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1 Introduction

When studying binary quadratic forms and quadratic number fields and their

orders, it is often helpful to be able to compute examples. This essay gives

reasonably simple methods for various standard computations with binary

quadratic forms and ideals in quadratic orders. It is not intended as an

introduction to the theory of binary quadratic forms (for which see [22, 16,

27, 5, 6, 10, 8]), or quadratic number fields (see [42, 40, 8, 6, 21, 27, 26, 31,

36, 10]). Also, [37] has a “popular” exposition of many topics discussed here,

and [25] covers the equivalence of class numbers based on quadratic forms

and based on ideals. Steve Finch has collected many conjectures related to

topics herein in [13].

Algorithms given here will tend to be simple, and may or may not gen-

eralize to number fields of higher degree.

1
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2 Background and notation

The binary quadratic forms (BQFs) we are interested in are

(1) g(x, y) = ax2 + bxy + cy2

for integers x and y with discriminant ∆ = b2 − 4ac 6= 0, not a square. This

last condition implies that neither a nor c is zero. Forms will be written

as any of g = g(x, y) = ax2 + bxy + cy2 = (a, b, c) (we will reserve “f” for

another use).

Note that if ∆ is a square, then g = 1
4a

[(2ax + by)2 − ∆y2] factors into

linear terms, resulting in a substantially different theory. When ∆ is not

square, then g does not factor into linear terms.

If ∆ < 0 then ac > 0 so a and c have the same sign. We will require that

a > 0 and c > 0 when ∆ < 0. That is, in the case of negative discriminants

we will only consider positive definite forms. The situation when a < 0 and

c < 0 is completely analogous.

We will also consider quadratic number fields, i.e., Q(
√
d) for squarefree

integers d, d 6= 0, 1. An algebraic integer is a root of a monic polynomial with

integral coefficients. Swinnerton-Dyer [43, pp. 1-2] delineates reasons that it

is natural to call these algebraic integers. The ring of algebraic integers (or

integers) O of Q(
√
d) is the Z–module with basis [1, ω] where

ω =


√
d if d ≡ 2 or 3 (mod 4),

1 +
√
d

2
if d ≡ 1 (mod 4).

(that is, O = {a · 1 + b · ω} where a, b ∈ Z). The ring O is the intersection

of the set of all algebraic integers with Q(
√
d).

The conjugate ω of ω is

ω =


−
√
d if d ≡ 2 or 3 (mod 4),

1−
√
d

2
if d ≡ 1 (mod 4).
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General definitions of an order in number fields are given in [43, p. 3]

and [10, p. 133]. For quadratic number fields, the order Of of conductor f

within the ring of integers O is the Z–module with basis [1, fω], where ω is

as above (and O = O1) [8, pp. 83-84].

The discriminant ∆ of Of is

∆ =

{
f 2d if d ≡ 1 (mod 4),

4f 2d if d ≡ 2 or 3 (mod 4).

Clearly ∆ ≡ 0 or 1 (mod 4), and ∆ is not a square. It is not hard to

see that any integer ∆ ≡ 0 or 1 (mod 4), not a square, is the discriminant

of a unique order. To find the d and f that generate a particular ∆ find the

largest j ≥ 1 so that j2 divides ∆. Set d = ∆/j2. If d ≡ 1 (mod 4) then take

f = j. Otherwise d ≡ 2 or 3 (mod 4), and take f = j/2. We will refer to

these as the d and f that correspond to ∆.

When f = 1, ∆ is a fundamental discriminant, sometimes denoted ∆0.

When d ≡ 1 ( mod 4), ω2 = ω+(d−1)/4, ω+ω = 1, and ωω = (1−d)/4.

When d 6≡ 1 (mod 4), ω2 = d, ω + ω = 0, and ωω = −d.

The norm N(x+ yfω) of an element x+ yfω ∈ Of is the element times

its conjugate, N(x+ yfω) = (x+ yfω)(x+ yfω). When d ≡ 1 (mod 4),

N(x+ yfω) = x2 + fxy + f 2

(
1− d

4

)
y2,

and when d 6≡ 1 (mod 4),

N(x+ yfω) = x2 − f 2dy2.

An ideal I in an order Of (or any ring) is a set closed under addition

and subtraction so that if α ∈ I and r ∈ Of , then rα ∈ I. One way of

writing an ideal I in an order Of (I ⊂ Of ) is to list two basis elements,

I = [t + ufω, v + wfω] (so I = {r(t + ufω) + s(v + wfω)|r, s ∈ Z}).
Alternatively, this can be written as the matrix(

t v

u w

)
.
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The norm of the ideal is |tw − uv|.
Every ideal I ⊂ Of can be written uniquely as

I =

(
t v

0 w

)
where t > 0, 0 ≤ v < t, w > 0, w|t, and w|v (see [5, p. 94 ] or the section

“Hermite Normal Form,” below). Any rational integer in I is a multiple of

t.

As will be expanded upon below, there are connections between forms

and orders with the same discriminant.

We will make very little mention of fractional ideals, because any frac-

tional ideal can be written as rI where r is a rational number and I is an ideal.

Methods for working with ideals are easily extended to fractional ideals.

3 Standard number theory routines

Without further discussion, we assume the availability of the following stan-

dard routines: compute the least nonnegative residue of a modulo m; com-

pute greatest common divisor g > 0 of two integers x, y and find r, s so that

rx + sy = g; determine whether an integer is a prime; factor integers into

primes; determine whether an integer is squarefree; determine whether an in-

teger is a square; find the largest square that divides a integer; list all divisors

of an integer; compute the Legendre, Jacobi, and Kronecker symbols; list all

primes up to a given limit; sort arrays; solve linear equations ax + by = c

in integers; apply the Chinese Remainder Theorem (CRT); solve equations

x2 ≡ a (mod m); efficient computation of ak (mod m) by the power algo-

rithm; efficient computation of ab (mod m). Cohen [6] discusses most of

these. (The CRT can be used as part of a method to solve x2 ≡ a (mod m).)

We give algorithms for ideal multiplication and addition that require the

MLLL basis reduction algorithm. But we also give algorithms that do not

require the MLLL algorithm. A good MLLL routine is given in [32, pp. 209-

210]. Actually, the only routine needed here is one that takes as input three
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vectors of length 2 and returns two vectors of length 2 that have the span of

the original three (in the notation of [32], n = k = 2). The routine should

also check whether two of the input vectors are dependent, and return the

right output when this occurs.

4 Hermite Normal Form

Computations with ideals presented here will often require putting the bases

for ideals into Hermite Normal Form (HNF). Let the basis for an ideal be

[t+ ufω, v + wfω]. We desire a basis of the form [t′, v′ + w′fω] with t′ > 0,

w′ > 0, and 0 ≤ v′ < t′. If u = 0 then just make sure t and w are positive

(change the sign of t, or change the signs of w and v if needed), and select

v′ as the least nonnegative residue of v modulo t. (If w = 0, switch the roles

of t, u and v, w, and adjust as in the previous sentence.) If u 6= 0 and w 6= 0,

let g > 0 be the GCD of u and w, and let r, s be such that ru + sw = g.

Take t′ = |(tw − uv)|/g, v′ = tr + vs, and w′ = g. Replace v′ with the least

nonnegative residue of v′ modulo t′.

We write the ideal [t′ + 0 · f · ω, v′ + w′fω] in HNF as an array(
t′ v′

0 w′

)
.

Thus, our HNF arrays are in upper triangular form (some authors take HNF

to be lower triangular).

Cohen [6, pp. 66ff] discusses reduction to HNF for more general arrays

than the 2× 2 and 2× 4 arrays that arise in quadratic orders.

5 Transformations between forms

A common way to write a transformation between forms is to write a matrix

T that gives the relationship between the variables, with the coefficients of

the transformed form following as a consequence. Specifically, suppose we
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have a form (1) in variables x, y, and a transformation between these variables

and the variables x′, y′ given by(
x

y

)
= T

(
x′

y′

)
, or

(
x

y

)
=

(
α β

γ δ

)(
x′

y′

)
.

Then

ax2 + bxy + cy2

= a(αx′ + βy′)2 + b(αx′ + βy′)(γx′ + δy′) + c(γx′ + δy′)2

= a′x′2 + b′x′y′ + c′y′2

where
a′ = aα2 + bαγ + cγ2

b′ = 2aαβ + b(αδ + βγ) + 2cγδ

c′ = aβ2 + bβδ + cδ2

This defines a transform T from the form g = (a, b, c) to the form gT =

g′ = (a′, b′, c′).

Note that this is “backwards” from what you might expect, in that the

transformation takes (x′, y′) to (x, y) and not the other way around.

If T1 takes g to g′ and T2 takes g′ to g′′, then T1T2 (regular matrix product)

takes g to g′′, i.e., (gT1)T2 = g(T1T2).

If det(T ) = ±1 then there is an inverse transformation for T , given by

the inverse of the matrix representing T .

6 Equivalence and reduction

The natural notion of equivalence for forms is that two forms g, h are equiv-

alent if there is a transformation

(2) T =

(
α β

γ δ

)
,
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taking g = (a, b, c) = g(x, y) = ax2 + bxy+ cy2 to h = (A, B, C) = h(X, Y )

= AX2 +BXY + CY 2 where(
x

y

)
=

(
α β

γ δ

)(
X

Y

)
,

A = aα2 + bαγ + cγ2,

B = 2aαβ + bαδ + bβγ + 2cγδ, and

C = aβ2 + bβδ + cδ2,

and det(T ) = ±1. Any two forms g and h related by such a transformation

represent the same numbers (the form g represents m if there are x, y so that

g(x, y) = m). If det(T ) = +1, then g and h are said to be properly equivalent,

g ≈ h, while if det(T ) = −1, then g and h are said to be improperly equivalent.

The forms g and h are equivalent, g ∼ h, if g and h are either properly or

improperly equivalent. Proper equivalence is an equivalence relation, as is

equivalence. Equivalent forms have the same discriminant. We will say

that a matrix is unimodular if it has integer entries and det(T ) = +1 [16,

p. 168] (note that some authors allow unimodular transforms T to have

det(T ) = ±1).

Many computations involving forms are aimed at determining whether

two forms are equivalent or properly equivalent. A concept that is often

useful here is that of a reduced form. Given a form, one way to find a

properly equivalent reduced form involves use of a reduction step, which is

a particular transformation of one form to another. We will define reduced

forms, give the reduction step, and show how to use the reduction step to

find a reduced form equivalent to a given form. We will use all of this to give

a test to determine whether two forms are equivalent, and find a suitable

transformation between them when they are equivalent.
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7 Reduction step for ∆ < 0

A form (a, b, c) with ∆ < 0 is said to be reduced if

|b| ≤ a ≤ c

and if either |b| = a or a = c then b ≥ 0.

The reduction step for positive definite forms is as follows. Given a form

(a, b, c) we will produce a (not necessarily distinct) form (a′, b′, c′) and the

transformation T between these forms.

