Short multipliers for the extended gcd problem

Keith Matthews

Abstract

For given non-zero integers s_1, \ldots, s_m , the problem of finding integers a_1, \ldots, a_m satisfying $s = \gcd(s_1, \ldots, s_m) = a_1 s_1 + \cdots + a_m s_m$, with $a_1^2 + \cdots + a_m^2$ minimal, is thought to be computationally hard. In this paper, we present an algorithm which takes as its starting point the recent LLL-based algorithm of Havas, Majewski and Matthews and which often finds a shorter vector (a_1, \ldots, a_m) .

1 Introduction

Let s_1, \ldots, s_m be integers and $s = \gcd(s_1, \ldots, s_m)$. In a recent paper [Havas, Majewski, Matthews 1998], the author and his collaborators used variants of the LLL algorithm to find multiplier vectors (a_1, \ldots, a_m) of small Euclidean length $||X|| = (a_1^2 + \cdots + a_m^2)^{1/2}$ such that $s = a_1s_1 + \ldots + a_ms_m$. In each case a unimodular $m \times m$ matrix P is produced such that $P[s_1, \ldots, s_m]^t = [0, \ldots, 0, s]^t$. Rows p_1, \ldots, p_{m-1} of P constitute a basis of short vectors for the (m-1)-dimensional lattice Λ formed by the vectors $X = (a_1, \ldots, a_m)$ with $a_1, \ldots, a_m \in \mathbb{Z}$, satisfying $a_1s_1 + \cdots + a_ms_m = 0$. In particular, every such X can be expressed uniquely as an integer linear combination $X = z_1p_1 + \cdots + z_{m-1}p_{m-1}$. In addition, p_m , the last row of P, is a short multiplier vector and the general multiplier vector p is given by $p = p_m + x_1p_1 + \cdots + x_{m-1}p_{m-1}$, where $x_1, \ldots, x_{m-1} \in \mathbb{Z}$.

The matrix P has further properties: If the Gram-Schmidt basis corresponding to rows p_1, \ldots, p_m is denoted by p_1^*, \ldots, p_m^* , where

$$p_1^* = p_1, \quad p_k^* = p_k - \sum_{j=1}^{k-1} \mu_{kj} p_j^*, \quad \mu_{kj} = \frac{p_k \cdot p_j^*}{p_j^* \cdot p_j^*},$$
 (1)

then

(a)
$$|\mu_{kj}| \le 1/2 \text{ for } 1 \le j < k \le m$$
,

(b)
$$p_k^* \cdot p_k^* \ge (\alpha - \mu_{k\,k-1}^2) p_{k-1}^* \cdot p_{k-1}^* \text{ for } 2 \le k \le m-1.$$
 (2)

(Here $1/4 < \alpha \le 1$.)

In what follows we assume $\alpha = 1$, so that (2) becomes

$$p_k^* \cdot p_k^* \ge (1 - \mu_{kk-1}^2) p_{k-1}^* \cdot p_{k-1}^*. \tag{3}$$

From the equations

$$p_1 = p_1^*, \quad p_k = p_k^* + \sum_{j=1}^{k-1} \mu_{kj} p_j^*,$$
 (4)

a multiplier vector p may be written as

$$p = p_m + \sum_{k=1}^{m-1} x_k p_k = p_m^* + \sum_{k=1}^{m-1} y_k p_k^*, \tag{5}$$

where

$$y_k = x_k + \sum_{i=k+1}^{m-1} \mu_{ik} x_i + \mu_{mk}.$$
 (6)

The orthogonality of p_1^*, \dots, p_m^* then implies

$$||p||^{2} = ||p_{m} + \sum_{k=1}^{m-1} x_{k} p_{k}||^{2} = ||p_{m}^{*}||^{2} + \sum_{k=1}^{m-1} y_{k}^{2} ||p_{k}^{*}||^{2}$$

$$= B_{m} + Q(x_{1}, \dots, x_{m-1}), \tag{7}$$

where

$$Q(x_1, \dots, x_{m-1}) = B_{m-1}(x_{m-1} + \mu_{m,m-1})^2 + B_{m-2}(x_{m-2} + \mu_{m-1,m-2}x_{m-1} + \mu_{m,m-2})^2$$

$$\vdots$$

$$+ B_1(x_1 + \mu_{2,1}x_2 + \dots + \mu_{m-1,1}x_{m-1} + \mu_{m,1})^2$$
 (8)

and $B_k = ||p_k^*||^2$ for k = 1, ..., m.

