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1. Introduction

On page 161 of Perron’s book [7], it is proved that a convergent of the

nearest integer continued fraction (NICF) is also a convergent of the regular

continued fraction (RCF). We give another proof, which generalises to semi–

regular continued fractions. We also give an application to the nearest square

continued fraction. Our method is based on the following result, which is

Theorem 172, [3, pp. 140-141]:

Lemma 1. If ω = Pζ+R
Qζ+S , where ζ > 1 and P,Q,R, S are integers such that

Q > S > 0 and PS − QR = ±1, then P/Q is an RCF convergent An/Bn

to ω and R/S = An−1/Bn−1. Also ζ = ζn+1, the (n + 1)–th RCF complete

convergent to ω.

2. Nearest integer continued fractions

We use the following notation for the nearest integer expansion:

(2.1) ξ0 = ã0 +
ε1
ã1

+ · · ·+ εn
ãn

+ · · · ,

with ξ̃n the n–th complete quotient and Ãn/B̃n the n–th convergent. We

remark that for n ≥ 1,

ãn ≥ 2,(2.2)

ξ̃n > 2.(2.3)

Then (2.2) implies that B̃n > B̃n−1 ≥ 1 for n ≥ 1.
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Theorem 1. For the nearest integer continued fraction (2.1)

(i) if εn+1 = 1, then ξ̃n+1 = ξk, where

Ãn/B̃n = Ak−1/Bk−1 and Ãn−1/B̃n−1 = Ak−2/Bk−2.

(ii) if εn+1 = −1, then ξ̃n+1 = ξk + 1, where

Ãn/B̃n = Ak−1/Bk−1 and (Ãn − Ãn−1)/(B̃n − B̃n−1) = Ak−2/Bk−2.

Proof. We consider the following equation (Perron [7, p. 19]):

(2.4) ξ0 =
Ãnξ̃n+1 + εn+1Ãn−1

B̃nξ̃n+1 + εn+1B̃n−1

.

If εn+1 = 1, then by Lemma 1, as ξ̃n+1 > 1,∆n = ÃnB̃n−1 − B̃nÃn−1 = ±1

and B̃n > B̃n−1 > 0, it follows that for some k, ξ̃n+1 = ξk and Ãn/B̃n =

Ak−1/Bk−1, Ãn−1/B̃n−1 = Ak−2/Bk−2.

If εn+1 = −1, then

(2.5) ξ0 =
Ãn(ξ̃n+1 − 1) + Ãn − Ãn−1

B̃n(ξ̃n+1 − 1) + B̃n − B̃n−1

.

Since ξ̃n+1 > 2 and Ãn(B̃n − B̃n−1) − B̃n(Ãn − Ãn−1) = −∆n = ±1, we

deduce, again by Lemma 1, that for some k, ξ̃n+1−1 = ξk and that Ãn/B̃n =

Ak−1/Bk−1 and (Ãn − Ãn−1)/(B̃n − B̃n−1) = Ak−2/Bk−2. �

3. Semi–regular continued fractions

We now generalize this result to semi–regular continued fractions. We

need the following lemmas.

Lemma 2. If ω = Pζ+R
Qζ+S , where ζ > 1 and P,Q,R, S are integers such that

Q > 0, S > 0 and PS −QR = ±1, or S = 0 and Q = 1 = R, then P/Q is a

convergent An/Bn to ω.

Proof. This is an extension of Theorem 172, Hardy and Wright ([3, pp.

140—141]), who dealt with the case Q > S > 0. See Matthews [4, pp.

325–326]. �
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Lemma 3. Let

(3.1) ξ0 = ã0 +
ε1
ã1

+ · · ·+ εn
ãn

+ · · · ,

denote a semi–regular continued fraction expansion, with n–th complete quo-

tient ξ̃n and n–th convergent Ãn/B̃n. Then for n ≥ 0,

B̃n ≥ 1,(3.2)

εn+1 = −1 =⇒ B̃n > B̃n−1.(3.3)

Remark. If ξ0 = (133 +
√

722)/361, B̃1 = 3 > B̃2 = 2 and ε3 = 1.

Proof. (3.2) follows from Satz 5.1, [7, p. 135], while (3.3) follows from Satz

1, [2, p. 10]. Alternatively, see Lemma 1, [6]. �

Noting that ξ̃n+1 > 1 holds for a semi–regular continued fraction, the

proof of Theorem 1 then generalizes.

Theorem 2. For the semi–regular continued fraction (3.1)

(i) If εn+1 = 1, then ξ̃n+1 = ξk, where Ãn/B̃n = Ak−1/Bk−1.

(ii) If εn+1 = −1 and ξ̃n+1 > 2, then ξ̃n+1 = ξk + 1, where

Ãn/B̃n = Ak−1/Bk−1 and (Ãn − Ãn−1)/(B̃n − B̃n−1) = Ak−2/Bk−2.

4. Nearest square continued fractions

The NSCF is an example of a semi–regular continued fraction. In Theo-

rem 2, we can remove the restriction ξ̃n+1 > 2, if ξ̃n is NSCF–reduced.

Lemma 4. If ξ̃n is NSCF–reduced and εn+1 = −1, then ξ̃n+1 > 2.

Proof. If ξn = P̃n+
√
D

Q̃n
is NSCF–reduced, from Ayyangar [1, p. 22], we have

Q̃2
n+1 + 1

4
Q̃2
n ≤ D, so |Q̃n+1| <

√
D. Also ξ̃n is the successor of a special

surd and so by Theorem 1(iv), Ayyangar [1, p. 22], Q̃n > 0. Similarly

Q̃n+1 > 0. Moreover, by Theorem 1(i), [1, p. 22], εn+1 = −1 implies

P̃n+1 ≥ Q̃n+1 + 1
2
Q̃n. Hence

ξ̃n+1 =
P̃n+1 +

√
D

Q̃n+1

≥ Q̃n+1 + 1
2
Q̃n +

√
D

Q̃n+1

>
Q̃n+1 +

√
D

Q̃n+1

>
2Q̃n+1

Q̃n+1

= 2.
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Remark. The NSCF expansion of ξ0 = (133 +
√

722)/361 is an example

where Ã1/B̃1 = 1/3 is not a convergent of the RCF expansion of ξ0. Here

ε2 = −1. However ξ̃2 = (−8 +
√

722)/14 < 2, so we cannot apply Theorem

2 (ii).
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