If (a, b, c) is reduced, take a′ = a, b′ = b, c′ = c and

T =

(
1 0

0 1

)
,

i.e., do nothing.

Otherwise, if a > c then take a′ = c, b′ = −b, c′ = a and

T =

(
0 −1

1 0

)
.

If the above conditions did not apply, look at

k =

⌊
a− b

2a

⌋
.

If k 6= 0 then take a′ = a, b′ = 2ak + b, c′ = ak2 + bk + c, and

T =

(
1 k

0 1

)
.

Finally, if none of the above applied, we must have b < 0 and a = c in

which case take a′ = a, b′ = −b, c′ = c = a and

T =

(
0 −1

1 0

)
.

Given a form, to find an equivalent reduced form, apply the reduction step

repeatedly until a reduced form results. The composition of the transforms

T gives the transform from the original form to the reduced form.
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8 Reduction step for ∆ > 0

A form (a, b, c) with ∆ > 0 is said to be reduced if

|
√

∆− 2|a|| < b <
√

∆.

An equivalent set of conditions is

0 < b <
√

∆ and
√

∆− b < 2|a| <
√

∆ + b.

In either of the above sets of conditions, replacing a with c gives an

equivalent set of conditions.

Cohen [6, p. 258] gives the following reduction step. Recall that neither

a nor c can be zero for any forms we consider.

First define r(−b, c) to be the unique integer r so that r ≡ −b (mod 2|c|)
and −|c| < r ≤ |c| if |c| >

√
∆, or

√
∆− 2|c| < r <

√
∆ if |c| <

√
∆.

For the reduction step, take a′ = c, b′ = r(−b, c), and c′ = ((b′)2−∆)/4c.

The transform T is

T =

(
0 1

−1 −(b+ b′)/2c

)
.

Given a form, to find an equivalent reduced form, apply the reduction

step repeatedly until a reduced form is produced. The composition of the

transforms T gives the transform from the original form to the reduced form.

In the case of ∆ < 0, when a reduced form is input into the reduction

step, the same form is output. When ∆ > 0, the output form is always

different from the input form, even when the input form is reduced. If the

input form is reduced, the output form will also be reduced.

There are always at least two reduced forms in any proper equivalence

class of forms when ∆ > 0. To find all reduced forms in an equivalence

class, begin with any form in that class. If that form is not reduced, apply

the reduction step until a reduced form is produced. From here, repeated

application of the reduction step will produce all reduced forms in the class,
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and will eventually produce the original reduced form again. When the

original reduced form is produced a second time, all equivalent reduced forms

have been produced. The set of reduced forms in an equivalence class is called

the period of reduced forms for the class.

9 All reduced forms of discriminant ∆

If ∆ < 0 and (a, b, c) is reduced, then b2−4ac = ∆ < 0 and |b| ≤ a ≤ c. Then

a2 ≥ b2 and 4ac ≥ 4a2, so 3a2 = 4a2−a2 ≤ 4ac−b2 = |∆|, and |a| ≤
√
|∆|/3.

Also, a > 0. So, it suffices to search on 0 < a ≤
√
|∆|/3, −a ≤ b ≤ a, b ≡ ∆

(mod 2). Cohen [6, p. 228] gives a more efficient algorithm based on this

principle.

If ∆ > 0 and (a, b, c) is reduced, then b2−4ac = ∆ > 0 and |
√

∆−2|a|| <
b <

√
∆. It follows that −

√
∆ < a <

√
∆. So it suffices to search on

−
√

∆ < a <
√

∆, |
√

∆− 2|a|| < b <
√

∆, b ≡ ∆ (mod 2).

When ∆ > 0, the forms can be arranged into periods through use of the

reduction step.

10 Determine whether forms are properly or

improperly equivalent

Given two forms g1, g2, with the same discriminant ∆, to determine whether

they are properly equivalent, first find reduced forms h1 ≈ g1, and h2 ≈ g2.

If ∆ < 0, the original forms are properly equivalent if and only if h1 = h2.

In the case ∆ > 0, g1 and g2 are properly equivalent if and only if h1 is in

the period of reduced forms of h2 (in which case, both periods are the same).

To see whether two forms are improperly equivalent, apply any transfor-

mation of determinant−1 to one form, and then test whether the transformed

form is properly equivalent to the other form.

When two forms are properly equivalent, a unimodular transformation
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between them can be found by composing the transforms (or inverses of

the transforms) generated during the reduction steps. As an example, we

find a unimodular transform between the properly equivalent forms g1 =

(1, 3, 1) and g2 = (5, 5, 1), neither of which is reduced. Applying the reduction

step to g1 results in the reduced form h1 = (1, 1,−1), and the transform

T1 =

(
0 1

−1 −2

)
, for which g1T1 = h1. Also, applying the reduction

step to g2 results in the reduced form h2 = (1, 1,−1), and the transform

T2 =

(
0 1

−1 −3

)
, for which g2T2 = h2. Since h1 = h2, setting T = T1T

−1
2 ,

so T =

(
1 0

1 1

)
, we have g1T = g2.

Note that two forms can be both properly and improperly equivalent.

As an example, (26, 55,−1) and (26, 49,−7) are properly and improperly

equivalent under the transforms(
−15 2

7 −1

)
and

(
1 2

0 −1

)
.

If two forms are properly and improperly equivalent, any two forms in

the same proper class of forms are properly and improperly equivalent. In

particular, each form in that proper equivalence class is improperly equivalent

to itself. For example (26, 55,−1) is improperly equivalent to itself under the

transform (
−15 32

7 −15

)
If a proper class of forms includes a form improperly equivalent to itself,

the class is an ambiguous class.

A form (a, b, c) is ambiguous if a|b. An ambiguous form is improperly

equivalent to itself, so any class with an ambiguous form is ambiguous. If

∆ > 0, every ambiguous class has exactly four ambiguous forms of the form

(a, 0, c) or (a, a, c) and exactly two reduced ambiguous forms. If ∆ < 0,
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every ambiguous class has exactly two ambiguous forms of the form (a, 0, c)

or (a, a, c); at most one of these is reduced.

11 Solving ax2 + bxy + cy2 = m—the roadmap.

When the equation

(3) ax2 + bxy + cy2 = m

has solutions, those solutions can be divided into equivalence classes. These

equivalence classes, in turn, are related to automorphs (transformations that

take a form to itself). So, we first have a section on equivalence classes of

solutions, and then one on automorphs. Finally, we give a method of solving

these equations, which actually just makes sure we find at least one solution

in each equivalence class.

12 Equivalent solutions

There is a natural way that solutions to a BQF equation can be divided into

equivalence classes so that any solution falls into one of a finite number of

classes.

Before getting to that, note the formula

(rt±Dsu)2 −D(ru± ts)2 = (r2 −Ds2)(t2 −Du2).

This can be used to generate new solutions to the Pell equation r2−Ds2 = N

from a given solution and a solution to the Pell equation t2 − Du2 = 1. If

r2 −Ds2 = N and t2 −Du2 = 1, then (rt±Dsu)2 −D(ru± ts)2 = N · 1 =

N . For (t, u) a solution to the “+1” Pell equation, the solutions (r, s) and

((rt±Dsu), (ru± ts)) are considered to be equivalent.

This idea generalizes to BQF equations, essentially through the use of the

formula

ax2 + bxy + cy2 =
1

4a
[(2ax+ by)2 −∆y2].
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In particular, if (x′, y′) is a solution to (1) and (t, u) is any solution to t2 −
∆u2 = 4, then (x, y) is also a solution to (1) where x and y are defined by

(4) x =

(
t− bu

2

)
x′ − cuy′, y = aux′ +

(
t+ bu

2

)
y′,

or (
x

y

)
=

(
t−bu

2
−cu

au t+bu
2

)(
x′

y′

)
.

In turn, this is equivalent to

2ax+ by + y
√

∆ =

(
t+ u

√
∆

2

)
(2ax′ + by′ + y′

√
∆).

The two solutions (x, y), (x′, y′) are said to be equivalent. It is not difficult

to verify that this defines an equivalence relation.

An equivalent, but often easier, test is that two solutions (x, y), (x′, y′)

are equivalent if and only if

2axx′ + b(xy′ + x′y) + 2cyy′ ≡ 0 (mod |N |), and

xy′ − x′y ≡ 0 (mod |N |).

Solutions to the Pell equations t2 − ∆u2 = ±4 are related to units in

quadratic orders with discriminant ∆. This relationship is discussed in more

detail in the section “Norm equations and units” below. See [39] for methods

to solve these equations.

For ∆ > 0, all solutions (t, u) to t2 − ∆u2 = 4 are generated from the

solution (t1, u1) with the minimum positive t1 and u1 by

t+ u
√

∆

2
= (±1)

(
t1 + u1

√
∆

2

)n

for some integer n (positive, zero, or negative), so it is easy, using (4), to

generate all solutions to (3) equivalent to a given solution.

There are a finite number of equivalence classes of solutions to (3) (pos-

sibly zero). See [23] for more on the structure of solutions.
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13 Automorphs

An automorph of a form g is a unimodular transform T (recall that uni-

modular means that det(T ) = 1) that maps g to itself, gT = g. If T is an

automorph of g = ax2 + bxy + cy2, then

T =

(
t−bu

2
−cu

au t+bu
2

)

for some t, u that satisfy the Pell equation t2 −∆u2 = 4 [12, p. 112] [22, p.

95] [16, p. 194].

14 Solving ax2 + bxy + cy2 = m

This will give the “traditional” method of solving the BQF equation g(x, y) =

ax2 + bxy + cy2 = m, given a, b, c, and m. When ∆ > 0, a superior method

is given in [23] and [38].

The basic principle is as follows. If x, y is a primitive solution (i.e.,

gcd(x, y) = 1) to g(x, y) = m then for r, s so that xr−ys = 1, the transform

T =

(
x s

y r

)
,

maps g to a form g′ = mx2+b′xy+c′y2 with x2-coefficient m, and the solution

g′(1, 0) = m is mapped to (x, y),(
x

y

)
=

(
x s

y r

)(
1

0

)
.

So, the method is as follows. First find all forms g′ = mx2 + b′xy + c′y2

of discriminant ∆ with 0 ≤ b′ < 2|m| (see comment below). These are the

forms with a b′ for which c′ = (b′2 − ∆)/(4m) is an integer. For small |m|
these b′ are quickly determined by brute-force search. For large |m|, there

are more efficient methods to solve b′2 ≡ ∆ (mod 4|m|) [6, pp. 31-36, 44].
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Second, for each form g′ found in the first step, test to see whether it

is properly equivalent to g. For each g′ that is properly equivalent, use any

transform T for which gT = g′ to map the solution (1, 0) to g′ = m to a

solution (x, y) to g = m.

At this point, we have one primitive solution from each class of solutions.

To get non-primitive solutions, apply the above to every equation g = m/j2

for every j > 1 so that j2 divides m. Multiply the solutions found by j so

that they are solutions to the original equation.