The equation $P[s_1, \ldots, s_m]^t = [0, \ldots, 0, s]^t$ and the fact that $[s_1, \ldots, s_m]$ is orthogonal to each of p_1, \ldots, p_{m-1} together imply

$$p_m^* = \frac{s}{s_1^2 + \dots + s_m^2} (s_1, \dots, s_m).$$
 (9)

Hence

$$B_m = ||p_m^*||^2 = \frac{s^2}{s_1^2 + \dots + s_m^2}.$$
 (10)

From equations (4) and the fact that the determinant of the orthogonal matrix whose rows are p_1^*, \ldots, p_m^* , is equal to det $P = \pm 1$, we also have

$$B_1 \cdots B_m = \det(p_i^* \cdot p_i^*) = (\det P)^2 = 1.$$

Consequently

$$\Delta = (\det \Lambda)^2 = B_1 \cdots B_{m-1} = (s_1^2 + \dots + s_m^2)/s^2.$$
 (11)

Also (3) becomes

$$B_k \ge (1 - \mu_{k\,k-1}^2) B_{k-1},\tag{12}$$

for $2 \le k \le m-1$.

2 The motivation for the algorithm

Before we give our algorithm for generating possibly shorter multipliers than p_m , we give some background.

The minimum value 0 of the quadratic expression in equation (8) occurs at the point $(\rho_1, \ldots, \rho_{m-1}) \in \mathbb{Q}^{m-1}$, where

$$\rho_{m-1} = -\mu_{mm-1}, \quad \rho_k = -\left(\sum_{i=k+1}^{m-1} \mu_{ik}\rho_i + \mu_{mk}\right), \ 1 \le k < m-1.$$
 (13)

It is then an easy exercise in determinants to show that for $1 \le k \le m-1$

$$\rho_k = -\Delta_k/\Delta,\tag{14}$$

where Δ_k is the $(m-1) \times (m-1)$ determinant formed from the Gram determinant $\Delta = \det(p_i \cdot p_j)$, by replacing the k-th column by

$$(p_m \cdot p_1), \ldots, (p_m \cdot p_{m-1}).$$

Consequently Δ_k is an integer.

We remark that in practice all ρ_k tend to be small.

We have also observed that each shortest multiplier is always associated via (5) with a point $(x_1, \ldots, x_{m-1}) \in \mathbb{Z}^{m-1}$ in the vicinity of $(\rho_1, \ldots, \rho_{m-1})$. Let D be the set of points $(z_1, \ldots, z_{m-1}) \in \mathbb{Q}^{m-1}$ satisfying

$$|z_k + \sum_{i=k+1}^{m-1} \mu_{ik} z_i + \mu_{mk}| < 1, \ k = m-1, \dots, 1.$$
 (15)

Then $(\rho_1, ..., \rho_{m-1}) \in D$. Also $(0, ..., 0) \in D$.

Definition. We say Property G holds if for each shortest multiplier p, the x_1, \ldots, x_{m-1} of equation (5) satisfy $(x_1, \ldots, x_{m-1}) \in D$.

Remarks. 1. In view of (15), if the integer vector $(x_1, \ldots, x_{m-1}) \in D$, there are at most two possibilities for each x_k . So if property G holds for a given m-tuple (s_1, \ldots, s_m) , then the number N of shortest multipliers is at most 2^{m-1} .

