We give an account of Hasse's treatment of the connection between reduced quadratic irrationals and the fundamental solution of Pell's equation from Vorlesung über Zahlentheorie.
$D>0$ is not a perfect square, $D \equiv 0$ or 1$)(\bmod 4)$.
θ and θ^{\prime} are the roots of

$$
\begin{equation*}
a x^{2}-b x+c=0 \tag{1}
\end{equation*}
$$

where $d=b^{2}-4 a c, a>0$ and $\operatorname{gcd}(a, b, c)=1$.

$$
\theta=\frac{b+\sqrt{d}}{2 a}, \quad \theta^{\prime}=\frac{b-\sqrt{d}}{2 a} .
$$

θ is called reduced if $1<\theta$ and $-1<\theta^{\prime}<0$. Equivalently

$$
0<b<\sqrt{d}, \quad 2 a-b<\sqrt{d}<2 a+b
$$

Note: $c>0$.
If θ is reduced, then $\theta=\left[\overline{a_{0}, \ldots, a_{k}}\right]$.
Consequently

$$
\begin{equation*}
\theta=\frac{p_{k} \theta+p_{k-1}}{q_{k} \theta+q_{k-1}} \tag{2}
\end{equation*}
$$

where $p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k+1}$.
Equation (2) implies

$$
\begin{equation*}
q_{k} \theta^{2}-\left(p_{k}-q_{k-1}\right) \theta-p_{k-1}=0 \tag{3}
\end{equation*}
$$

Equation (2) also implies the existence of ϵ such that

$$
\epsilon\binom{\theta}{1}=\left(\begin{array}{cc}
p_{k} & p_{k-1} \tag{4}\\
q_{k} & q_{k-1}
\end{array}\right)\binom{\theta}{1}
$$

Hence ϵ is an eigenvalue of $\left(\begin{array}{cc}p_{k} & p_{k-1} \\ q_{k} & q_{k-1}\end{array}\right)$ and

$$
\begin{equation*}
\epsilon^{2}-\left(p_{k}+q_{k-1}\right) \epsilon+(-1)^{k+1}=0 \tag{5}
\end{equation*}
$$

Equation (4) implies

$$
\begin{equation*}
\epsilon=q_{k} \theta+q_{k-1} \tag{6}
\end{equation*}
$$

Let $v=\operatorname{gcd}\left(q_{k}, p_{k}-q_{k-1}, p_{k-1}\right)$.
Then comparing equations (1) and (3) gives

$$
\begin{equation*}
q_{k}=a v, p_{k}-q_{k-1}=b v, p_{k-1}=-c v . \tag{7}
\end{equation*}
$$

Now let $p_{k}+q_{k-1}=u$. Then (6) gives

$$
\begin{aligned}
\epsilon & =(a v) \theta+\frac{u-b v}{2} \\
& =v\left(\frac{b+\sqrt{d}}{2}\right)+\frac{u-b v}{2} \\
& =\frac{u+v \sqrt{d}}{2}
\end{aligned}
$$

Also

$$
\begin{align*}
(2 \epsilon-u)^{2}-v^{2} d & =0 \tag{8}\\
\epsilon^{2}-u \epsilon+\frac{u^{2}-v^{2} d}{4} & =0
\end{align*}
$$

Comparing (5) and (9) gives

$$
\begin{equation*}
\frac{u^{2}-v^{2} d}{4}=(-1)^{k+1} \tag{9}
\end{equation*}
$$

Note: $u \geq 1, v \geq 1$.
Now assume that $x^{2}-d y^{2}= \pm 4$, with $x \geq 1$ and $y \geq 1$. Then we prove $\eta=(x+y \sqrt{d}) / 2=\epsilon^{t}$ for some $t \geq 1$. This characterises ϵ as the smallest solution of $x^{2}-d y^{2}= \pm 4$.