To find all solutions, apply the automorphs of g to the solutions found so

far.

A word on why it suffices to only look at b′ so that 0 ≤ b′ < 2|m|. With

r, s so that xr − ys = 1, as above, consider the transforms(
x s+ kx

y r + ky

)
,

all of which have determinant +1. For these transforms,

b′ = 2ax(s+ kx) + b(x(r + ky) + y(s+ kx)) + 2cy(r + ky)

= 2axs+ b(xr + ys) + 2cyr + 2k
(
ax2 + bxy + cy2

)
= 2axs+ b(xr + ys) + 2cyr + 2km.

By picking k suitably, we can force 0 ≤ b′ < 2|m|.
References for this method include [16, Chapter 6], [22, Chapter III], and

[5, p. 53].

15 Examples of solutions of binary quadratic

form equations

As an example for ∆ > 0, we solve

(5) 55x2 + 315xy + 451y2 = −3971.
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Primitive Solutions

b′ c′ T x y

807 −41

(
1617 −164

−562 57

)
1617 −562

2251 −319

(
−1359 385

473 −134

)
−1359 473

5691 −2039

(
1562 −1119

−543 389

)
1562 −543

7135 −3205

(
1327 −1192

−462 415

)
1327 −462

Table 1: Primitive solutions to 55x2 + 315xy + 451y2 = −3971

As ∆ = 5, we start with solutions to b′2 ≡ 5 (mod 4 ·3971), 0 ≤ b′ < 2 ·3971,

which are b′ = 807, 2251, 5691, 7135. For b′ = 807, c′ = −41, and the form

g1 = (55, 315, 451) is equivalent to the form g2 = (−3971, 807, −41) under

the transform

T =

(
1617 −164

−562 57

)
giving the solution g(1617, − 562) = −3971. The table “Primitive Solu-

tions” gives a primitive solution corresponding to each b′, along with the

corresponding c′ and the transform T from g1 to (−3971, b′, c′).

As −3971 = −11 · 192, to find imprimitive solutions it suffices to solve

(6) 55x2 + 315xy + 451y2 = −11.

Solutions to b′2 ≡ 5 (mod 4 · 11), 0 ≤ b′ < 2 · 11, are b′ = 7, 15. For b′ = 7,
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c′ = −1, a solution to (6) is (x, y) = (95, − 33), and an imprimitve solution

to (5) is (x, y) = (1805, − 627). For b′ = 15, c′ = −5, a solution to (6)

is (x, y) = (121, − 42), and an imprimitve solution to (5) is (x, y) =

(2299, − 798).

The minimal positive solution (t, u) to

(7) t2 − 5u2 = 4

is (t, u) = (3, 1), from which all solutions to (7) can be generated, and so

all solutions to (5). For instance, (t, u) = (3, 1) gives the automorph

T =

(
−156 −451

55 159

)

and T

(
1617

−562

)
=

(
1210

−423

)
. Other solutions equivalent to (1617, −562)

include (3641, − 1263), and (2013, − 707).

It happens in this example that none of the solutions found are those

with minimal positive y among all solutions for the class. A method that

does find the solution with minimal positive y in each class when ∆ > 0 is

given in [23] and [38].

As an example for ∆ < 0, we solve

(8) x2 + 3xy + 3y2 = 7.

As ∆ = −3, we start with solutions to b′2 ≡ −3 (mod 4 · 7), 0 ≤ b′ < 2 · 7,

which are b′ = 5, 9. For b′ = 5, c′ = 1, and the form g = (1, 3, 3) is

equivalent to the form g′ = (7, 5, 1) under the transform(
4 1

−1 0

)
giving the solution g(4,−1) = 7. There are six solutions to t2+3u2 = ±4 (see

next section), namely (t, u) = (±2, 0), (±1,±1). These give the automorphs(
1 0

0 1

) (
−1 0

0 −1

) (
−1 −3

1 2

)
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(
2 3

−1 −1

) (
−2 −3

1 1

) (
1 3

−1 −2

)
,

so the complete list of solutions equivalent to (4,−1) is (4,−1), (−4, 1),

(−1, 2), (5,−3), (−5, 3), (1,−2).

For b′ = 9, c′ = 3, and the form g = (1, 3, 3) is equivalent to the form

g′ = (7, 9, 3) under the transform(
5 3

−2 −1

)
giving the solution g(5,−2) = 7. The other solutions equivalent to this one

are (−5, 2), (1, 1), (4,−3), (−4, 3), (−1,−1).

As 7 is squarefree, there are no imprimitive solutions.

This last example is a little unusual in that for ∆ < −4, there are only 2

solutions in each equivalence class of solutions, not 6.

16 Norm equations and units

Finding all elements of a quadratic order with a given norm is equivalent to

solving certain binary quadratic equations. For a given ∆, with associated

d and f , suppose we want to find all elements x + yfω of norm m, i.e.,

N(x + yfω) = m. Consider first the case where d ≡ 1 (mod 4). Then

N(x + yfω) = (x + yfω)(x + yfω) = x2 + fxy + f 2((1 − d)/4)y2. So, the

equation we want to solve is

(9) x2 + fxy + f 2((1− d)/4)y2 = m.

Sometimes it is helpful to multiply through by 4 and complete the square to

convert the equation to the generalized Pell equation

(2x+ fy)2 − f 2dy2 = 4m,

or

(10) X2 −∆Y 2 = 4m,
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where X = 2x + fy and Y = y. Because d ≡ 1 (mod 4), for any solution

to (10), X ≡ fY (mod 2), and every solution to (10) yields a solution x =

(X − fY )/2, y = Y to (9).

If f is even, so 4|∆, it can be easier to solve the equation

X2 − (∆/4)Y 2 = m

where X = x+ (f/2)y and Y = y.

If d 6≡ 1 (mod 4) then N(x+ yfω) = (x+ yfω)(x+ yfω) = x2 − f 2dy2,

and the equation to solve is

x2 − f 2dy2 = m.

Units in an order of a quadratic number field are elements of norm ±1.

First consider d ≡ 1 (mod 4). Then x+ yfω is a unit if

(11) x2 + fxy + f 2

(
1− d

4

)
y2 = ±1.

As above, multiplying through by 4, taking X = 2x+ fy, Y = y, and noting

that ∆ = f 2d, (11) is

(12) X2 −∆Y 2 = ±4.

For every solution of (12) x = (X − fY )/2 is an integer, so every solution of

(12) gives a solution of (11).

For ∆ < 0, only the equation

(13) X2 −∆Y 2 = +4

has solutions, and (13) has finitely many in this case. If d = −3 and f = 1,

so ∆ = −3, the solutions (X, Y ) to (13) are (±2, 0), and (±1,±1), which

correspond to solutions (x, y) of (±1, 0), (0,±1), and (±1,∓1) to (11). It

is easy to see that the six solutions z = x + yω to (11) are the six complex

solutions to z6 = 1. For any other ∆ < 0 (with d ≡ 1 (mod 4)), the only
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solutions (X, Y ) to (13) are (±2, 0), which correspond to solutions (x, y) of

(±1, 0), to (11).

For ∆ > 0,

(14) X2 −∆Y 2 = −4

might have solutions, and in any event, (12) always has infinitely many so-

lutions. For all solutions X + Y
√

∆ to (12), (X + Y
√

∆)/2 = ±1((X1 +

Y1

√
∆)/2)n, where X1 + Y1

√
∆ is the minimal positive solution to (12) and

n is an integer (possibly zero or negative). See [39] for further information.

Now consider d 6≡ 1 (mod 4). Then x+ yfω is a unit if

(15) x2 − f 2dy2 = ±1.

Again, by multiplying through by 4, taking X = 2x, Y = y, and noting

that ∆ = 4f 2d, (15) can be written

(16) X2 −∆Y 2 = ±4.

While these equations are equivalent, equation (15) gets at units more di-

rectly, so we suggest solving it when units are wanted and d 6≡ 1 (mod 4).

For ∆ < 0, only the equation

(17) x2 − f 2dy2 = +1

has solutions, and (17) has finitely many in this case. If d = −1, and f = 1,

so ∆ = −4, the solutions (x, y) to (17) are (±1, 0), and (0,±1). It is easy to

see that the four solutions z = x+ yω to (17) are the four complex solutions

to z4 = 1. For any other ∆ < 0 (with d 6≡ 1 (mod 4)), the only solutions

(x, y) to (17) are (±1, 0).

For ∆ > 0,

(18) x2 − f 2dy2 = −1

might have solutions, and in any event, (15) always has infinitely many so-

lutions. For all solutions x+ yf
√
d to (15), x+ yf

√
d = ±1 · (x1 + y1f

√
d)n,

where x1 +y1f
√
d is the minimal positive solution to (15) and n is an integer

(possibly zero or negative). See [39] for further information.
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17 Genus equivalence of forms

Loosely speaking, two forms with the same discriminant are in the same genus

if they represent “some of the same numbers.” More precisely, if ∆ = f 2d

for d ≡ 1 (mod 4), d squarefree, or ∆ = 4f 2d for d ≡ 2 or 3 (mod 4), d

squarefree (as above), then two forms g1 and g2 are in the same genus if and

only if there are integers t21m and t22m so that g1 primitively represents t21m,

g2 primitively represents t22m, m is squarefree, and gcd(t1, f) = gcd(t2, f) = 1

[8, pp. 144-145].

As an example of the need for the “gcd” condition, consider the forms

g1(x, y) = x2 +45xy−9y2 and g2(x, y) = −x2 +45xy+9y2. These forms have

discriminant 2061 = 32 · 229. These forms are in different genuses (apply the

test given below), but both represent 405 = 32 · 5: g1(3, 4) = g2(12, 1) = 405.

Alternatively, two forms of the same discriminant ∆ are in the same

genus if and only if they represent the same values in (Z/(∆Z)∗, the non-

zero-divisors in (Z/(∆Z) [10, p. 53].

A way to determine whether two forms are in the same genus is through

the use of characters. For our purposes, a character is a function χ : Z/mZ→
{−1, 0,+1} with m > 0 so that

χ(r) = 0 ⇐⇒ gcd(r,m) > 1, and

gcd(r, s) = 1 =⇒ χ(rs) = χ(r)χ(s).

More general characters are defined in [43, p. 125] and [26, p. 270].

For a given discriminant ∆, make a list of characters as follows [10, p. 55]

[12, pp. 82-87] [8, p. 150]. Begin with the characters χ(m) =
(
m
p

)
for every

odd (positive) prime p dividing ∆. Here
(
m
p

)
is the Kronecker symbol. If ∆

is odd or ∆/4 ≡ 1 (mod 4), this is the complete list of characters. Otherwise

add characters according to the table “Additional characters”.

