Let €1 = u1+v \/;1, where (u1,v1) is the minimal positive integer solution
to u? —dv? = 1.

Let €4 = (ug + v4ﬂ) /2, where (ug4,v4) is the minimal positive integer
solution to u? — dv? = 4.

Stolt ([6, Theorem 1]) gave a connection between the two types of equiv-

alence classes in terms of €; and e4.

THEOREM 1.1. (i) If d =1 (mod 8) or d = 2 (mod 4) ord = 3
(mod 4), then €1 = 4.
(ii) If d = 5 (mod 8), then €1 = €4 if vq is even; whereas if vy is odd,
then e = €.
(iii) If d = 0 (mod 4), then €1 = €4 if vy is even; whereas if vy is odd,
then €1 = €2.
If €1 = €4, the Stolt and Nagell equivalence classes are the same. However
if €1 = €3 (resp. €}), each Stolt class consists of two (resp. three) Nagell

classes.

A Stolt fundamental solution is the solution in a class with the minimal

non-negative y. If there are two solutions in a class with the same minimal
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non-negative y, then the solution with x > 0 is taken as the fundamental
solution.

Ifd=1 (mod 8) or d =2 (mod 4) or d =3 (mod 4), then the Stolt and
Nagell fundamental solutions are identical. However when d =5 (mod 8) or
d =0 (mod 4), if €; # €4, one has to determine which Nagell fundamental
solutions belong to the same Stolt class. This can be done by first finding the
Nagell fundamental solutions using the LMM (Lagrange-Mollin-Matthews)
continued fraction-based algorithm in [2], and using Lemma to select
the Stolt fundamental solutions.

The Stolt fundamental solutions can also be computed for small d and
n using the following result, which is similar to Theorem 4.1 of [4], which

characterises the Nagell fundamental solutions.

THEOREM 1.2. Let (x1,%1) be the least positive solution of x> —dy* = 4.
An integer pair (u,v) satisfying is an SFS, if and only if one of the
following holds:

(a) If n >0,
(1) O<’U<y1\/ﬁ;
(ii)) v =0 and u = V4n,
(iii) v =14/ 553 and u= /n(z1 +2).
(b) If n <0, then

(i) M‘T?|§11<y1 In|

x1—2

(il) v =y14/ x|1n_|2 and u = +/|n|(x; — 2).

EXAMPLE 1.1. The equation 22 — 28y = 72. We have ¢; = ¢2. There
are six Nagell fundamental solutions (£10, 1), (£18,3), (£38,7) and three

Stolt fundamental solutions (£10,1), (18, 3), as

(10,1) ~ (—38,7),(—10,1) ~ (38,7),(18,3) ~ (—18,3),

and (10,1),(—10,1) and (18, 3) are not Stolt equivalent.
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EXAMPLE 1.2. The equation 22 —13y? = 48. We have ¢; = €3. There are
six Nagell fundamental solutions (£10,2), (+16,4), (£94,26) and two Stolt

fundamental solutions (£10,2), as
(10,2) ~ (—16,4) ~ (94,26), (—10,2) ~ (16,4) ~ (—94, 26),
and (10,2) and (—10,2) are not Stolt equivalent.

2. THE DIOPHANTINE EQUATION ax? + bxy 4+ cy?> = N

Stolt [7] defined equivalence for the diophantine equation
(5) az? + bxy + cy®> = N,

where D = b? — 4ac > 0 and not a perfect square.

If (z,y) is an integer solution of and (2,1/) is defined by

D
(6) 2az’ + by’ +y'VD = W(Zaw +by +yVD),

where (u,v) is an integer solution of u? — dv? = 4, then (2/,7/) is also an
integer solution of and @ gives an equivalence relation on the set of
integer solutions of .

Note that this equivalence reduces to Nagell equivalence when a = 1,b =

0,c = —d,d > 0 and nonsquare.

