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Abstract
For given non—zero integers s1, ..., Sy, the problem of finding in-
tegers ai, ..., a,, satisfying s = ged (s1,...,8m) = a181 + -+ + amSm,

with a2 + - - - + a2, minimal, is thought to be computationally hard. In
this paper, we present an algorithm which takes as its starting point
the recent LLL-based algorithm of Havas, Majewski and Matthews
and which often finds a shorter vector (a,...,an).

1 Introduction

Let s1,...,S, be integers and s = ged(sy,...,8,). In a recent paper
[Havas, Majewski, Matthews 1998], the author and his collaborators used
variants of the LLL algorithm to find multiplier vectors (a, ..., a,,) of small

Euclidean length || X|| = (a? + -+ + a2)"? such that s = ays; + ... +
amSm- In each case a unimodular m X m matrix P is produced such that
Pls1,...,8m]t = [0,...,0,s]". Rows pi,...,pm_1 of P constitute a basis of
short vectors for the (m — 1)-dimensional lattice A formed by the vectors
X = (a1,...,ay,) with a,...,a,, € Z , satisfying a;s; + -+ + @S, = 0.
In particular, every such X can be expressed uniquely as an integer linear
combination X = z1p; + -+ + Zm_1Pm_1. In addition, p,,, the last row of P,
is a short multiplier vector and the general multiplier vector p is given by
P =DPm+x1p1+ -+ Tym_1Pm—_1, Where x1,..., 2,1 € Z.

The matrix P has further properties: If the Gram—Schmidt basis corre-

sponding to rows py, ..., p, is denoted by pj, ..., p; , where
— P Dj

PY=D1 Dh=DE— Y Mkl k= (1)
j=1 P; - P;



then

(a)  Jugi| <1/2for 1 <j<k<m,
() pi-pi>(a—pd, )iy pi for2<k<m-—1.

(Here 1/4 < a < 1.)
In what follows we assume « = 1, so that (2) becomes

Dy pp > (1— Mik—l)pl:—l “Dr_1-

From the equations

k—1
pL=D, Dr=Dp+ Y P
j=1
a multiplier vector p may be written as
m—1 m—1
P=DpPm+ Z»’Ukpk =P+ Zykpz,
k=1 k=1
where :
Yp = Tp + Z HikTi + Hom-
i=k+1

The orthogonality of pj, ..., p;, then implies

m—1 m—1
111> = llpm + D zepel® = p5I*+ > willprlP?
k=1 k=1
== Bm—i_Q(xla"'?xmfl)a
where

Q(xla R 7$m—1) - Bm—1<xm—1 + ,U/m,m—1>2

+ Bm72<xm72 + ,umfl,mf2xmfl + ,um,mf2)2

+ Bi(x1 + poaze + - 4 tim—11Tm—1 + ,Um,1)2

and By, = ||p;||* for k=1,...,m.



The equation P[sq,...,s,]" =[0,...,0,s]" and the fact that [s1,...,sm]
is orthogonal to each of py,...,p,_1 together imply

i (S1y+-+ySm)- 9)

L )

Hence

82

Zot s
From equations (4) and the fact that the determinant of the orthogonal
matrix whose rows are pj,...,p; , is equal to det P = %1, we also have

By = |lpll* = (10)

By -+ By, = det(p] - p}) = (det P)* = 1.
Consequently
A=(detA)? =By Bp_1=(554+---+52)/s% (11)

m

Also (3) becomes
Be> (1-2,)Be s, (12

for2<k<m-—1.

2 The motivation for the algorithm

Before we give our algorithm for generating possibly shorter multipliers than
Pm, We give some background.

The minimum value 0 of the quadratic expression in equation (8) occurs
at the point (py, ..., pm—1) € Q™ !, where

m—1

Pt = —flmm-1, Pk = — ( > wapi +umk> J1<k<m—1. (13)

i=k+1

It is then an easy exercise in determinants to show that for 1 <k <m —1

where Ay is the (m — 1) x (m — 1) determinant formed from the Gram
determinant A = det(p; - p;), by replacing the k-th column by

(pm 'pl)a ) (pm 'pm—l)'
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Consequently Ay is an integer.

We remark that in practice all p; tend to be small.

We have also observed that each shortest multiplier is always associated
via (5) with a point (21, ...,7,,_1) € Z™ " in the vicinity of (p1,..., pm_1)-

Let D be the set of points (21,...,zm_1) € Q™! satisfying

m—1

|zk+Zuikzi+umk|<l,k:m—l,...,l. (15)
i=k+1

Then (p1,...,pm-1) € D. Also (0,...,0) € D.

Definition. We say Property G holds if for each shortest multiplier p, the
x1,. .., T, of equation (5) satisfy (x1,...,2,_1) € D.