To test whether two forms, g and g′, are in the same genus, find m and

m′ so that g represents m, g′ represents m′, and gcd(m, 2∆) = gcd(m′, 2∆)

= 1 (that this can always be done is discussed in [38]). Then g and g′ are
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Additional characters

∆/4 (mod 8) Additional Characters

2
(

2
m

)
3, 4, or 7

(−1
m

)
6

(−2
m

)
0

(−1
m

)
and

(
2
m

)
Table 2: Additional characters when ∆ is even, ∆/4 6≡ 1 (mod 4)

in the same genus if and only if the values for all characters in the list for ∆

agree for m and m′.

For example, for the discriminant ∆ = 10336 = 25 · 17 · 19, there are four

characters, χ1(m) =
(
m
17

)
, χ2(m) =

(
m
19

)
, χ3(m) =

(−1
m

)
, and χ4(m) =

(
2
m

)
.

The form g1 = (−84, 68, 17) represents 1 (g1(1, 1) = −84 · 12 + 68 · 1 · 1 +

17 · 12 = 1), and clearly 1 is relatively prime to 2 · 10336. So, for g1 we have

χ1(1) = χ2(1) = χ3(1) = χ4(1) = 1. The form g2 = (84, 68,−17) represents

−1, (g2(1,−1) = 84 · 12 + 68 · 1 · (−1) − 17 · (−1)2 = −1). For g2 we have

χ1(−1) = χ4(−1) = 1, and χ2(−1) = χ3(−1) = −1. Thus g1 and g2 are in

different genus classes. Also consider g3 = 9x2+88xy−72y2, which represents

9 with x = 1, y = 0. For g3 we have χ1(9) = χ2(9) = χ3(9) = χ4(9) = 1,

so g1 and g3 are in the same genus class. Note that g3 does not represent 1,

while g1 does, and g3 represents 353 (g3(43,−4) = 353), while g1 does not,

so they do not represent exactly the same integers. But both do represent

273 = 3 · 7 · 13 (g1(1, 3) = g3(3, 1) = 273), which alone would show they are

in the same genus class. Note also that g1 and g3 are neither properly nor

improperly equivalent. (Also, from material below, you can see that g1 and

g2 correspond to weakly equivalent ideal classes, but are in different genus

classes.)

Here’s another use of characters. If p is an odd prime, p - ∆, m is

represented by some form in a given genus, gcd(m, 2∆) = 1, and χi(p) =
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χi(m) for every character associated with the discriminant ∆, then some

form in the given genus represents p [37, p. 140]. This does not hold for

p = 2 or for composites. For example, if d = 577, f = 1, so ∆ = 577, then

the only character is χ(m) =
(
m

577

)
. The form F (x, y) = x2 + xy − 144y2 is

in the principal genus, and clearly represents 1. Here χ(1) = 1 = χ(2). But

no form in the principal genus represents 2. Similarly, for d = 229, f = 1,

∆ = 229, there is one character and χ(1) = 1 = χ(91) =
(

91
229

)
but no form

in the principal genus represents 91.

18 Composition of forms

This algorithm is given in [37, p. 135].

The composition of two forms, g = (a, b, c) and g′ = (a′, b′, c′), of the same

discriminant ∆, is as follows. Let h be the gcd of a, a′, and (b + b′)/2. Let

u, v, w be any integers so that au + a′v + ((b + b′)/2)w = h (note that u, v,

and w are not unique). Set

a′′ =
aa′

h2

b′′ =
1

h

(
aub′ + a′vb+

(bb′ + ∆)

2
w

)
c′′ =

b′′2 −∆

4a′′

Look at as a map from pairs of proper equivalence classes to proper

equivalence classes.

Composition of forms corresponds to multiplication of ideals, discussed

below.

19 Intermission

So far, routines discussed have been for forms. We now abruptly begin to

discuss routines for ideals in modules. An early goal is to give formulas

for maps between forms and ideals. Before getting to that, it is necessary
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to cover a few routines for ideals. Many of the later routines for ideals

require mapping the ideals to forms, doing a computation with the forms,

and mapping back to ideals.

20 Is a module an ideal?

The question is whether the Z–module [t+ ufω, v + wfω] is an ideal in the

order [1, fω].

First, let d ≡ 1 (mod 4). The Z–module is an ideal of the order if and

only if tw − uv divides each of the following

uwf 2
(
d−1

4

)
− v(t+ uf)

u2f 2
(
d−1

4

)
− t(t+ uf)

w2f 2
(
d−1

4

)
− v(v + wf)

The proof of this is as follows. We need any element of the order [1, fω]

times any element of the Z–module [t + ufω, v + wfω] to be an element of

the module. It suffices to check that fω times t + ufω is an element of the

module, and that fω times v + wfω is an element of the module. Writing

fω(t+ ufω) = r(t+ ufω) + s(v + wfω)

and solving for r and s (note that ω2 = (d − 1)/4 + ω) gives the first two

conditions above. Doing the same for the second product gives the third

condition, and a condition equivalent to the first condition.

In the important special case where u = 0, the conditions above reduce

to w divides t, w divides v, and

t

w
divides f 2

(
d− 1

4

)
− v

w

( v
w

+ f
)
.

Mollin [28, Theorem 1.2.1, p. 9] states this equivalently as if I = [t, v +

wω], then I is a nonzero ideal of Of if and only if w|t, w|v, and tw|N(v+wω).
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If both u = 0 and w = 1, then the conditions reduce to t dividing f 2(d−
1)/4− v(v + f).

When d ≡ 2 or 3 (mod 4) the formulas are similar, but a little simpler.

The Z–module is an ideal of the order if and only if tw − uv divides each of

the following

uwf 2d− tv

u2f 2d− t2

w2f 2d− v2

Here, when u = 0, the conditions above reduce to w divides t, w divides

v, and

t

w
divides f 2d−

( v
w

)2

.

If both u = 0 and w = 1, then the conditions reduce to t dividing f 2d−v2.

Mollin’s Theorem 1.2.1 [28, p. 9] gives conditions for a module to be an

ideal.

Per [8, p. 140], a module M is primitive if no rational integer t > 1 can

divide every element ofM. A primitive moduleM is an ideal of Of exactly

when it has the canonical form [t, v+fω], 0 < t, 0 ≤ v < t, 0 < f , and where

t, the norm [Of :M], divides N(v + fω).

21 Multiplication and addition of ideals

The product IJ of the ideals I = [α1, α2] and J = [β1, β2] is the Z-module

[α1β1, α1β2, α2β1, α2β2]. To reduce this to a two-element basis, you can write

it as a 2 × 4 array (each αiβj is a column), and reduce that to HNF. We

discuss this in more detail below, with a shortcut for the case where at least

one of I or J is invertible.

It’s a little overkill, but you can use the MLLL algorithm twice to reduce

IJ to a two-element basis, namely feed in three of the αiβj to the MLLL
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algorithm, get two vectors as output; feed these and the fourth αiβj into the

MLL algorithm, and the output is a two element basis for IJ .

A similar algorithm can be used to add ideals. The sum of the ideals

I = [α1, α2] and J = [β1, β2] is the Z-module [α1, α2, β1, β2]. As with multi-

plication of ideals, this just needs to be reduced to HNF to have a two-element

basis.

When ∆ is large, faster ways to multiply ideals are given in [46]. These

methods give fast methods to multiply ideals, because the product of the

ideals I = [α1, α2] and J = [β1, β2] is the sum of the ideals α1J and α2J .

Here’s a more detailed walk-through of multiplication of two ideals. Every

integral or fractional ideal can be written as r[a, b+fω] where r is an integer

or rational number, so it suffices to consider products of primitive ideals.

Suppose we want to multiply I = [a1, b1 + fω] and J = [a2, b2 + fω]. Then

IJ is spanned by the columns of

A =

(
t1 t2 t3 t4

0 v2 v3 v4

)

where t1 = a1a2, t2 = a1b2, v2 = a1, t3 = a2b1, v3 = a2, and t4 + v4fω =

(b1 + fω)(b2 + fω). Our goal is an array in HNF(
a b

0 c

)

that has the same span as the preceding array.

To this end, first find the greatest common divisor v of v2, v3, and v4,

and integers r2, r3, and r4 such that r2v2 + r3v3 + r4v4 = v. Write t =

r2t2 + r3t3 + r4t4 so we have

t+ vfω = r2(t2 + v2fω) + r3(t3 + v3fω) + r4(t4 + v4fω).

Now we get to the shortcut we can use when at least one of I, J is

invertible. When at least one is invertible, we haveN(IJ) = N(I)N(J) ([6, p.

181]) so we can simply take a = a1a2/v, c = v, and b as the least nonnegative
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residue of t modulo a. Then IJ = [a, b+ cfω]. Because ac = av = a1a2, the

norm of IJ is N(I)N(J).

Otherwise, for 2 ≤ i ≤ 4, set si = vi/v and t′i = ti − sit. Set a =

gcd(t1, t
′
2, t
′
3, t
′
4), and (as just above) c = v, and take b as the least nonnegative

residue of t modulo a. Then (
a b

0 c

)
is in HNF and IJ = [a, b+ cfω].

Here are a few examples. Let d = 2, f = 1, I = [7, 3 +ω], J = [17, 6 +ω].

Of course, ω =
√

2. Because (3 +
√

2)(6 +
√

2) = 20 + 9
√

2, our array A is(
119 42 51 20

0 7 17 9

)

We have gcd(7, 17, 9) = 1 and we can pick r2 = 5, r3 = −2, r4 = 0 so

5 · 7 + (−2) · 17 + 0 · 9 = 1. So t = 108 and v = 1. Because both ideals are

invertible, the norm of their product is 7 · 17 = 119, so the product is(
119 108

0 1

)

For a second example, take d = 5, f = 21, I = J = [3, fω], where fω is

21

(
1 +
√

5

2

)
.

Neither I nor J is invertible. A is(
9 0 0 441

0 3 3 21

)

We have gcd(3, 3, 21) = 3 and we can take r2 = 1, r3 = r4 = 0, so t = 0. We

have s2 = s3 = 1, s4 = 7 so t′2 = t′3 = 0 and t′4 = 441. As gcd(9, 0, 0, 441) = 9,

IJ = [9, 3fω]. Note that N(IJ) = 27 > 9 = N(I)N(J).
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As a final example, let d = 5, f = 21, I = [3, fω], J = [7, fω]. Neither I

nor J is invertible. A is (
21 0 0 441

0 3 7 21

)
We have gcd(3, 7, 21) = 1 and we can take r2 = −2, r3 = 1, r4 = 0, so

t = 0. We have s2 = 3, s3 = 7, s4 = 21 so t′2 = t′3 = 0 and t′4 = 441. As

gcd(21, 0, 0, 441) = 21, IJ = [21, fω]. Note that N(IJ) = 21 = N(I)N(J).

Williams [17, Sec. 5.4] and Mollin [28, pp. 10-11] [30, Sect 2.1, p. 59] give

formulas for multiplying ideals under the assumption that at least one ideal

is invertible. Cohen [6] discusses reducing arrays to HNF while minimizing

the size of the numbers in the intermediate calculations on pages 66ff and

multiplication of modules (including ideals) on pages 187 and 188.