- 2. Given that a shortest multiplier p satisfies $||p||^2 \le ||p_m||^2$, (7) and (8) show that property G holds if $B_k > ||p_m||^2$ for $1 \le k \le m-1$. This is the case in Example 1 below, but does not always hold, as Example 2 shows.
- 3. The examples where $s_i = 2$ for $1 \le i \le m-1$, $s_m = m$ if m is odd, but $s_m = m-1$ if m is even, produce values $\binom{m-1}{\frac{m-1}{2}}$ and $\binom{m-1}{\frac{m-2}{2}}$, respectively for N.
- 4. We prove below that property G holds when m=3. The least value of m for which it fails to hold appears to be 11, as in Example 5. Failures occur extremely rarely.
- 5. We remark that in contrast to our situation, [Rosser 1942] gave an example of the quadratic expression $(2-47x-13y)^2+(2-7x-2y)^2$, which assumes its minimum value 2 for integers x and y at the point (-11,40), whereas the minimum value 0 for real numbers x,y occurs at (-22/3,80/3).

3 The algorithm

We construct a sequence of multiplier vectors X_K , K = m - 1, ..., 1, which correspond to points $(x_1, ..., x_{m-1})$ in D, close to $(\rho_1, ..., \rho_{m-1})$, as follows.

Define $x_{m-1} = 0, \ldots, x_{K+1} = 0$. Then define $x_K, \ldots, x_1 \in \mathbb{Z}$ recursively by:

(i)

$$x_K = \begin{cases} 0 & \text{if } \mu_{mK} = 0\\ 1 & \text{if } \mu_{mK} < 0\\ -1 & \text{if } \mu_{mK} > 0; \end{cases}$$

(ii) for $1 \le k < K$, $x_k = \lceil -\sigma_k \rfloor$, where

$$\sigma_k = \sum_{i=k+1}^{m-1} \mu_{ik} x_i + \mu_{mk} \tag{16}$$

and $\lceil \theta \rfloor$ is the nearest integer symbol, with $\lceil \theta \rfloor = \theta - \frac{1}{2}$, if θ is a non-negative half-integer, but $\theta + \frac{1}{2}$ if θ is a negative half-integer.

We also let $X_0 = p_m$.

Remark. For m=3, a perusal of the list of shortest multipliers in the Appendix reveals that our algorithm will produce all the shortest multipliers. For m=4 the algorithm appears to deliver at least one shortest multiplier. For $5 \le m \le 10$, whenever the algorithm fails to deliver a shortest multiplier, the excess length–squared is always observed to be 1, as in Example 2. In example 5, the excess is 2.

4 The case m=3.

Lemma. Let $(x_1, \ldots, x_{m-1}) \in \mathbb{Z}^{m-1}$ correspond to a shortest multiplier p via equation (7). Then

$$|x_{m-1} + \mu_{mm-1}| \le \left(\left(\frac{4}{3} \right)^{m-2} - \frac{3}{4} \right)^{\frac{1}{2}}.$$

Proof. The inequality $||p||^2 \le ||p_m||^2$ implies $Q(x_1, \ldots, x_{m-1}) \le Q(0, \ldots, 0)$. Then equation (8) gives

$$(x_{m-1} + \mu_{mm-1})^2 B_{m-1} \leq \mu_{mm-1}^2 B_{m-1} + \dots + \mu_{m1}^2 B_1$$

$$(x_{m-1} + \mu_{mm-1})^2 \leq \mu_{mm-1}^2 + \mu_{mm-2}^2 \frac{B_{m-2}}{B_{m-1}} + \dots + \mu_{m1}^2 \left(\frac{B_1}{B_{m-1}}\right)^{m-2}$$

Now (3) gives $B_k \ge (1 - \mu_{kk-1}^2) B_{k-1} \ge \frac{3}{4} B_{k-1}$. Hence

$$(x_{m-1} + \mu_{mm-1})^2 \leq \mu_{mm-1}^2 + \mu_{mm-2}^2 \frac{4}{3} + \dots + \mu_{m1}^2 \left(\frac{4}{3}\right)^{m-2}$$

$$\leq \frac{1}{4} \left(1 + \frac{4}{3} + \dots + \left(\frac{4}{3}\right)^{m-2}\right)$$

$$= \frac{1}{4} \left(\frac{\left(\frac{4}{3}\right)^{m-1} - 1}{\frac{4}{3} - 1}\right) = \left(\frac{4}{3}\right)^{m-2} - \frac{3}{4}.$$

Corollary. Property G holds if m = 3.

