ON THE CONVERGENTS OF SEMI-REGULAR CONTINUED FRACTIONS

KEITH R. MATTHEWS

1. INTRODUCTION

On page 161 of Perron's book [7], it is proved that a convergent of the nearest integer continued fraction (NICF) is also a convergent of the regular continued fraction (RCF). We give another proof, which generalises to semi-regular continued fractions. We also give an application to the nearest square continued fraction. Our method is based on the following result, which is Theorem 172, [3, pp. 140-141]:

Lemma 1. If $\omega = \frac{P\zeta + R}{Q\zeta + S}$, where $\zeta > 1$ and P, Q, R, S are integers such that Q > S > 0 and $PS - QR = \pm 1$, then P/Q is an RCF convergent A_n/B_n to ω and $R/S = A_{n-1}/B_{n-1}$. Also $\zeta = \zeta_{n+1}$, the (n + 1)-th RCF complete convergent to ω .

2. Nearest integer continued fractions

We use the following notation for the nearest integer expansion:

(2.1)
$$\xi_0 = \tilde{a}_0 + \frac{\epsilon_1}{\left|\tilde{a}_1\right|} + \dots + \frac{\epsilon_n}{\left|\tilde{a}_n\right|} + \dots$$

with $\tilde{\xi}_n$ the *n*-th complete quotient and \tilde{A}_n/\tilde{B}_n the *n*-th convergent. We remark that for $n \ge 1$,

(2.2)
$$\tilde{a}_n \ge 2,$$

Then (2.2) implies that $\tilde{B}_n > \tilde{B}_{n-1} \ge 1$ for $n \ge 1$.

Date: November 25, 2010.

Theorem 1. For the nearest integer continued fraction (2.1)

(i) if ϵ_{n+1} = 1, then ξ̃_{n+1} = ξ_k, where
Ã_n/B̃_n = A_{k-1}/B_{k-1} and Ã_{n-1}/B̃_{n-1} = A_{k-2}/B_{k-2}.
(ii) if ϵ_{n+1} = -1, then ξ̃_{n+1} = ξ_k + 1, where
Ã_n/B̃_n = A_{k-1}/B_{k-1} and (Ã_n - Ã_{n-1})/(B̃_n - B̃_{n-1}) = A_{k-2}/B_{k-2}.

Proof. We consider the following equation (Perron [7, p. 19]):

(2.4)
$$\xi_0 = \frac{\tilde{A}_n \tilde{\xi}_{n+1} + \epsilon_{n+1} \tilde{A}_{n-1}}{\tilde{B}_n \tilde{\xi}_{n+1} + \epsilon_{n+1} \tilde{B}_{n-1}}$$

If $\epsilon_{n+1} = 1$, then by Lemma 1, as $\tilde{\xi}_{n+1} > 1$, $\Delta_n = \tilde{A}_n \tilde{B}_{n-1} - \tilde{B}_n \tilde{A}_{n-1} = \pm 1$ and $\tilde{B}_n > \tilde{B}_{n-1} > 0$, it follows that for some k, $\tilde{\xi}_{n+1} = \xi_k$ and $\tilde{A}_n / \tilde{B}_n = A_{k-1}/B_{k-1}$, $\tilde{A}_{n-1}/\tilde{B}_{n-1} = A_{k-2}/B_{k-2}$.

If $\epsilon_{n+1} = -1$, then

(2.5)
$$\xi_0 = \frac{\tilde{A}_n(\tilde{\xi}_{n+1}-1) + \tilde{A}_n - \tilde{A}_{n-1}}{\tilde{B}_n(\tilde{\xi}_{n+1}-1) + \tilde{B}_n - \tilde{B}_{n-1}}$$

Since $\tilde{\xi}_{n+1} > 2$ and $\tilde{A}_n(\tilde{B}_n - \tilde{B}_{n-1}) - \tilde{B}_n(\tilde{A}_n - \tilde{A}_{n-1}) = -\Delta_n = \pm 1$, we deduce, again by Lemma 1, that for some $k, \tilde{\xi}_{n+1} - 1 = \xi_k$ and that $\tilde{A}_n/\tilde{B}_n = A_{k-1}/B_{k-1}$ and $(\tilde{A}_n - \tilde{A}_{n-1})/(\tilde{B}_n - \tilde{B}_{n-1}) = A_{k-2}/B_{k-2}$.

3. Semi-regular continued fractions

We now generalize this result to semi–regular continued fractions. We need the following lemmas.

Lemma 2. If $\omega = \frac{P\zeta + R}{Q\zeta + S}$, where $\zeta > 1$ and P, Q, R, S are integers such that Q > 0, S > 0 and $PS - QR = \pm 1$, or S = 0 and Q = 1 = R, then P/Q is a convergent A_n/B_n to ω .