22 Principal ideal generated by an element

The ideal generated by the element t+ ufω is [t+ ufω, (t+ ufω)fω].

23 Equivalence classes of ideals

For ideals, the natural notion of equivalence is that two ideals I and J of Of
are equivalent I ∼ J if there are principal ideals (a) and (b) with a, b ∈ Of
so that I(a) = J(b). There is also a notion of strict equivalence I ≈ J , where

we add the condition that N(a/b) > 0. The ideals are weakly equivalent if

N(a/b) < 0.

Two ideals I and J are said to be in the same genus class, I ∼∼∼ J , if there

is an ideal K so that I and JK2 are strictly equivalent. In particular, there is

a genus class, called the principal class, that consists of the squares of ideals.

We will discuss methods for testing whether ideals are equivalent, and

finding (a) and (b) when they are, after covering maps between classes of

forms and classes of ideals.
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24 Map form to ideal

The maps in this section and the next should not be looked at as maps

between individual forms and individual ideals, but rather as maps between

classes of forms and classes of ideals. The classes can be taken to be those of

proper equivalence of forms and strict equivalence of ideals. In fact, narrower

classes can be used. Forms can be considered equivalent here if there is a

transform (
1 m

0 1

)
that takes one to the other. Ideals can be considered equivalent if one is a

rational multiple of the other [6, p. 221].

Given a form (a, b, c) of discriminant ∆ = f 2d or 4f 2d, set α = a, γ = 0,

and δ = 1. If d ≡ 1 (mod 4) then set β = (−1)(b + f)/2, otherwise set

β = −b/2.

If a < 0 then multiply the ideal

(
α β

γ δ

)
by the ideal (fω).

Reduce the result to HNF. If δ > 1, divide out by δ. We write φFI(a, b, c)

for (the strict class of) this ideal.

This map φFI is an isomorphism between the group of proper classes of

forms, under composition, and strict classes of ideals, under multiplication

[8, pp. 140-141] [6, pp. 220-225].

There are two immediate consequences of this map from forms to ideals.

The forms (a, b, c) and (−a, b,−c) are called negatives (?) of each other, and

map to weakly equivalent classes. So, the class group, or weak class group,

can be found without using ideals by joining classes with forms that are the

negatives of each other.

Also, the forms (a, b, c) and (a,−b, c) map to conjugate ideals, so inverse

ideals.
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25 Map ideal to form

See the section just above for discussion of equivalence of ideals and forms

under this map.

Given d, f , the basis [t+ufω, v+wfω] of an ideal is said to be positively

oriented if ((v +wfω)(t+ ufω)− (t+ ufω)(v +wfω))/
√

∆ > 0. Note that

if t > 0, u = 0, v ≥ 0, and w > 0, then the basis is positively oriented.

For d, f , we will map the ideal I =

(
t v

u w

)
with a positively oriented

basis and a sign s = ±1 to a form. Set m = s/(tw − uv). If d ≡ 1 (mod 4),

a = m
(
t2 + tuf + u2f 2

(
1−d

4

))
,

b = (−ms)
(
2tv + twf + vuf + 2uwf 2

(
1−d

4

))
,

c = m
(
v2 + vwf + w2f 2

(
1−d

4

))
.

If d 6≡ 1 (mod 4), then set

a = m (t2 − u2f 2d) ,

b = (−2ms) (tv − uwf 2d) ,

c = m (v2 − w2f 2d) .

We write φIF (I) for (the proper class of) the form g = (a, b, c) [8, pp.

140-141] [6, pp. 220-225].

26 Maps between ideals and quadratic irra-

tionals

Similar to the maps above, these maps should be looked at as maps between

equivalence classes of ideals and equivalence classes of quadratic irrationals.

As above, ideals are equivalent if they are rational multiples of each other.

Quadratic irrationals are equivalent, here, if they differ by a rational integer

[6, p. 221].

Any number ξ that can be written as ξ = (P +
√
D)/Q, with D not a

square, is the root of and irreducible quadratic equation ax2 + bx + c = 0,
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with a, b, c ∈ Z and ac 6= 0. For example, take a = Q2, b = −2PQ, and

c = P 2 − D. We can, after canceling common factors if necessary, assume

gcd(a, b, c) = 1. Under this assumption, the discriminant associated with ξ

is ∆ = b2 − 4ac. In particular, any ξ that can be written, (P +
√
D)/Q can

also be written so P 2 ≡ D (mod 2Q), for instance as (−b+
√

∆)/2a.

With the above notation, if I = [t+ ufω, v+wfω] has an oriented basis,

then

φIQ(I) =
v + wfω

t+ ufω

gives a map from invertible ideals in the order of discriminant ∆ to quadratic

irrationals with the same discriminant [6, p. 221].

For τ = (−b+
√

∆)/2a where 4a|∆− b2, set

φQI(τ) = a(Z + τZ).

As an example, consider the quadratic irrational, τ = (−4 +
√

5)/11.

As the denominator is odd, we multiply top and bottom by 2, to get τ =

(−8 +
√

20)/22, so a = 11, b = −8, and 44|(20− 64). Also ∆ = 20, so d = 5

and f = 2. You can check that 11(−8 +
√

20)/22 = −5 + 1 · 2 · ω, so τ maps

to the ideal [11,−5 + fω] in the order O2 of the ring of integers of Q(
√

5).

27 Testing ideals for equivalence

Two ideals, I and J , are strictly equivalent, if and only if the forms g = φIF (I)

and h = φIF (J) are properly equivalent.

The two ideals are weakly equivalent if and only if I(fω) and J are strictly

equivalent.

When I and J are strictly equivalent, there are several ways to find a and

b so that I(a) = J(b).

One method starts by letting m = N(I)/g, and n = N(J)/g, where

g = gcd(N(I), N(J)). Then for k = 1, 2, 3, . . ., in turn, generate all elements

a of norm kn (actually, take one element from each equivalence class of
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solutions to N(x) = kn) and all elements b of norm km. See if for any pair

I(a) = J(b). If not, try the next k until a suitable pair is found.

If I = (1) or I = (fω), and I ≈ J then J is principal so it suffices

to find a generator for J . This amounts to finding all a ∈ Of for which

N(J) = |N(a)|, and then determining which of these satisfies (a) = J . In

turn, this amounts to either solving

x2 + fxy + f 2

(
1− d

4

)
y2 = ±N(J)

if d ≡ 1 (mod 4), or solving

x2 − f 2dy2 = ±N(J)

if d 6≡ 1 (mod 4).

Another alternative is to invert one ideal, multiply this inverse by the

other ideal, and look for generator of the resulting principal ideal. If (a) =

I−1J , then I(a) = J(1).

For ∆ > 0, if there are forms g and g′ so that g′ = ρn(g), where ρ is the

reduction step above, and if I = φFI(g) and I ′ = φFI(g
′), then there is an

efficient algorithm for computing γ so that (γ)I = I ′ [6, p. 276]. It suffices to

show this for n = 1, as the γ’s for successive steps can be multiplied together.

Let g = (a, b, c), g′ = (a′, b′, c′), g′ = ρ(g), I = φFI(g), and I ′ = φFI(g
′).

Let γ0 = (b+
√

∆)/(2a). When d ≡ 1 (mod 4), γ0 = 1
a

(
b−f

2
+ fω

)
. When

d 6≡ 1 (mod 4), γ0 = 1
a

(
b
2

+ fω
)
.

If aa′ > 0 then γ = γ0.

If d ≡ 1 (mod 4), a < 0, and a′ > 0 then there is a factor of (fω) in I that

we need to remove. Here (fω) =
[
f 2
(
d−1

4

)
, fω

]
, and (fω)−1 = (−f + fω) =[

f 2
(
d−1

4

)
,−f + fω

]
. Now,

γ = γ0(−f + fω) =
1

a

(
b− f

2
+ fω

)
(−f + fω)

=
1

a

((
f − b

2

)
f + f 2

(
d− 1

4

)
+

(
b− f

2

)
(fω)

)
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If d ≡ 1 (mod 4), a > 0, and a′ < 0 then we need to add a factor of (fω).

So,

γ = γ0(fω) =
1

a

(
b− f

2
+ fω

)
(fω)

=
1

a

(
f 2

(
d− 1

4

)
+

(
b+ f

2

)
(fω)

)
When d 6≡ 1 (mod 4), note that (fω)−1 = (fω) = [f 2d, fω]. If aa′ < 0,

we need to add a factor of (fω), so

γ = γ0(fω) =
1

a

(
b

2
+ fω

)
(fω) =

1

a

(
f 2d+

b

2
(fω)

)
.

28 Invertibility of Ideals

For d, f consider I an ideal in the order Of (so we have K = Q(
√
d) ⊃ O =

O1 ⊃ Of ⊃ I). The question is, is I invertible? That is, is there a fractional

ideal I ′ of Of so that II ′ = Of = (1)?

There are some relatively simple tests, and others that are more complex.

Perhaps the simplest test, but one that does not work in all situations, is

that if gcd(N(I), f) = 1 then I is invertible. Said another way, every ideal

relatively prime to (f) is invertible. (I is relatively prime to (f) if and only

if (f) + I = (1), which occurs if and only if N(I) is relatively prime to f .) In

particular, in the maximal order, i.e., when f = 1, every ideal is invertible.

While there are invertible ideals that are not relatively prime to (f), every

invertible ideal is strictly equivalent to an ideal that is prime to (f). (And

there is unique factorization into primes for the set of ideals relatively prime

to (f).)

Another simple test is that if

I =

(
t v

0 1

)
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is invertible, then the inverse I ′ of I is

I ′ =

(
t −v − f
0 1

)
.

when d ≡ 1 (mod 4), and

I ′ =

(
t −v
0 1

)
.

when d 6≡ 1 (mod 4). So, multiply I by I ′ and see if the product is

(t) =

(
t 0

0 t

)
.

If it is, I is invertible, otherwise I is not invertible. Any fractional ideal can

be written as r

(
t v

0 1

)
for some rational r, so it is easy to extend this test

to arbitrary fractional ideals.

Another simple test is that I is invertible if and only if N(I2) = N(I)2.

Our last simple test, and perhaps the easiest to use, is that I is invertible

if and only if the form φIF (I) (above) is primitive [6, p. 222]. Mollin [30,

p. 260] notes that any primitive ideal can be written as [a, (b+
√

∆)/2] and

this test is equivalent to determining whether gcd(a, b, (b2 − ∆)/(4a)) is 1.

Equivalently, if the primitive ideal is [a, b+ω], then it is invertible if for d 6≡ 1

(mod 4),

1 = gcd(a, 2b, (b2 − f 2d)/a)

or when d ≡ 1 (mod 4)

1 = gcd(a, 2b+ f, ((2b+ f)2 − f 2d)/(4a)).

