We give an algorithm for solving the congruence $a x^{2}+b x+c \equiv 0$ $(\bmod n)$

1. Completing the square

We assume $a>0$ and $n>1$.
Case 1. b even.

$$
\begin{align*}
a x^{2}+b x+c & \equiv 0 \quad(\bmod n) \tag{1.1}\\
\Longleftrightarrow a^{2} x^{2}+a b x+a c & \equiv 0 \quad(\bmod a n) \\
\Longleftrightarrow(a x+b / 2)^{2} & \equiv d / 4 \quad(\bmod a n),
\end{align*}
$$

where $d=b^{2}-4 a c$.
Solve $X^{2} \equiv d / 4(\bmod a n)$. If this has no solutions, then (1.1) has no solutions. Otherwise let X_{0}, \ldots, X_{s-1} be the solutions $(\bmod a n)$.

For each i, solve $a x+b / 2 \equiv X_{i}(\bmod a n)$, i.e.,

$$
\begin{equation*}
a x \equiv X_{i}-b / 2 \quad(\bmod a n) \tag{1.2}
\end{equation*}
$$

. If $X_{i}-b / 2 \not \equiv 0(\bmod a)$, then (1.2) is not soluble.
However if $X_{i}-b / 2 \equiv 0(\bmod a)$, then (1.2) has solution

$$
x \equiv\left(X_{i}-b / 2\right) / a \quad(\bmod n) .
$$

Case 2. b odd. Then (1.1) is equivalent to

$$
X^{2} \equiv d \quad(\bmod 4 a n)
$$

where $d=b^{2}-4 a c$ and $X=2 a x+b$.
If this has no solutions, then (1.1) has no solutions. Otherwise let X_{0}, \ldots, X_{s-1} be the solutions $(\bmod a n)$.

$$
\begin{equation*}
2 a x \equiv X_{i}-b \quad(\bmod 4 a n) \tag{1.3}
\end{equation*}
$$

If $X_{i}-b \not \equiv 0(\bmod 2 a)$, then 1.3$)$ is not soluble.
However if $X_{i}-b \equiv 0(\bmod 2 a)$, then (1.3) has solution

$$
x \equiv\left(X_{i}-b\right) / 2 a \quad(\bmod 2 n)
$$

We then have the solutions of $(1.1)(\bmod 2 n)$.
However if x is a solution of (1.1), so is $x+n$. So the solutions of 1.1) $(\bmod 2 n)$ come in pairs $(\bmod n)$.

$$
x \equiv\left(X_{i}-b / 2\right) / a \quad(\bmod n)
$$

2. EXAMPLES

Example 1. Solve $6 x^{2}+14 x+8 \equiv 0(\bmod 21)$. This has solutions 8 and $20(\bmod 21)$.
($X_{0}=55, X_{1}=1, X_{2}=-55, X_{3}=-1 . X_{0}=55$ gives $x=8$, while $X_{1}=1$ gives $x=20$.)

Example 2. Solve $18 x^{2}+5 x+8 \equiv 0(\bmod 21)$. This has solutions 5 and $20(\bmod 21)$.
$X_{4}=185$ gives $x=5, X_{5}=725$ gives $x=20, X_{10}=-31$ gives $x=-1, X_{11}=-571$ gives $x=-16$, so we have solutions $5,20,-1,-16$ $(\bmod 42)$.