Proof. Assume m=3 and that $(x_1,x_2)\in\mathbb{Z}^2$ defines a minimum point for $Q(x_1, x_2) = (x_2 + \mu_{32})^2 B_2 + (x_1 + \mu_{21}x_2 + \mu_{31})^2 B_1.$

Then from the Lemma, we have

$$|x_2 + \mu_{32}| \le 7/12. \tag{17}$$

Also the inequalities $x_2(x_2 + 2\mu_{32}) \ge 0$ and $Q(x_1, x_2) \le Q(0, 0)$ give

$$|x_1 + \sigma_1| = |x_1 + \mu_{21}x_2 + \mu_{31}| \le |\mu_{31}|. \tag{18}$$

Remark. From the Corollary, it follows that $N \leq 4$ if m = 3. In fact $N \leq 3$ if m = 3. For if N = 4, we see from (17) and (18) that $\mu_{32} = \epsilon_1 = \pm 1, \mu_{31} =$ $\epsilon_2 = \pm 1, \mu_{21} = 0.$ Then

$$1 = (\det P)^2 = \det (p_i \cdot p_j) = \begin{pmatrix} ||p_1||^2 & 0 & \frac{\epsilon_1}{2}||p_1||^2 \\ 0 & ||p_2||^2 & \frac{\epsilon_2}{2}||p_2||^2 \\ \frac{\epsilon_1}{2}||p_1||^2 & \frac{\epsilon_2}{2}||p_2||^2 & ||p_3||^2 \end{pmatrix},$$

which gives $4 = ||p_1||^2 ||p_2||^2 (4||p_3||^2 - p_1 \cdot p_2 - ||p_2||^2).$

This leads to a contradiction, as the $p_i \cdot p_j$ are integers.

The example $(s_1, s_2, s_3) = (41, 43, 49)$ shows that the bound N = 3 is

$$Q(x_1, x_2) = \frac{5931}{26} \left(x_2 - \frac{2899}{5931}\right)^2 + 26\left(x_1 - \frac{7}{26}x_2 + \frac{13}{26}\right)^2.$$

attained. Here the quadratic expression in (8) is $Q(x_1, x_2) = \frac{5931}{26} (x_2 - \frac{2899}{5931})^2 + 26(x_1 - \frac{7}{26}x_2 + \frac{13}{26})^2.$ The unimodular matrix $P = \begin{bmatrix} 3 & -4 & 1 \\ -10 & -3 & 11 \\ 6 & 0 & -5 \end{bmatrix}$.

$$(\rho_1, \rho_2) = (-\frac{2185}{5931}, \frac{2899}{5931}).$$

 $(\rho_1, \rho_2) = (-\frac{2185}{5931}, \frac{2899}{5931}).$ Also X_2, X_1, X_0 are given by

K	(x_1,x_2)	X_K	$ X_K ^2$
2	(0,1)	(-4, -3, 6)	61
1	(-1,0)	(3,4,-6)	61
0	(0,0)	(6,0,-5)	61

and are the shortest multiplier vectors.

5 Numerical results

Example 1. Take
$$s_1, s_2, s_3$$
 to be 4, 6, 9. The unimodular matrix $P = \begin{bmatrix} 3 & -2 & 0 \\ 0 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}$. The quadratic expression in (8) and the ρ_k of (14) are given by $Q(x_1, x_2) = \frac{133}{13} \left(x_2 - \frac{62}{133} \right)^2 + 13 \left(x_1 - \frac{6}{13} x_2 - \frac{6}{13} \right)^2$, $(\rho_1, \rho_2) = \left(\frac{90}{133}, \frac{62}{133} \right)$. Also X_2, X_1, X_0 are given by

K	(x_1,x_2)	X_K	$ X_K ^2$
2	(1,1)	(1,1,-1)	3
1	(1,0)	(1, -2, 1)	6
0	(0,0)	(-2,0,1)	5

The shortest multiplier is $X_2 = p_3 + p_1 + p_2$.