Here’s a more complicated test, but one that gets more to the heart of

the matter. We say the ideal I is proper if when β ∈ K and βI ⊂ I, then

β ∈ Of . The ideal I is invertible if and only if it is proper.
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As an example, for d = 229, f = 5, ω = (1 +
√

229)/2, we will show

directly that I = [11, 1 + 5ω] is proper. First suppose that βI ⊂ I and

note that this holds if and only if 11β ∈ I, and (1 + 5ω)β ∈ I. Let 11β =

11T + U(1 + 5ω), where this last is some element of I. Then β = (11T +

U(1 + 5ω))/11, and we must have(
11T + U(1 + 5ω)

11

)
(1 + 5ω) = 11V +W (1 + 5ω).

Multiplying this out, and noting that ω2 = 57 + ω, we have

11T + U + 5Uω + 55Tω + 5Uω + 25 · 57U + 25Uω = 121V + 11W + 55Wω.

Collecting terms with and without ω we have the two equations

11T + 1426U = 121V + 11W,

and

11T + 7U = 11W.

Taking the difference, we readily deduce that 129U = 11V , and, in particular,

that U is divisible by 11. Letting U/11 = X, we have that β = T + X(1 +

5ω) = (T +X) + 5Xω ∈ O5. Hence I is proper.

For d = 229, f = 5, we will show that I = [5, 5ω] is not proper, where ω

is as just above. Simply take β = ω. Clearly β 6∈ O5, and yet 5β ∈ I, and

5ωβ ∈ I, as is easily seen. In fact, for any β ∈ O, βI ⊂ I.

Now consider the ideals [25, 5k + 5ω] in O5. We will see which of these

are proper. For any given k, if βI ⊂ I, then 25β ∈ I, so β = (25T + U(5k +

5ω))/25 for some T, U . Also(
25T + U(5k + 5ω)

25

)
(5k + 5ω) = 25V +W (5k + 5ω)

for some V , W . This gives

(5T + U(k + ω))(k + ω) = 25V + 5W (k + ω).
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Multiplying out,

5Tk + 5Tω + Uk2 + 2Ukω + 57U + Uω = 25V + 5Wk + 5Wω.

Separating into two equations,

5Tk + Uk2 + 57U = 25V + 5Wk

and

5T + 2Uk + U = 5W.

Multiply the second times k and subtract from the first to get

U(57− (k2 + k)) = 25V.

If 5 - (57 − (k2 + k)) then 25|U and it is easy to see that β ∈ O5. On the

other hand, if 5|(57−(k2 +k)), then it is easy to find U that is not a multiple

of 25, and for which β 6∈ O5. We conclude that I is proper for k = 0, 2, 4 and

I is not proper for k = 1, 3. In fact, for k = 1, 3 we can use β = ω to show

that I is not proper.

29 Inverse of (fω)

For d ≡ 1 (mod 4), the inverse of (fω) = [f 2
(
d−1

4

)
, fω] in Of , is

(fω)−1 = (−f + fω) =

[
f 2

(
d− 1

4

)
,−f + fω

]
.

For d 6≡ 1 (mod 4), the inverse of (fω) = [f 2d, fω] in Of is itself

(fω)−1 = (fω) = [f 2d, fω].

30 Relation between ideals in the maximal

order and smaller orders

If I is an ideal of O, then I ′ = I ∩Of is an ideal of Of . If I = [t, v+ω] then

I ′ is invertible in Of if and only if gcd(t, f) = 1.
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If I = [t, v + fω] is an ideal of Of and gcd(t, f) = 1, then there is a v′ so

that I = [t, fv′+ fω], I ′ = [t, v′+ ω] is an ideal of O, and I = I ′ ∩Of . Also,

I is invertible.

If I = [t, v + fω] is an ideal of Of and gcd(t, f) 6= 1, then either I is not

invertible, or there is no I ′ ⊂ O so that I = I ′∩Of , or both. In the following

examples “I ′” is I ′ = [t, v′ + ω] ⊂ O so that I = I ′ ∩ Of , if there is such.

Each I is an ideal of the order O6 ⊂ Q(
√

229).

For I = [4, 6ω], I is invertible and there is no I ′.

For I = [3, 6ω], I is not invertible and I ′ = [3, ω] ⊂ O.

For I = [2, 6ω], I is not invertible and there is no I ′.

Every invertible ideal in Of is strictly equivalent to an ideal relatively

prime to f .

See [8, p. 144] for a discussion of ideal equivalence modulo f . For I,

J ⊂ O, I ′ = I ∩Of , and J ′ = J ∩Of , we have that I ′ and J ′ are equivalent

in Of if there are α, β ∈ O so that αI = βJ , gcd(αβ, f) = 1, and α ≡ zβ

(mod f) for some z ∈ Z. For strict equivalence of I ′ and J ′, we also need

N(α/β) > 0.

31 Computing the order of an ideal in the

class group

The order of an ideal I in the strict class group is the smallest n so that

In ≈ (1).

We start with a very simple strategy for finding the order of an element

in the strict class group. First make a table with an ideal of smallest norm in

each strict equivalence class. To do this, first generate all reduced forms, and

if ∆ > 0, group the forms into periods. This gives the classes. Then generate
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all ideals of norm 1, 2, 3, 4, . . . . For quadratic number fields, if ∆ > 0 then

every class has an ideal I with N(I) <
√

∆/5, and if ∆ < 0 then every

class has an ideal I with N(I) <
√
|∆|/3 [8, Cor. 13.18]. Test each such

ideal against each class that does not yet have an ideal assigned to it. To

test an ideal I apply the transformation g = φIF (I), find a reduced form g′

equivalent to g, and then see if g′ is equal to any of the forms in the period

for the class being tested. Continue until every class has an ideal assigned.

To find the order of an ideal I, start with n = 1 and J = I, and see if

J ≈ (1). If it is, then the order of I is 1. If it is not, do n = n + 1, J = JI.

If now J ≈ (1) then the order of I is n. Otherwise, continue the iteration

until J ≈ (1). To keep the precision needed for the computations low, at

each step replace J with the ideal of smallest norm in the same class as J .

Cohen [6, pp. 235-264] gives more sophisticated methods for computing

the class group, and so the orders of elements in the group, when h+(∆) is

large. A newer method due to Terr [44, 4] is as follows. Write the group

operation multiplicatively. Set A0 = B0 = 1, and A1 = B1 = g, where 1

is the unit element for the group and g is the group element. Then take

Ak = gAk−1, Bk = AkBk−1. At each step, see whether Bk = Aj for some

0 ≤ j ≤ k. If Bk = Aj, then the order of the element is k(k+ 1)/2− j. If the

order of g is i, then this method finds that order in at most k steps where

k(k − 1)/2 < i ≤ k(k + 1)/2.

32 Computing the class group

We give a simple method for computing the strict class group that makes use

of the fact that this group is abelian, and so is a product of subgroups Z/pnZ

for primes p. We assume that a table has been created with an element of

each class, and its order in the class group.

At each step, we will test a certain element of the class group, “checking

off” elements as we go along. First, check off the identity element (the

element of order 1). For each prime p that divides the order of the class
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group we do some tests, in turn. Given a p, make a list of all elements of

order pi for some i, sorted in decreasing order of i. At each step, pick the

next element a in the list that has not been checked off. Say a is of order

pi. For each of a, a2, a3, . . . , ap
i−1, multiply by all elements that have been

checked off, and tentatively check off the product. If a product was previously

checked off, or tentatively checked off, undo all the tentative check marks,

and move on to the next a. If no product was checked off, add a to the list

of generators, and check off all the elements tentatively checked off.

When there are no more elements of order pi to test, move on to the next

prime. When there are no more primes to test, you have a complete list of

generators. The structure of the group is now easily determined.

Also, prime ideals I of norm

N(I) ≤ 1

2

(
4

π

)r2√
|∆|,

where r2 = 0 if ∆ > 0 and r2 = 1 if ∆ < 0, generate the strict class group [8,

Thm. 13.20, p. 129] [42, Cor. 10.3, p. 175]. An example of this approach is

given in

http://www.imsc.ernet.in/˜kapil/crypto/notes/node36.html.

Note that not every ideal class contains one of these prime ideals (for example,

for d = 1009, f = 1), but every ideal class contains a product of these ideals.

More sophisticated methods for computing the class group when h+(∆)

is large are given in [6, pp. 235-264] and in [4].

33 Computing the class number

The strict class number h+(∆) is the number of strict ideal equivalence

classes, which is the same as the number of proper equivalence classes of

forms. The class number h(∆) is the number of weak equivalence classes of

ideals.
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Improper equivalence classes of forms result in a different class number.

For example, h+(−303) = h(−303) = 10, but there are only 6 equivalence

classes (allowing proper and improper equivalence) of forms [37, pp. 124-126].

As an aside, we note that there is an alternate definition of equivalence

of forms, whereby we define two forms g1, g2 to be equivalent if there is a

transform T with det(T ) = ±1 so that g2 = det(T )Tg1. Under this alternate

equivalence, the equivalence classes of ideals and the equivalence classes of

forms are in one-to-one correspondence under the maps φFI and φIF . For

example, under this alternate definition of equivalence, the form (a, b, c) is

equivalent to the form (−a, b,−c) under the transform

T =

(
1 0

0 −1

)
.

The proper classes of the forms (a, b, c) and (−a, b,−c) correspond to weakly

equivalent ideal classes under the maps φFI and φIF . Note that in the case

of negative discriminants, in this paragraph we have relaxed our normal

restriction to consideration of only positive definite forms. We can put this

alternative equivalence another way: in terms of forms, h(∆) is the number

of equivalence classes of forms where the proper class of (a, b, c) is considered

equivalent to the proper class of (−a, b,−c).
The simplest method (and often most efficient when f = 1) to obtain

h+(∆) is to count reduced forms for ∆ < 0, and periods of reduced forms

for ∆ > 0. Methods for counting reduced forms are given above in the

section, “All reduced forms of discriminant ∆.” If ∆ < 0, then h(∆) =

h+(∆). For ∆ > 0, if any (a, b, c) is properly equivalent to (−a, b,−c), then

h(∆) = h+(∆). Otherwise, no (a, b, c) is properly equivalent to (−a, b,−c),
and h(∆) = h+(∆)/2. Alternatively, if N(ε) = −1, where ε is a fundamental

unit in Of , then h(∆) = h+(∆), otherwise h(∆) = h+(∆)/2.

When f > 1, the following formula (and related explanation taken almost

verbatim) from Cohn [8, pp. 181-182] may shorten the computation. As

usual, let ∆ be the discriminant associated with d, f , and let ∆0 be the

fundamental discriminant associated with d. Then
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(19)


h+(∆)/h+(∆0)

or

h(∆)/h(∆0)

 = f
∏
p|f

(
1− (∆0/p)

p

)
·


1/E+

or

1/E


where, for f ≥ 2, if ∆ < 0 then h+ = h and E+ = E = w/2 where w = 6

when ∆0 = −3, w = 4 when ∆0 = −4, and w = 2 otherwise. For f ≥ 2 and

∆ > 0, E is the earliest power of ε1 (the fundamental unit in O) for which

εE1 ∈ Of , and E+ is the earliest power of ε+ (the generator of totally positive

units in O, so N(ε+) = +1) for which ε
E+

+ ∈ Of . Note that (∆0/p) is the

Kronecker symbol.