Equivalently
ol x
(7) =U ,
Y Y
where
u—2bv —cv
(8) U=
av u—gbv

The equivalence class containing (z,y) is then given by

1'/

x
(9) | =xun n € Z.

Y Y
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LEMMA 2.1. ([7, Theorem 5]). A necessary and sufficient condition for
solutions (z1,v1) and (x2,12) of ax?®+bry+cy? = N to be equivalent is that
T1Yy2 — 2291 = 0 (mod [NJ).

Among all solutions (z,y) in an equivalence class K, we choose a fun-
damental solution where y is the least nonnegative value of y when (z,y)
belongs to K. Let 2/ = —(ax + by)/a be the conjugate solution to z in the
equation ax? +bxy + cy? = N. If 2’ is not integral or if (', ) is not equiva-
lent to (z,y), this determines (z,y). If 2’ is integral and (2, y) is equivalent
to (x,y), we replace x by «’, if 2/ > x. There are finitely many equivalence
classes, each indexed by a fundamental solution.

These were also discussed in [4], where inequalities derived by Stolt [7]
were shown to determine the fundamental solutions.

The transformation
(10) X =2ax+0by,Y =y

transforms equation into equation ((11)).

(11) X? — Dy? = 4aN,

If there are no integer solutions of , then there are no integer solutions
of .
In what follows, we assume that has an integer solution and that

a > 0.

THEOREM 2.1. Let (a1,61), ..., (ap, Br) be the Stolt fundamental solu-
tions of such that 2a divides c;—bf;. Then (0‘1;7;617 B1),. -, %, Br)
are the fundamental solutions of .
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REMARK 2.1. The equivalence class of solutions (x,y) of determined

by the fundamental solution (ai;fﬁ L [3;) is given by
o —bBi DB —ba;
12 = 2
(12) o= (M5 s DA gy
(13) y = (Biu+ av)/2,

Proof. (i) Let (z,y) satisfy az?+bxy+cy? = N. Then (X,Y) = (2ax+by,y)
satisfies X2 — DY? = 4aN, D = b — 4ac, and hence

(2az + by,y) ~ (o, B;) for some i,1 < i < h,

(2ax 4+ by)B; — yo; =0 (mod 2a|N|)

xfi—y (ai _ bﬁi) =0 (mod |N|)

2a

and (z,y) ~ (“i;fﬁi,ﬁi) .

(ii) The solutions ( ai%ﬁi, Bi),1 < i < h are inequivalent.

For
o — bB; oj — bp;
( 5 75@') ~ (j 5 ]75]‘)

— (ai;abﬁi)ﬁj - (aj;ab&)ﬁz =0 (mod N

— aiﬁj — Oéjﬁi =0 (mod 2a|N|)

= (a4, Bi) ~ (o), Bj).

(iii) Let (x,y),y > 0 belong to the equivalence class K of solutions of
az? + bry + cy? = N determined by (a’%’ﬁl,@) Then (X,Y) = (2az +
by,y) belongs to the equivalence class K’ of solutions of X? — DY? = 4aN
determined by («;, ;). Hence y > f;.

Let (2/,y) be the conjugate solution to (z,y) = <°”;7£'Bi,ﬂi).

Then

o _(am +by)  —2ax —2by  —(o; —bB;) —2bB; _a; +b6;
N a N 2a N 2a 2a

If 2/ is not an integer, or (2, y) is not equivalent to (x,y), then (z,y) is a

fundamental solution for K. But if (2/,y) is an integer solution of K, then
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(2',y) maps to (—ay, 3;) and (x,y) maps to («;, 5;) and these are equivalent

solutions of K’. Hence o; > 0 and —(a; + b0;)/2a < (a; — bB;)/2a. Hence
' <z and (z,y) is a fundamental solution of K.

