We give an algorithm for solving the congruence $ax^2 + bx + c \equiv 0 \pmod{n}$

1. Completing the square

We assume a > 0 and n > 1.

Case 1. b even.

(1.1)
$$ax^{2} + bx + c \equiv 0 \pmod{n}$$
$$\iff a^{2}x^{2} + abx + ac \equiv 0 \pmod{an}$$
$$\iff (ax + b/2)^{2} \equiv d/4 \pmod{an},$$

where $d = b^2 - 4ac$.

Solve $X^2 \equiv d/4 \pmod{an}$. If this has no solutions, then (1.1) has no solutions. Otherwise let X_0, \ldots, X_{s-1} be the solutions (mod an).

For each *i*, solve $ax + b/2 \equiv X_i \pmod{an}$, i.e.,

(1.2)
$$ax \equiv X_i - b/2 \pmod{an}$$

. If $X_i - b/2 \not\equiv 0 \pmod{a}$, then (1.2) is not soluble. However if $X_i - b/2 \equiv 0 \pmod{a}$, then (1.2) has solution

 $x \equiv (X_i - b/2)/a \pmod{n}.$

Case 2. b odd. Then (1.1) is equivalent to

$$X^2 \equiv d \pmod{4an},$$

where $d = b^2 - 4ac$ and X = 2ax + b.

If this has no solutions, then (1.1) has no solutions. Otherwise let X_0, \ldots, X_{s-1} be the solutions (mod an).

(1.3)
$$2ax \equiv X_i - b \pmod{4an}$$

If $X_i - b \not\equiv 0 \pmod{2a}$, then (1.3) is not soluble. However if $X_i - b \equiv 0 \pmod{2a}$, then (1.3) has solution

$$x \equiv (X_i - b)/2a \pmod{2n}.$$

We then have the solutions of $(1.1) \pmod{2n}$.

However if x is a solution of (1.1), so is x + n. So the solutions of $(1.1) \pmod{2n}$ come in pairs \pmod{n} .

$$x \equiv (X_i - b/2)/a \pmod{n}.$$

2. EXAMPLES

Example 1. Solve $6x^2 + 14x + 8 \equiv 0 \pmod{21}$. This has solutions 8 and 20 (mod 21).

 $(X_0 = 55, X_1 = 1, X_2 = -55, X_3 = -1, X_0 = 55$ gives x = 8, while $X_1 = 1$ gives x = 20.)

Example 2. Solve $18x^2 + 5x + 8 \equiv 0 \pmod{21}$. This has solutions 5 and 20 (mod 21).

 $X_4 = 185$ gives x = 5, $X_5 = 725$ gives x = 20, $X_{10} = -31$ gives x = -1, $X_{11} = -571$ gives x = -16, so we have solutions 5, 20, -1, -16 (mod 42).