When ∆ > 0:

Either E+ = E or E+ = E/2.

Podsypanin [33] proves that E ≤ 2f (the erroneous parts of Podsy-

panin’s proof are easily done using classical results due to Siebeck,

summarized in [11, p. 394]. See also [22, p. 94] or [19, Theorem 11]).

If E+ = E, then either E = 3f/2 or E ≤ f .

For a negative fundamental discriminant, ∆0 < 0, an alternative formula

is

h+(∆0) = h(∆0) =
w

2∆0

−∆0−1∑
k=1

k

(
∆0

k

)
where w is as in the paragraph containing (19) and

(
∆0

k

)
is the Kronecker

symbol.

For a positive fundamental discriminant, ∆0 > 0, an alternative formula

is

(20) h(∆0) =
−1

2 ln(ε1)

∆0−1∑
k=1

ln(sin(kπ/∆0))

(
∆0

k

)
where ε1 is the fundamental unit in O and

(
∆0

k

)
is the Kronecker symbol.

If N(ε1) = −1 then h+(∆0) = h(∆0), while if N(ε1) = +1 then h+(∆0) =
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2h(∆0). Alternatively, the right hand side of (20) gives h+(∆0) if 2 ln(ε1)

is replaced by ln(ε+) where ε+ = ε1 when N(ε1) = +1, and ε+ = ε21 when

N(ε1) = −1. Similar formulas are given in [8, p. 135].

Here’s a method to compute ln(ε1) when ε1 is too large to compute con-

veniently. This will use the PQa algorithm [39], to which refer for notation

used here. If ∆0 ≡ 1 (mod 4) then take P0 = 1, Q0 = 2 and D = ∆0. If

∆0 ≡ 0 (mod 4) then take P0 = 0, Q0 = 1 and D = ∆0/4. It is not necessary

to compute Ai, Bi, or Gi. Then

ln(ε1) = ln(
√
D +Q0a0 − P0)− P0 ln(2) +

`−1∑
i=1

ln

(
Pi +

√
D

Qi

)

where ` is the length of the period of the continued fraction expansion of
P0+
√
D

Q0
.

The following are given in [8, p. 135] for ∆0 a fundamental discriminant:

εh1 =

∏
u sin πu/∆0∏
t sin πt/∆0

for ∆0 > 0, and

h =
w

2|∆0|

(∑
u−

∑
t
)

for ∆0 < 0, where t (and u) are the positive residues (and non-

residues) less than ∆0, so (∆0/t) = +1, while (∆0/u) = −1 [and

ln(ε1) > 0].

To find E and E+, it suffices to do much of the work modulo f . First

apply the PQa algorithm to solve X2 − ∆Y 2 = ±4 or x2 − (∆/4)y2 = ±1,

as appropriate, but for Bi and Gi, only compute their least positive residues

modulo f (and there is no need to compute Ai at all). Then apply the

appropriate recursion yn = Kyn−1 ± yn−2, again, only keeping the values

modulo f . Here K is X1, 2X1, x1, or 2x1 as appropriate. See ([39]) for the

recursions that go with each case.
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As an example, we will compute E and E+ for d = 229, f = 6 (∆ = 8244).

We start by finding the fundamental unit in O1, modulo 6. In this case we

solve X2 − 229Y 2 = ±4, and retain the minimal positive solution modulo 6.

Applying the PQa algorithm (see ([39])), with P0 = 1, Q0 = 2, and D = 229,

and retaining only the least positive residues of Bi and Gi modulo 6, we find

that the minimal positive solution is a solution to the −4 equation, and that

X1 ≡ 3 (mod 6) and Y1 ≡ 1 (mod 6). The recursion, for this case, taking

y0 = 0, is then yn = 3yn−1 + yn−2, giving y0, y1, y2, . . . , y6, modulo 6, as 0,

1, 3, 4, 3, 1, 0. So, the minimal n for which yn ≡ 0 (mod 6) is n = 6. It

then follows that E = 6 and E+ = 3. This last is due to the fact that the

minimal positive solution to X2− 229Y 2 = +4 (the minimal totally positive

solution) is X2, Y2 and 6/2 = 3. (Not needed, but included for reference: the

minimal positive solution to X2 − 229Y 2 = ±4 is X = 15, Y = 1, and this

is a solution to the −4 equation; the fundamental unit in O1 is 7 + 1 · ω; for

τ = 15+1·
√

229, τ 2/2 = 227+15
√

229; τ 6/25 = 11646902+128820·6·
√

229.)

34 Genus classes for ideals

Two ideals, I, J are said to be in the same genus if there is an ideal K so

that I is strictly equivalent to JK2.

Under the maps φFI and φIF , above, two ideals are in the same genus

class of ideals if and only if the corresponding forms are in the same genus

class of forms. More precisely, two strict classes of ideals are in the same

genus class if and only if the corresponding proper classes of forms are in the

same genus class.

Note that for forms, two classes that are improperly equivalent are always

in the same genus class (they represent the same numbers), while for ideals,

two ideals that are weakly equivalent might be in different genus classes.

For example, for d = 2233, f = 1, the ideals (1) and (−24 + ω) are weakly

equivalent (both are principal), but they lie in different genus classes. Here

φFI(36, 35,−7) = (1), and φFI(−36, 35, 7) = (−24 + ω).
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To test whether two ideals are in the same genus class, apply φIF to both,

and apply the character-based test given in the section “Genus equivalence

of forms”.

From a slightly more advanced standpoint: If H+ is the strict class group,

then the genus group G is H+/2H+, which is the same as H+ tensored with

Z/2Z. A tensor map F from H+ ⊗ Z/2Z to H+/2H+ is F (h, 0) = 0, and

F (h, 1) = h+ 2H+ [34].

35 Overall structure

It can be useful to make an exhibit displaying some elements of the overall

structure of the strict class group, the weak class group, the genus group,

and relations among them. Here’s an outline of a way to do that for a given

discriminant ∆ and its corresponding d and f (d is squarefree, d 6= 1, ∆ = f 2d

or ∆ = 4f 2d depending on whether d ≡ 1 (mod 4) or not).

Start by listing all primitive reduced forms. If ∆ > 0, separate them into

periods, and select one member of each period. In any given period, if there

is a form with x2 coefficient +1, you might select that form; otherwise if there

is a form with x2 coefficient −1, you might select that form; otherwise if there

is an ambiguous form (in which case there are exactly two), you might select

one of the ambiguous forms. This gives one element of each proper class of

forms.

These proper classes of forms are in one-to-one correspondence with strict

classes of invertible ideals. For each proper/strict class, find an ideal of

minimal norm that corresponds to the form for the class under the maps φIF

and φFI . To do this, find all ideals of norm i for i = 1, 2, 3, · · · , map the

ideal to a form using φIF , and see which of the forms in the list of reduced

forms this is equivalent to. For each class, keep the first ideal that maps to

the class. Continue until you have an ideal for each class.

If ∆ < 0, then strict and weak classes of invertible ideals are identical.

If ∆ > 0, to find which strict classes are weakly equivalent, take the form
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(a, b, c) representing the strict class, see which class has the form (−a, b,−c)
as a member. If some strict ideal class is weakly equivalent to itself, all strict

ideal classes are weakly equivalent to themselves.

Again, if ∆ < 0, then proper and improper classes of primitive forms are

identical. If ∆ > 0, to find which proper classes are improperly equivalent,

take the form (a, b, c) representing the proper class, see which class has the

form (a,−b, c) as a member. There will always be at least one proper class

that is improperly equivalent to itself, namely the principal class (1). Gen-

erally, some proper classes are improperly equivalent to themselves, while

others are not. Classes that are improperly equivalent to themselves are am-

biguous classes and have order 1 or 2 in the strict class group. For ∆ > 0,

each ambiguous class has exactly two reduced ambiguous forms and exactly

two primitive ambiguous ideals. An ambiguous class might have no reduced

ambiguous ideals. As an example, for d = 34, f = 1, the strict class of

the ideal [9, 4 +
√

34] has no reduced ambiguous ideals, although this class

includes the ambiguous ideals [17,
√

34] and [34,
√

34].

Note that there can be noninvertible ambiguous ideals in the order. They

are not elements of classes in the class group, because the class group is by

definition the equivalence classes of invertible ideals. Noninvertible ideals

map to imprimitive forms, and are not relatively prime to f . An invertible

ideal might or might not be relatively prime to f , and every invertible ideal

is strictly equivalent to an ideal that is relatively prime to f .

When ∆ < 0, h+(∆) = h(∆) and H+(∆) = H(∆).

When ∆ > 0, if any strict ideal class is weakly equivalent to itself, then

every strict ideal class is weakly equivalent to itself, N(ε) = −1 where ε is

a fundamental unit for the order, and h+(∆) = h(∆) and H+(∆) = H(∆).

Otherwise, no strict ideal is weakly equivalent to itself, N(ε) = +1, and

h+(∆) = 2h(∆). In this case, H+(∆) might or might not be H(∆)× Z/2Z.

See the section “Norm equations and units” for discussion of how to find

a fundamental unit for an order. See the section “The relation between

H+(∆) and H(∆)” (and the section preceding that) for further discussion of
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the possible relations between the class group and the strict class group.

To separate the strict classes into genus classes, first determine the char-

acters for the discriminant (see section above, “Genus equivalence of forms”).

For each form representing a strict class, find an integer m represented by

the form and relatively prime to 2∆. Compute each character at this m.

Two strict classes are in the same genus if the values of all the characters are

the same.

The principal genus consists of the squares of the elements of the strict

class group.

Classes that are properly equivalent will be in the same genus class.

Classes that are weakly equivalent might or might not be in the same genus

class. But, either each strict class and its weak equivalent are all in the same

genus class, or each such pair is in two distinct genus classes.

The order of the genus group is equal to the number of ambiguous classes

in the strict class group. This is discussed in more detail below.

Each order has two singular ideals, which are ambiguous principal ideals

generated by elements of positive norm. One of these is (1). If h+(∆) = h(∆),

then the other is (f
√
d). When h+(∆) 6= h(∆), the process of computing

the other singular ideal is a bit more complicated, and is given below in the

section “Singular ideals.”

To find the order of an element of the strict class group, take the repre-

sentative ideal I, successively raise it to the powers 1, 2, 3, . . .. Stop when

you find a j so that Ij ≈ (1). The order of the element is then j. This can

be done by successively setting J = I · J , and then substituting for J the

ideal of smallest norm for its strict class group. To get the group structure,

see the section, “Computing the class group”.

If h+(∆) = h(∆) then there is exactly one principal class. If h+(∆) =

2h(∆), there are exactly two principal classes, one generated by elements of

positive norm, and one generated by elements of negative norm.