Remarks. 1. In view of (15), if the integer vector (z1,...,2,—1) € D, there
are at most two possibilities for each x;. So if property G holds for a given
m-tuple (s1,...,Sm,), then the number N of shortest multipliers is at most
2m-1

2. Given that a shortest multiplier p satisfies ||p||*> < ||pm||?, (7) and (8)
show that property G holds if By > ||p||* for 1 < k < m — 1. This is the
case in Example 1 below, but does not always hold, as Example 2 shows.

3. The examples where s; =2 for 1 < <m —1, s, = m if m is odd,
but s,, = m — 1 if m is even, produce values (E) and (E), respectively
for N. ’ ’

4. We prove below that property G holds when m = 3. The least value
of m for which it fails to hold appears to be 11, as in Example 5. Failures
occur extremely rarely.

5. We remark that in contrast to our situation, [Rosser 1942] gave an
example of the quadratic expression (2 — 47z — 13y)? + (2 — 7o — 2y)?, which
assumes its minimum value 2 for integers x and y at the point (—11,40),
whereas the minimum value 0 for real numbers z, y occurs at (—22/3,80/3).

3 The algorithm

We construct a sequence of multiplier vectors Xy, K =m —1,...,1, which
correspond to points (z1,...,Z,_1) in D, close to (p1,..., pm-1), as follows.

Define x,,_1 = 0,..., 241 = 0. Then define xg,...,x; € Z recursively
by:



0 if MmKZO
=1 if pyure > 0;

(i) for 1 <k < K, 2}, = [—0y ], where

m—1
O = Z HikTi + fmk (16)
i=k+1
and [0] is the nearest integer symbol, with [#] = 6 — %, if 0 is a
non—negative half-integer, but 6 + % if 0 is a negative half-integer.
We also let Xy = py,.
Remark. For m = 3, a perusal of the list of shortest multipliers in the
Appendix reveals that our algorithm will produce all the shortest multipliers.
For m = 4 the algorithm appears to deliver at least one shortest multiplier.
For 5 < m < 10, whenever the algorithm fails to deliver a shortest multiplier,
the excess length—squared is always observed to be 1, as in Example 2. In
example 5, the excess is 2.

4 The case m = 3.

Lemma. Let (zy,...,7,,_1) € Z™ ' correspond to a shortest multiplier p
via equation (7). Then

[N

(ot + ] < ("7 -3) "

Proof. The inequality ||p||* < ||pm||? implies Q(x1, ..., zm_1) < Q(0,...,0).
Then equation (8) gives
(«rmfl + Mmm71>23m71 S /Jlgnmlemfl + -+ ,ugnlBl

m—2

B B m—2
B — 2 < 2 2 . 2 1
(ill'm 1+ U 1) S Mm—1 + M —2 Bm—l + + Hima (Bm—1>




Now (3) gives By, > (1 — p3;_1)Br—1 > 3By_1. Hence

4 4 m—2
(Im—l + ,umm—l)2 < anmfl + anmf2§ ot :ufnl (g)
< 1 1+ 1 + + n"
- 4 3 3

_ ! (W_—l) _
4 % —1
Corollary. Property G holds if m = 3.
Proof. Assume m = 3 and that (z,,25) € Z? defines a minimum point for
Q(w1,x2) = (w2 + p32)?Be + (¥1 + porx2 + ps1)?Bi.
Then from the Lemma, we have

SV

Also the inequalities xo(xs + 2u32) > 0 and Q(x1,x2) < Q(0,0) give
|21 4 01| = [@1 + porza + par| < [pal. (18)

Remark. From the Corollary, it follows that N < 4 if m = 3. Infact N <3
if m = 3. For if N = 4, we see from (17) and (18) that pg, = €1 = £1, 3 =
€o = £1, oy = 0. Then

2 Il 0 P
L= (etPP =det(pop) = 0 [wl” Zlnl? |,
||

which gives 4 = ||pa|*/|p2*(4]|ps[|* — p1 - p2 — |Ip2| *).
This leads to a contradiction, as the p; - p; are integers.
The example (s1, $2,53) = (41,43,49) shows that the bound N = 3 is
attained. Here the quadratic expression in (8) is

Qar, 2) = %t (w2 — 35517 + 26(w1 — fows + 33)*

3 -4 1
The unimodular matrix P :{ -10 -3 11 ] .
6 0 -5

(Pl,PQ) = (_%v %)‘

Also Xs, X1, Xj are given by



K | (z1,79) Xk | Xk
> [ (0,1) | (—4,-3.6)| 61
T (—1,0) | (3,4,-6) | 61
0 (0,0) | (6,0,—5) | 61

and are the shortest multiplier vectors.

5 Numerical results

Example 1. Take sy, s9, s3 to be 4,6, 9.

The unimodular matrix P =

3 =2 0
0 3 =2
-2 0 1

The quadratic expression in (8) and the py of (14) are given by

Q($1,$2) =

(Phpz) = (m716_33 .