Let

$$
p=\frac{x+b y}{2}, p^{\prime}=-c y, q=a y, q^{\prime}=\frac{x-b y}{2} .
$$

Then

$$
\begin{equation*}
p q^{\prime}-p^{\prime} q=\frac{x^{2}-d y^{2}}{4}= \pm 1 \tag{10}
\end{equation*}
$$

Also

$$
\begin{aligned}
q \theta^{2}-\left(p-q^{\prime}\right) \theta-p^{\prime} & =a y \theta^{2}-b y \theta+c y \\
& =y\left(a \theta^{2}-b \theta+c\right)=0
\end{aligned}
$$

Hence

$$
\begin{equation*}
\theta=\frac{p \theta+p^{\prime}}{q \theta+q^{\prime}} \tag{11}
\end{equation*}
$$

Hasse then proves (see later)

$$
\left\{\begin{array}{l}
q \geq q^{\prime}>0 \quad \text { if } \frac{x^{2}-d y^{2}}{2}=1 \tag{12}\\
q>q^{\prime} \geq 0 \quad \text { if } \frac{x^{2}-d y^{2}}{4}=-1
\end{array}\right.
$$

It follows from Theorem 172 of Hardy and Wright, that $p / q=p_{n} / q_{n}, p^{\prime} / q^{\prime}=$ $p_{n-1} / q_{n-1}, \theta$ is the $(n+1)$-th complete quotient in the cfrac of θ and that

$$
\begin{equation*}
\theta=\frac{p_{n} \theta+p_{n-1}}{q_{n} \theta+q_{n-1}} . \tag{13}
\end{equation*}
$$

It follows that $n+1$ is a multiple of the period k of the cfrac for $\theta, n+1=$ $t(k+1)$ and that $\eta=\epsilon^{t}$. This is standard, but we prove it.

First note that

$$
\begin{aligned}
\eta \theta & =p_{n} \theta+p_{n-1} \\
\eta & =q_{n} \theta+q_{n-1} .
\end{aligned}
$$

Iterating (4) t times gives

$$
\begin{aligned}
\epsilon^{t}\binom{\theta}{1} & =\left(\begin{array}{ll}
p_{k} & p_{k-1} \\
q_{k} & q_{k-1}
\end{array}\right)^{t}\binom{\theta}{1} \\
& =\left(\begin{array}{ll}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right)\binom{\theta}{1}=\eta\binom{\theta}{1} .
\end{aligned}
$$

Hence $\eta=\epsilon^{t}$.
Finally, we remark that if x_{0}, \ldots, x_{k} are the complete quotients of $x_{0}=\theta$, then

$$
\begin{equation*}
x_{0} \cdots x_{k}=\epsilon . \tag{14}
\end{equation*}
$$

This follows from a result of H.J.S. Smith:

$$
\begin{equation*}
x_{0} \cdots x_{k}=\frac{(-1)^{k+1}}{p_{k}-q_{k} \theta} . \tag{15}
\end{equation*}
$$

Now multiply the numerator and denominator of the RHS of (15) by $p_{k}-q_{k} \theta^{\prime}$.
The denominator simplifies to $(-1)^{k+1}$, while the numerator becomes $(u+v \sqrt{d}) / 2=\epsilon$. (Details omitted).

Regarding Theorem 172, Hasse needs a slight extension of it - one case being mentioned in my Bordeaux paper, namely if $S=0$ and $Q=R=1$. The other is if $Q=S$ and $P=R+1$. These cases are relevant when equality occurs in cases (12) respectively.

Hasse's Proof. The reduced nature of θ means

$$
0<b<\sqrt{d}, 2 a-b<\sqrt{d}<2 a+b
$$

We also note that $\eta=(x+y \sqrt{d}) / 2>1$. Also

$$
q^{\prime}=\frac{x-b y}{2}>\frac{x-y \sqrt{d}}{2}=\epsilon^{\prime}=\frac{N(\epsilon)}{\epsilon}>\left\{\begin{array}{rr}
0 & \text { if } N(\epsilon)=1, \\
-1 & \text { if } N(\epsilon)=-1 .
\end{array}\right.
$$

Next
$q-q^{\prime}=\frac{-x+(2 a+b) y}{2}>\frac{-x+y \sqrt{d}}{2}=-\epsilon^{\prime}=-\frac{N(\epsilon)}{\epsilon}>\left\{\begin{aligned}-1 & \text { if } N(\epsilon)=1, \\ 0 & \text { if } N(\epsilon)=-1 .\end{aligned}\right.$
Hence

$$
\begin{aligned}
& 0<q^{\prime} \leq q \quad \text { if } \quad N(\epsilon)=1, \\
& 0 \leq q^{\prime}<q \quad \text { if } \quad N(\epsilon)=-1 .
\end{aligned}
$$

