
Reduced quadratic irrationals and Pell’s equation.

We give an account of Hasse’s treatment of the connection between reduced
quadratic irrationals and the fundamental solution of Pell’s equation from
Vorlesung über Zahlentheorie.

D > 0 is not a perfect square, D ≡ 0 or 1) (mod 4).
θ and θ′ are the roots of

ax2 − bx + c = 0, (1)

where d = b2 − 4ac, a > 0 and gcd (a, b, c) = 1.

θ =
b +

√
d

2a
, θ′ =

b−
√

d

2a
.

θ is called reduced if 1 < θ and −1 < θ′ < 0. Equivalently

0 < b <
√

d, 2a− b <
√

d < 2a + b.

Note: c > 0.
If θ is reduced, then θ = [a0, . . . , ak].
Consequently

θ =
pkθ + pk−1

qkθ + qk−1

, (2)

where pkqk−1 − pk−1qk = (−1)k+1.
Equation (2) implies

qkθ
2 − (pk − qk−1)θ − pk−1 = 0. (3)

Equation (2) also implies the existence of ε such that

ε

(
θ
1

)
=

(
pk pk−1

qk qk−1

) (
θ
1

)
. (4)

Hence ε is an eigenvalue of

(
pk pk−1

qk qk−1

)
and

ε2 − (pk + qk−1)ε + (−1)k+1 = 0. (5)

Equation (4) implies
ε = qkθ + qk−1. (6)

Let v = gcd (qk, pk − qk−1, pk−1).
Then comparing equations (1) and (3) gives

qk = av, pk − qk−1 = bv, pk−1 = −cv. (7)

Now let pk + qk−1 = u. Then (6) gives

ε = (av)θ +
u− bv

2

= v(
b +

√
d

2
) +

u− bv

2

=
u + v

√
d

2
.
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Also

(2ε− u)2 − v2d = 0 (8)

ε2 − uε +
u2 − v2d

4
= 0.

Comparing (5) and (9) gives

u2 − v2d

4
= (−1)k+1. (9)

Note: u ≥ 1, v ≥ 1.
Now assume that x2 − dy2 = ±4, with x ≥ 1 and y ≥ 1. Then we prove

η = (x + y
√

d)/2 = εt for some t ≥ 1. This characterises ε as the smallest
solution of x2 − dy2 = ±4.

Let

p =
x + by

2
, p′ = −cy, q = ay, q′ =

x− by

2
.

Then

pq′ − p′q =
x2 − dy2

4
= ±1. (10)

Also

qθ2 − (p− q′)θ − p′ = ayθ2 − byθ + cy

= y(aθ2 − bθ + c) = 0.

Hence

θ =
pθ + p′

qθ + q′
. (11)

Hasse then proves (see later){
q ≥ q′ > 0 if x2−dy2

4
= 1,

q > q′ ≥ 0 if x2−dy2

4
= −1.

(12)

It follows from Theorem 172 of Hardy and Wright, that p/q = pn/qn, p
′/q′ =

pn−1/qn−1, θ is the (n + 1)-th complete quotient in the cfrac of θ and that

θ =
pnθ + pn−1

qnθ + qn−1

. (13)

It follows that n + 1 is a multiple of the period k of the cfrac for θ, n + 1 =
t(k + 1) and that η = εt. This is standard, but we prove it.

First note that

ηθ = pnθ + pn−1

η = qnθ + qn−1.

Iterating (4) t times gives

εt

(
θ
1

)
=

(
pk pk−1

qk qk−1

)t (
θ
1

)
=

(
pn pn−1

qn qn−1

) (
θ
1

)
= η

(
θ
1

)
.
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Hence η = εt.
Finally, we remark that if x0, . . . , xk are the complete quotients of x0 = θ,

then
x0 · · ·xk = ε. (14)

This follows from a result of H.J.S. Smith:

x0 · · ·xk =
(−1)k+1

pk − qkθ
. (15)

Now multiply the numerator and denominator of the RHS of (15) by pk−qkθ
′.

The denominator simplifies to (−1)k+1, while the numerator becomes
(u + v

√
d)/2 = ε. (Details omitted).

Regarding Theorem 172, Hasse needs a slight extension of it - one case
being mentioned in my Bordeaux paper, namely if S = 0 and Q = R = 1.
The other is if Q = S and P = R+1. These cases are relevant when equality
occurs in cases (12) respectively.

Hasse’s Proof. The reduced nature of θ means

0 < b <
√

d, 2a− b <
√

d < 2a + b.

We also note that η = (x + y
√

d)/2 > 1. Also

q′ =
x− by

2
>

x− y
√

d

2
= ε′ =

N(ε)

ε
>

{
0 if N(ε) = 1,

−1 if N(ε) = −1.

Next

q−q′ =
−x + (2a + b)y

2
>
−x + y

√
d

2
= −ε′ = −N(ε)

ε
>

{
−1 if N(ε) = 1,

0 if N(ε) = −1.

Hence

0 < q′ ≤ q if N(ε) = 1,

0 ≤ q′ < q if N(ε) = −1.
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