Proof. This is an extension of Theorem 172, Hardy and Wright ([3, pp. 140—141]), who dealt with the case Q > S > 0. See Matthews [4, pp. 325–326].

3

Lemma 3. Let

(3.1)
$$\xi_0 = \tilde{a}_0 + \frac{\epsilon_1}{\left|\tilde{a}_1\right|} + \dots + \frac{\epsilon_n}{\left|\tilde{a}_n\right|} + \dotsb,$$

denote a semi-regular continued fraction expansion, with n-th complete quotient $\tilde{\xi}_n$ and n-th convergent \tilde{A}_n/\tilde{B}_n . Then for $n \ge 0$,

(3.3)
$$\epsilon_{n+1} = -1 \implies \tilde{B}_n > \tilde{B}_{n-1}.$$

Remark. If $\xi_0 = (133 + \sqrt{722})/361$, $\tilde{B}_1 = 3 > \tilde{B}_2 = 2$ and $\epsilon_3 = 1$.

Proof. (3.2) follows from Satz 5.1, [7, p. 135], while (3.3) follows from Satz 1, [2, p. 10]. Alternatively, see Lemma 1, [6]. \Box

Noting that $\xi_{n+1} > 1$ holds for a semi-regular continued fraction, the proof of Theorem 1 then generalizes.

Theorem 2. For the semi-regular continued fraction (3.1)

4. Nearest square continued fractions

The NSCF is an example of a semi-regular continued fraction. In Theorem 2, we can remove the restriction $\tilde{\xi}_{n+1} > 2$, if $\tilde{\xi}_n$ is NSCF-reduced.

Lemma 4. If $\tilde{\xi}_n$ is NSCF-reduced and $\epsilon_{n+1} = -1$, then $\tilde{\xi}_{n+1} > 2$.

Proof. If $\xi_n = \frac{\tilde{P}_n + \sqrt{D}}{\tilde{Q}_n}$ is NSCF-reduced, from Ayyangar [1, p. 22], we have $\tilde{Q}_{n+1}^2 + \frac{1}{4}\tilde{Q}_n^2 \leq D$, so $|\tilde{Q}_{n+1}| < \sqrt{D}$. Also $\tilde{\xi}_n$ is the successor of a special surd and so by Theorem 1(iv), Ayyangar [1, p. 22], $\tilde{Q}_n > 0$. Similarly $\tilde{Q}_{n+1} > 0$. Moreover, by Theorem 1(i), [1, p. 22], $\epsilon_{n+1} = -1$ implies $\tilde{P}_{n+1} \geq \tilde{Q}_{n+1} + \frac{1}{2}\tilde{Q}_n$. Hence

$$\tilde{\xi}_{n+1} = \frac{\tilde{P}_{n+1} + \sqrt{D}}{\tilde{Q}_{n+1}} \ge \frac{\tilde{Q}_{n+1} + \frac{1}{2}\tilde{Q}_n + \sqrt{D}}{\tilde{Q}_{n+1}} > \frac{\tilde{Q}_{n+1} + \sqrt{D}}{\tilde{Q}_{n+1}} > \frac{2\tilde{Q}_{n+1}}{\tilde{Q}_{n+1}} = 2.$$

Remark. The NSCF expansion of $\xi_0 = (133 + \sqrt{722})/361$ is an example where $\tilde{A}_1/\tilde{B}_1 = 1/3$ is not a convergent of the RCF expansion of ξ_0 . Here $\epsilon_2 = -1$. However $\tilde{\xi}_2 = (-8 + \sqrt{722})/14 < 2$, so we cannot apply Theorem 2 (ii).

References

- A. A. K. Ayyangar, Theory of the nearest square continued fraction, J. Mysore Univ. Sect. A. 1 (1941) 21–32, 97–117.
- [2] F. Blumer, Über die verschiedenen Kettenbruchentwicklungen beliebiger reeller Zahlen und die periodischen Kettenbruchentwicklungen quadratischer Irrationalitäten, Acta Arith. 3 (1939) 3–63.
- [3] G. H. Hardy and E. M. Wright, An Introduction to Theory of Numbers, Oxford University Press, 1962.
- [4] K. R. Matthews, The diophantine equation x² Dy² = N, D > 0, Expositiones Math. 18 (2000) 323-331.
- [5] K. R. Matthews, J. P. Robertson, J. White, Midpoint criteria for solving Pell's equation using the nearest square continued fraction,
- [6] A. Offer, Continuants and semi-regular continued fractions, http://www. numbertheory.org/pdfs/continuant.pdf
- [7] O. Perron, Kettenbrüche, Band 1, Teubner, 1954.