Example 2. Take
$$s_1, \ldots, s_5$$
 to be $10, 51, 104, 177, 307$.

The unimodular matrix $P = \begin{bmatrix} -2 & 1 & -2 & 1 & 0 \\ -1 & 0 & 1 & -4 & 2 \\ -3 & -4 & 1 & -1 & 1 \\ 3 & -1 & -4 & -1 & 2 \\ -3 & 0 & 2 & -1 & 0 \end{bmatrix}$.

The quadratic expression in (8) is

$$Q(x_1, \dots, x_4) = \frac{139095}{4770} \left(x_4 - \frac{68385}{139095} \right)^2 + \frac{4770}{204} \left(x_3 - \frac{1320}{4770} x_4 + \frac{1566}{4770} \right)^2$$

$$+ \frac{204}{10} \left(x_2 + \frac{96}{204} x_3 + \frac{10}{204} x_4 + \frac{94}{204} \right)^2 + 10 \left(x_1 - \frac{4}{10} x_2 - \frac{1}{10} x_3 + \frac{1}{10} \right)^2.$$

$$(\rho_1, \rho_2, \rho_3, \rho_4) = \left(-\frac{38528}{139095}, -\frac{54861}{139095}, -\frac{26741}{139095}, \frac{68385}{139095} \right).$$

Also X_4, \ldots, X_0 are given by

K	(x_1, x_2, x_3, x_4)	X_K	$ X_K ^2$
4	(0, -1, 0, 1)	(1,-1,-3,2,0)	15
3	(0,0,-1,0)	(0,4,1,0,-1)	18
2	(0,-1,0,0)	(-2,0,1,3,-2)	18
1	(-1,0,0,0)	(-1, -1, 4, -2, 0)	22
0	(0,0,0,0)	(-3,0,2,-1,0)	14

The shortest multiplier is $p = p_5 + p_4 = [0, -1, -2, -2, 2]$, with $||p||^2 = 13$. Property G holds here.

Example 3. (Example 7.2 of [Havas, Majewski, Matthews 1998])

Take s_1, \ldots, s_{10} to be 763836, 1066557, 113192, 1785102, 1470060, 3077752, 114793, 3126753, 1997137, 2603018.

The unimodular matrix
$$P = \begin{bmatrix} -2 & 0 & -3 & 1 & 0 & 0 & 0 & -1 & -1 & 2 \\ 0 & -1 & 2 & 2 & -1 & -1 & 3 & -1 & 1 & 1 \\ -2 & 0 & 0 & -1 & 3 & -3 & -1 & 2 & 1 & 0 \\ 0 & 3 & 2 & 3 & 2 & -3 & 1 & 0 & 0 & -1 \\ -2 & 2 & 2 & 0 & -1 & 3 & -3 & -2 & -1 & 0 \\ 2 & 2 & -2 & -5 & -2 & 1 & 2 & 1 & 1 & 0 \\ 0 & 2 & 0 & -2 & -4 & -1 & -1 & 4 & -1 & 0 \\ -3 & 3 & -1 & 2 & -2 & 1 & 0 & 1 & 4 & -6 \\ 0 & 2 & -1 & 2 & -3 & -5 & -4 & -1 & 5 & 3 \\ -1 & 0 & 1 & -3 & 1 & 3 & 3 & -2 & -2 & 2 \end{bmatrix}.$$