2 2
8y~ 2413 (11— - )
Also X, X1, Xy are given by
K| (z1,20) | Xk | Xk|]?
2 | (1L,1) | (L,1,-1)| 3
1 (170) (17_ 71) 6
0] (0,0) |(=2,0,1) 5

The shortest multiplier is Xy = p3 + p1 + po.

Example 2. Take sq,..

The unimodular matrix P =

The quadratic expression in (8) is

(p1,p2,P3, pa)

Also Xy, ..

139095
4770

+

10

68385 2+
T —
47 139095

96
204

204
—— | T2+ X3+ x4+ —

54861

., 85 to be 10,51, 104, 177, 307.

-2 1 -2 1 0
-1 0 1 -4 2
-3 —4 1 -1 1
3 -1 -4 -1 2
-3 0 2 -1 0
4770 1320
—— |23 — ——x4
204 4770

10 94
204

26741

( 38528
1390957 139095° 139095 139095 /)

., X are given by

1566
4770

2 4
10 (21 — —20 —
204) * (xl 1072

68385

)2
LI

1ot
1077 10

1)2'



(%1, T3, T3, T4) Xk Xk
(0 -1, 0 ) | (1,-L,-32,0) | 15
(0,0,—1,0) | (0,4,1,0,-1) 18
(0, 0 0) | (—2,0,1,3,—2) | 18
(—1,0,0,0) | (-1, —1,4,-2,0) | 22

0.0.00) | (=3.0.2-1,0) | 14

o —| | | | X

The shortest multiplier is p = ps + ps = [0, —1, =2, —2,2], with ||p||* = 13
Property G holds here.

Example 3. (Example 7.2 of [Havas, Majewski, Matthews 1998])

Take s1,...,510 to be 763836, 1066557, 113192, 1785102, 1470060, 3077752, 114793, 3126753,
1997137, 2603018,

r-2 0 -3 1 0 0 0 -1 -1 27
0o -1 2 2 -1 -1 3 -1 1 1
-2 0 0 -1 3 -3 -1 2 1 0
o 3 2 3 2 -3 1 0 0 -1
The unimodular matrix P = _3 ; _3 _g :; i’ _;’ _f _} 8
0 2 0 -2 —4 -1 -1 4 -1 0
-3 3 -1 2 -2 1 0 1 4 -6
0 2 -1 2 -3 -5 —4 -1 5 3

-1 0o 1 -3 1 3 3 -2 -2 2|

Then Xy, ..., X, are given by

K (x1,...,29) Xk || Xx||?
9|(-1,-1,-1,0,—-1,-1,0,0,1) | (3, — 112 —-1,-2,-2, 222) 36
8 (0,-1,0,0,-1,—1,0,1,0) (—4 223,1,17 ,1,-5) 62
7 (0,0,0,0,—-1,—1,1,0,0) (— 1, 2,1,00 2,3,3,-3,2) 41
6 (0,-1,0,0,—1,-1,0,0,0) (—-1,-3,-1,0,5,0,1,0,—-3,1) 47
5 (0,-1,-1,1,-1,0,0,0,0) (3,2,—1,-1,2,1,5,—1,-3,0) 55
4 (0,-1,0,1,0,0,0,0,0) (— ,4,1, —-2,4,1,1, -1, 3,0) 50
3 (0,0,1,0,0,0,0,0,0) (=3,0,1,-4,4,0,2,0,—1,2) 51
2 (0,-1,0,0,0,0,0,0,0) (—1,1,—1,-5,2,4,0, 1,—3,1) 59
1 (—1,0,0,0,0,0,0,0,0) (1,0 4,-4,1,3,3,—1,—1,0) 54
0 (0,0,0,0,0,0,0,0,0) (—-1,0,1,-3,1,3,3, 2,—2,2) 42

Truncated to 2 decimals, p = (—0.41,-0.80, —0.44,0.02, —0.76, —0.73, 0.25, 0.25, 0.40)
Xy is the shortest multiplier vector. Property G holds here.

Example 4. Take sq,...,s4 to be
324234553, 7856756, 3524634, 5675646857, 24364565, 8957897589789789, 464564564565,
67857965807897890, 4364564565, 6787867867, 43643564356, 67867867968, 546345756,
324524545, 678678967967, 3425462668, 76867896796, 43264576568678, 246456 758678768,
2464564756746, 5367567568769898798, 4564564262462456, 5785786786T9689689678,
26346435756 7568578, 456437567586798679689685, 456426245624564, 567567567567, 462564564786,




BTBTB6T6TS, 4363645635758, 67867865786, 456435656, 678657865857, T89BIT68ITS4, 343643564565,

678678657879, 678, 678678678678, 6345736 756756867, 6575675678,

Here LLL delivers a pyo with ||ps||*> = 30 and our algorithm gives a
multiplier Xo; with || Xor||? = 18.