U

3. EXAMPLES

EXAMPLE 3.1. ([3, p. 266-267]). The equation 4222 +62zy+21y* = 585.
Here D = 316. This equation becomes X? — 316Y2 = 98280 under the
transformation X = 84x 4 62y,Y = y. This has ten Stolt fundamental so-
lutions: (314,1), (-634,31), (634,31), (-314,1), (-318,3), (1578,87), (1266,69),
(-1266,69), (-1578,87), (318,3), of which only (314, 1), (—318, 3), (—1266, 69)
and (—1578,87) satisfy the condition that 84 divides a — 623. These give
the following four solution families of the equation 4222 +62xy+21y? = 585:

(i) (aq, 1) = (314,1): Fundamental solution (3,1).
xr = (3u — 228v)/2
y = (u+ 314v)/2.
(ii) (a2, B2) = (—318,3): Fundamental solution (—6, 3).

x = (—6u + 246v)/2

y = (3u — 318v)/2.
(iii) (as,B3) = (—1266,69): Fundamental solution (—66,69).

x = (—66u + 1194v)/2

y = (69u — 1266v)/2.
(iv) (au,B4) = (—1578,87): Fundamental solution (—83,87)

x = (—83u + 1492v) /2

y = (87u — 1578v)/2.

Here u2 — 31602 = 4.



8 K.R. MATTHEWS

EXAMPLE 3.2. The equation 222 + 5zy + y> = 16. Here D = 17. This
becomes X? — 17Y? = 128 under the transformation X = 4z + 5y,Y = v.

There are 6 Stolt fundamental solutions:
(31,7),(—=31,7),(14,2),(—14,2),(20,4), (—20,4),
and only 5 for which 4 divides oo — 53:
(31,7),(14,2),(—14,2),(20,4), (—20,4).
(i) (a1,p1) = (31,7): Fundamental solution (—1,7).

r=(—u—9v)/2

y = (Tu+ 31v)/2.
(ii) (a2, B2) = (14,2): Fundamental solution (—6,2).

x = (—6u + 26v)/2

y = (2u — 14v)/2.

(iii) (as,B3) = (—14,2): Fundamental solution (1, 2).
r = (u—9v)/2
y = (2u+ 14v)/2.

(iv) (au,B4) = (20,4): Fundamental solution (—10,4).

x = (—10u + 42v)/2

y = (4u — 20v)/2.
(v) (as,85) = (—20,4): Fundamental solution (0,4).

x = (0u — 8v)/2

y = (du +20v)/2.

Here u2 — 17v? = 4.
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EXAMPLE 3.3. ([3, p. 267]) The equation 1922 — 85xy + 95y = —671.
Here D = 5. This becomes X2 — 5Y2 = —50996 under the transformation
X =38z — 85y,Y = y. There are eight Stolt fundamental solutions (a, 3):

(£3,101), (£32,102), (£72, 106), (£103, 111).

Only four satisfy the condition that 38 divides a 4+ 853 and these give the
following four solution families of the equation 1922 — 85xy + 95y = —671:

(i) (a1,p1) = (3,101): Fundamental solution (226, 101).

x = (226u + 200)/2

y = (101u + 3v)/2.
(i) (aq,p1) = (32,102): Fundamental solution (229, 102).

z = (229u + 85v) /2

y = (102u + 32v) /2.
(iii) (ou,B1) = (72,106): Fundamental solution (239, 106).

x = (239u + 175v) /2

y = (106u + 72v)/2.
(iv) (a1,p1) = (103,111): Fundamental solution (251, 111).

x = (251u + 245v)/2

y = (111u + 103v)/2.
Here u? — 5v% = 4.

EXAMPLE 3.4. ([T, pp. 93-94]) The equation z? — 52y + y> = —3.
Here D = 21. This becomes X2 — 21Y? = —12 under the transformation
X = 2z — 5y,Y = y. This has one Stolt fundamental solution (3,1). It
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satisfies the condition that 2 divides a + 553, resulting in the solution family

for the equation z? — bay + y2 = —3:
r=2u+ 9
y = (u+3v)/2,

where u? — 2102 = 4.
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