Then X_9, \ldots, X_0 are given by

K	(x_1,\ldots,x_9)	X_K	$ X_K ^2$
9	(-1, -1, -1, 0, -1, -1, 0, 0, 1)	(3,-1,1,2,-1,-2,-2,2,2)	36
8	(0,-1,0,0,-1,-1,0,1,0)	(-4,0,-2,2,3,1,1,1,1,-5)	62
7	(0,0,0,0,-1,-1,1,0,0)	(-1, -2, 1, 0, 0, -2, 3, 3, -3, 2)	41
6	(0,-1,0,0,-1,-1,0,0,0)	(-1, -3, -1, 0, 5, 0, 1, 0, -3, 1)	47
5	(0,-1,-1,1,-1,0,0,0,0)	(3, 2, -1, -1, 2, 1, 5, -1, -3, 0)	55
4	(0, -1, 0, 1, 0, 0, 0, 0, 0)	(-1,4,1,-2,4,1,1,-1,-3,0)	50
3	(0,0,1,0,0,0,0,0,0)	(-3,0,1,-4,4,0,2,0,-1,2)	51
2	(0, -1, 0, 0, 0, 0, 0, 0, 0)	(-1, 1, -1, -5, 2, 4, 0, -1, -3, 1)	59
1	(-1,0,0,0,0,0,0,0,0)	(1,0,4,-4,1,3,3,-1,-1,0)	54
0	(0,0,0,0,0,0,0,0,0)	(-1,0,1,-3,1,3,3,-2,-2,2)	42

Truncated to 2 decimals, $\rho = (-0.41, -0.80, -0.44, 0.02, -0.76, -0.73, 0.25, 0.25, 0.40)$ X_9 is the shortest multiplier vector. Property G holds here.

Example 4. Take s_1, \ldots, s_{40} to be

324234553, 7856756, 3524634, 5675646857, 24364565, 8957897589789, 464564564565, 2464564756746, 5367567568769898798, 4564564262462456, 578578678679689689678, $87878678678,\ 4363645635758,\ 67867865786,\ 456435656,\ 678657865857,\ 789897689784,\ 343643564565,\ 678678657879,\ 678,\ 678678678678678,\ 6345736756756867,\ 6575675678.$

Here LLL delivers a p_{40} with $||p_{40}||^2 = 30$ and our algorithm gives a multiplier X_{27} with $||X_{27}||^2 = 18$.

Property G holds here.

Example 5. Take s_1, \ldots, s_{11} to be 29196545, 2058462515, 354950953, 434047189, 333570961, 1208129565, 1676298297, 813677221, 224909089, 650841491, 1843221943. The shortest X_K is $X[7] = p_{11} + p_2 - p_7 = (-3, -4, 3, 4, -2, 0, 4, 0, 3, 1, -1)$ with $||X_7||^2 = 81$. The shortest multiplier is

$$p = p_{11} + p_2 - p_3 - p_5 - p_{10} = (3, 1, 1, -3, -3, 0, -2, 6, 1, -3, 0),$$
with $||p||^2 = 79$.

Property G does not hold, as

 $x_{10} = -1$ and $\sigma_{10} = -469807408429549190/13467046613442016227 <math>\approx -.0348$.

Example 6. The following random examples illustrate the improved multipliers X_K that are produced by the algorithm in section 3. The shortest multiplier vectors are unknown here.

m	$ p_m ^2$	$ X_K ^2$
100	15	$ X_{96} ^2 = 8$
150	17	$ X_{147} ^2 = 9$
200	14	$ X_{80} ^2 = 8$
250	12	$ X_{96} ^2 = 9$

6 Appendix

In this section we present a complete classification of the possible shortest multipliers when m = 3, based on inequalities (17) and (18):

$$|x_2 + \mu_{32}| \le \frac{7}{12}$$
 and $|x_1 + \mu_{21}x_2 + \mu_{31}| \le |\mu_{31}|$.