There are 2 shortest multipliers, lengthsquared 14:
P40 — 2p2 — p3 — 2ps — P6 + P8 — P12 + P15 + P16 — P17 + P18 — P21 + P23 + P24

=(-1,1,0,1,0,0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1, -1, -1, -1,0, 1),
P40 — P1 — P2 + 2p4 +ps5 + pe + ps — p9 + P11 + 3p13 + P14 + 2p16 — 2p17 + P18 — P20 + P21 + P22 + P27 — P2s

= (0,0,0,0,1,0,1,0,0,0,0,1,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,1,1,-1,—-1,-1,0,1,0,0, —1).

Truncated to 2 decimals,
p = (—0.31,-1.36,—0.07,1.91, —0.47,0.14, —0.36,0.61, —0.94, —0.26, 0.33, —0.30, 1.85, 0.66, 0.09,\
1.31,—1.67,0.75,0.36, —0.63,0.19, 0.68, —0.19, 0.40, 0.15, —0.29, 0.43, —0.44, —0.00, 0.00, 0.00, 0.00,\

—0.00,0.00, —0.00, 0.00, 0.00, 0.00, 0.00)
Property G holds here.
Example 5. Take sq, ..., s11 to be 29196545, 2058462515, 354950953, 434047189, 333570961,
1208129565, 1676208297, 813677221, 224909089, 650841491, 1843221943. The shortest Xy is
X[7) = pu +p2 —pr = (=3,-4,3,4,-2,0,4,0,3,1, 1) with ||X7||> = 81.
The shortest multiplier is

P =DPu +p2 —P3 —Ps —Pio = (37 ]-a ]-7 _37 _3707 _2767 1a _3a0>7

with ||p||? = 79.
Property G does not hold, as
10 = —1 and 019 =-469807408429549190/13467046613442016227 ~ —.0343.

Example 6. The following random examples illustrate the improved mul-
tipliers X that are produced by the algorithm in section 3. The shortest
multiplier vectors are unknown here.

m | lpwml* | [ Xk|?

150 | 17 | [[Xas][P =9
200 | 14 | |[Xsol7=38
250 | 12 | [[XeslZ=9

6 Appendix

In this section we present a complete classification of the possible shortest
multipliers when m = 3, based on inequalities (17) and (18):

7
|zg + pse] < D and |71 + po1o + pa1| < |ps1]-



- psz = 0, [ps1] < 1/2: ps.

- 32 = 0,31 = 1/2: p3 and p3 — p1.

- 32 = 0,31 = —1/2: p3 and p3 + p1.

0 <z <1/2,0 < gy < 1/2:

(i) pa1 > 0: ps or p3 — po.

(ii) p21 < 0: p3 or p3 — p1 — pa.

0 <psp < 1/2, pgy = 1/2: (Here [[ps|| = [[ps — p1l[)

(i) po1 > 0: ps and p3 — p1, or p3 — po.
(ii) p21 < 0: p3 and p3 — pi1, or p3 — p1 — pa.
(iii) po1 = 0: ps and p3 — p;. Note: pze < 1/2 here.
For if uss = 1/2, we have 4 shortest multipliers:

b3, P3s —P1, P3 — P2, P3 —P1 — P2
0 <3 £1/2,-1/2 < gy <0

(i) p21 > 0: ps or ps + p1 — po.
(ii) po1 < 0: ps or pg — ps.
-0 < psp <1/2,u31 = —1/2: (Here ||ps|| = ||ps + p1l])

(i) p21 > 0: ps and ps + p1, or p3 + p1 — po.
(i) p21 < 0: ps and p3 + p1, or p3 — po.
(iii) po1 = 0: p3 and ps + p1. (32 < 1/2.)

. —1/2 < us30 <O,—1/2 < 31 <0:

(i) p21 > 0: p3 or ps + po.
(ii) po1 < 0: p3 or ps+ p1 + po.

- =1/2 < gy <0, p31 = —1/2: (Here ||ps|| = [|ps + p1])

(1) po1 > 0: pg and ps + pq, or ps + po.
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(ii) po1 < 0: ps and ps + p1, or ps + p1 + po.
(iii) po1 = 0: p3 and ps +p1. (—1/2 < uss.)
10. —1/2 < pge < 0,0 <z < 1/2
(i) p21 <0: p3 or ps + po.
(ii) po1 > 0: p3 or p3 — p1 + po.
1. =1/2 < pze < 0, gy = 1/2: (Here |[|ps|| = [|ps — p1l])

(i) p21 > 0: pg and ps — p1, or ps — p1 + po.
(ii) por < 0: p3 and ps — p1, or ps + po.
(111) o1 = 0: P3 and pP3 — P1- (—1/2 < IU32.)
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