- 1. $\mu_{32} = 0, |\mu_{31}| < 1/2$: p_3 .
- 2. $\mu_{32} = 0, \mu_{31} = 1/2$: p_3 and $p_3 p_1$.
- 3. $\mu_{32} = 0, \mu_{31} = -1/2$: p_3 and $p_3 + p_1$.
- 4. $0 < \mu_{32} \le 1/2, 0 \le \mu_{31} < 1/2$:
 - (i) $\mu_{21} \ge 0$: p_3 or $p_3 p_2$.
 - (ii) $\mu_{21} < 0$: p_3 or $p_3 p_1 p_2$.
- 5. $0 < \mu_{32} \le 1/2, \mu_{31} = 1/2$: (Here $||p_3|| = ||p_3 p_1||$)
 - (i) $\mu_{21} > 0$: p_3 and $p_3 p_1$, or $p_3 p_2$.
 - (ii) $\mu_{21} < 0$: p_3 and $p_3 p_1$, or $p_3 p_1 p_2$.
 - (iii) $\mu_{21} = 0$: p_3 and $p_3 p_1$. Note: $\mu_{32} < 1/2$ here. For if $\mu_{32} = 1/2$, we have 4 shortest multipliers:

$$p_3, p_3 - p_1, p_3 - p_2, p_3 - p_1 - p_2.$$

- 6. $0 < \mu_{32} \le 1/2, -1/2 < \mu_{31} \le 0$:
 - (i) $\mu_{21} > 0$: p_3 or $p_3 + p_1 p_2$.
 - (ii) $\mu_{21} < 0$: p_3 or $p_3 p_2$.
- 7. $0 < \mu_{32} \le 1/2, \mu_{31} = -1/2$: (Here $||p_3|| = ||p_3 + p_1||$)
 - (i) $\mu_{21} > 0$: p_3 and $p_3 + p_1$, or $p_3 + p_1 p_2$.
 - (ii) $\mu_{21} < 0$: p_3 and $p_3 + p_1$, or $p_3 p_2$.
 - (iii) $\mu_{21} = 0$: p_3 and $p_3 + p_1$. ($\mu_{32} < 1/2$.)
- 8. $-1/2 < \mu_{32} < 0, -1/2 < \mu_{31} < 0$:
 - (i) $\mu_{21} \geq 0$: p_3 or $p_3 + p_2$.
 - (ii) $\mu_{21} < 0$: p_3 or $p_3 + p_1 + p_2$.
- 9. $-1/2 \le \mu_{32} < 0, \mu_{31} = -1/2$: (Here $||p_3|| = ||p_3 + p_1||$)
 - (i) $\mu_{21} > 0$: p_3 and $p_3 + p_1$, or $p_3 + p_2$.

- (ii) $\mu_{21} < 0$: p_3 and $p_3 + p_1$, or $p_3 + p_1 + p_2$.
- (iii) $\mu_{21} = 0$: p_3 and $p_3 + p_1$. $(-1/2 < \mu_{32}$.)
- 10. $-1/2 \le \mu_{32} < 0, 0 \le \mu_{31} < 1/2$:
 - (i) $\mu_{21} \leq 0$: p_3 or $p_3 + p_2$.
 - (ii) $\mu_{21} > 0$: p_3 or $p_3 p_1 + p_2$.
- 11. $-1/2 \le \mu_{32} < 0, \mu_{31} = 1/2$: (Here $||p_3|| = ||p_3 p_1||$)
 - (i) $\mu_{21} > 0$: p_3 and $p_3 p_1$, or $p_3 p_1 + p_2$.
 - (ii) $\mu_{21} < 0$: p_3 and $p_3 p_1$, or $p_3 + p_2$.
 - (iii) $\mu_{21} = 0$: p_3 and $p_3 p_1$. $(-1/2 < \mu_{32}$.)

References

- [Havas, Majewski, Matthews 1998] G. Havas, B.S. Majewski, K.R. Matthews, Extended gcd and Hermite normal form algorithms via lattice reduction, Experimental Mathematics 7 No 2 (1998) 125–136.
- [Rosser 1942] J.B. Rosser, A generalization of the Euclidean algorithm to several dimensions, Duke Math 9 (1942) 59–95.
- K. R. Matthews, http://www.numbertheory.org/keith.html