Using the overall structure of the strict class group H+(∆) and the facts

that
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Elements of the principal genus are the squares of strict classes, and

Ambiguous classes are those of order 1 or 2 in the strict class group.

it is easy to see that

The order of the genus group |G| is equal to the number of ambiguous

classes, and

There is one ambiguous class in each coset of the principal genus class

if and only if h+(∆)/|G| is odd,

as we will show.

For r a prime power, let S(r) denote the cyclic group of order r, so (as

an additive group) S(r) = Z/rZ. Write

H+(∆) = S(2)× · · · × S(2)× S(2k1)× · · · × S(2km)× S(q1)× · · · × S(qn)

where there are ` factors S(2), ki > 1, qi is an odd prime power, and any or

all of `,m, n might be zero.

Given the above, it is easy to see that

h+(∆) = 2`+k1+···+kmq1 . . . qn.

Elements of the principal genus class are those with even “coefficient” in the

groups S(2i) (above, for i ≥ 1) and any coefficient in the groups S(qi), so

|G| = 2`+m. A class is ambiguous if its coefficient in S(2i) (for i ≥ 1) is 0 or

2i−1, and is 0 in the groups S(qi), so the number of ambiguous classes is also

2`+m. This shows that the number of ambiguous classes is equal to the order

of the genus group.

In fact, each of 2` genus classes contain 2m ambiguous ideals. In par-

ticular, h+/|G| is odd if and only if each genus class contains exactly one

ambiguous class.

For fundamental discriminants of Type IV (see “The relation between

H+(∆) and H(∆),” below), h+(∆) is even (= 2h(∆)), but H+(∆) is not

H(∆) × Z/2Z, so H+(∆) must have a cyclic subgroup Z/2kZ where k > 1.

It follows that for Type IV, h+(∆)/|G| is always even. For Types II and III,

this ratio can be either even or odd. Also, for Type IV, h+(∆) ≡ 0 (mod 4).
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36 A little group theoretic result

We will use this in the following section.

Let G1, G2 be groups, with the group operation written additively. Let

= denote isomorphism.

Lemma 1 Let a ∈ G1, a 6= 0, 2a = 0, G1/{0, a} = G2, and G1 = G2⊕Z/2Z.

Then there is no b ∈ G1 so that 2b = a.

Write [r, s] to represent an element of G2 ⊕ Z/2Z, with r ∈ G2 and

s ∈ Z/2Z. We can write the isomorphism G1 = G2 ⊕ Z/2Z so that a

corresponds to [0, 1]. If b ∈ G1 corresponds to [r, s], then 2b corresponds to

[2r, 2s] = [2r, 0] 6= [0, 1].

37 The relation between H+(∆) and H(∆)

If ∆ < 0 then H+(∆) = H(∆), and so h+(∆) = h(∆). End of story for

∆ < 0.

We will discuss each of the following points below.

If ∆ > 0 then we can have h+(∆) = h(∆) or h+(∆) = 2h(∆).

When h+(∆) = h(∆), we always have H+(∆) = H(∆). When

h+(∆) = 2h(∆), in some cases H+(∆) = H(∆) × Z/2Z, and in

some cases this does not hold.

Take ε to be the fundamental unit for the order of discriminant

∆. If N(ε) = −1 then h+(∆) = h(∆), while ifN(ε) = +1, then

h+(∆) = 2h(∆).

When N(ε) = +1, the ideals (1) and (fω) are not strictly equiva-

lent. But they might or might not be in the same genus class. If

they are in the same genus class, then H+(∆) 6= H(∆) × Z/2Z,

while if they are not in the same genus class then H+(∆) =

H(∆)× Z/2Z.
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The relation between H+(∆) and H(∆) follows from the relation between

the ideals (1) and (fω). These two ideals are always weakly equivalent,

(1)(fω) = (fω)(1) and N(fω/1) < 0.

If (1) ≈ (fω) then every ideal is strictly equivalent to any ideal that it

is weakly equivalent to, so strict classes and weak classes are identical (if

(1)(α) = (fω)(β) with N(α/β) > 0 and I(γ) = J(δ) with N(γ/δ) < 0

then I(γα) = J(δβfω) and N((γα)/(δβfω)) > 0). So H+(∆) = H(∆) and

h+(∆) = h(∆).

We will show that (1) ≈ (fω) if and only if N(ε) = −1. This is most

easily seen using the corresponding forms.

Consider first d ≡ 1 (mod 4). Here the strict class of the ideal (1) cor-

responds to the proper class of the form g1 = (1,−f, f 2(1 − d)/4) and the

strict class of the ideal (fω) corresponds to the proper class of the form

g2 = (−1,−f,−f 2(1− d)/4). The ideals (1) and (fω) are strictly equivalent

if and only if the forms g1 and g2 are properly equivalent. If g1 ≈ g2, then

there is a unimodular transform

T =

(
α β

γ δ

)

so that g1T = g2. In particular N(α + γfω) = g1(α, γ) = −1. This means

α + γfω is a unit with norm −1, so for the fundamental unit, N(ε) = −1.

Conversely, assume N(ε) = −1 and set ε = r + sfω. Then the transform

T =

 r sf 2

(
1− d

4

)
s −r − fs


is unimodular and takes g1 to g2, so these forms are properly equivalent.

When d 6≡ 1 (mod 4), similar arguments apply using the forms (1, 0,−f 2d)

and (−1, 0, f 2d), and the transform

T =

(
r −sf 2d

s −r

)
.
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Now assume that (1) 6≈ (fω), so H+(∆) 6= H(∆). From the above, this

happens if and only if N(ε) = +1. Note that H(∆) = H+(∆)/{(1), (fω)}.
In this case, either (1) and (fω) are in the same genus class, or they

are not. This is easily tested using characters for forms. The ideal (1)

corresponds to the form, g = (1,−f, f 2(1 − d)/4) or (1, 0,−f 2d) depending

on whether d ≡ 1 (mod 4) or not. The form g represents +1, and for every

character χi(1) = 1. The ideal (fω) corresponds to negative of the form g,

(−1,−f,−f 2(1− d)/4) or (−1, 0, f 2d) depending on whether d ≡ 1 (mod 4)

or not, and this form represents −1. It therefore suffices to compute χi(−1)

for each character. If these values are all +1, then (1) and (fω) are in the

same genus class, while if any χi(−1) is−1, then the two ideals are in different

genus classes. For there to be a character with χi(−1) = −1, either there is

an odd prime p dividing fd so that p ≡ 3 (mod 4) or ∆ is even and ∆/4 ≡ 4

(mod 8).

Suppose now that there is a character so χi(−1) = −1. When this hap-

pens, H+(∆) = H(∆) × Z/2Z. In fact, we can easily pick ideal classes

to represent the elements of H(∆). We can pick ideals I2, I3, . . . , Ih(∆) so

that (1), (fω), I2, I2(fω), I3, I3(fω), . . . , Ih(∆), Ih(∆)(fω) represent the classes

of H+(∆). For each pair {Ij, Ij(fω)}, exactly one of χi(Ij), χi(Ij(fω)) is +1

and the other is −1. Pick the ideal with χi( ) = +1 as the representative in

H. There could be more than one character with χi(−1) = −1, and different

such characters result in different representatives for H. An example using

∆ = 2233 = 7 · 11 · 29 is given below.

If χi(−1) = +1 for every i, then (fω) is in the principal genus, so there

is an ideal I so that I2 = (fω) [8, Cor. 14.44a, p. 151]. By the lemma of the

previous section, H+(∆) 6= H(∆)× Z/2Z. The above method of selecting a

representative for H will not work because I2 ≈ (I(fω))2 ≈ (fω) 6≈ (1).

Note that f 2d or f 2d/4 is a sum of relatively prime squares if and only if

for all characters χi(−1) = +1.

For fundamental discriminants Cohn [8, p. 142] summarizes these rela-

tionships in the table below. Singular ideals are discussed in a later section.
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Class Number versus Strict Class Number

Fundamental Singular

Type Discriminant N(ε1) h+(∆0) H+(∆0) χi(−1) Ideals

I 0 > ∆0 · · · h(∆0) = H(∆0) · · · (1), (
√
d)

II 0 < ∆0 = A2 +B2 −1 h(∆0) = H(∆0) all +1 (1), (
√
d)

III 0 < ∆0 6= A2 +B2 +1 2h(∆0) = H(∆0)× Z/2Z some −1 (1), (λ)

IV 0 < ∆0 = A2 +B2 +1 2h(∆0) 6= H(∆0)× Z/2Z all +1 (1), (λ)

Table 3: Relations for fundamental discriminants

Here are some examples illustrating possible relations between H+(∆)

and H(∆) for different orders in given quadratic fields.

Consider d > 0 so that for f = 1, ∆0 is Type II, i.e., N(ε1) = −1 (for

example, d = 2, ∆0 = 8, ε1 = 1 +
√

2). Then if f is such that for ∆,

N(ε1) = −1, then h+(∆) = h(∆) and H+(∆) = H(∆). But if f is such that

for ∆, N(ε1) = +1, then h+(∆) = 2h(∆). In this case, H+(∆) might or might

not be H(∆) × Z/2Z. For example, for d = 2, f = 17, ε1 = 577 + 408
√

2,

H(∆) = Z/2Z, and H+(∆) = Z/4Z is not H(∆) × Z/2Z. But for d = 2,

f = 6, ε1 = 17 + 12
√

2, H(∆) = Z/2Z, and H+(∆) = Z/2Z × Z/2Z is

H(∆)× Z/2Z.

If d > 0 is such that for f = 1, ∆0 is Type III, i.e., N(ε1) = +1 and d is

not a sum of two squares (for example, d = 3, ∆0 = 12, ε1 = 2+
√

3), then for

any f and ∆, we always have h+(∆) = 2h(∆) and H+(∆) = H(∆)× Z/2Z.

If d > 0 is such that for f = 1, ∆0 is Type IV, i.e., N(ε1) = +1 and d

is a sum of two squares (for example, d = 34, ∆0 = 136, ε1 = 35 + 6
√

34),

then for any f and ∆, we always have h+(∆) = 2h(∆), but we might or

might not have H+(∆) = H(∆) × Z/2Z. For example, for d = 34, f = 5,

ε1 = 2449 + 420
√

34, H(∆) = Z/2Z×Z/2Z, and so H+(∆) = Z/4Z×Z/2Z

is not H(∆)×Z/2Z. But for d = 34, f = 2, ε1 = 35 + 6
√

34, H(∆) = Z/4Z,
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and so H+(∆) = Z/4Z× Z/2Z is H(∆)× Z/2Z.

The general rule is that if f 2d = a2 +b2 for some a, b with gcd(a, b) = 1 or

2, 8 - f 2d, then H+(∆) 6= H(∆)×Z/2Z; otherwise H+(∆) = H(∆)×Z/2Z.

(Cannot allow d = f = 10, with f 2d = 1000, as 1000 = 182 + 262, but

this does not work. If d is even, then f has to be odd, while if d is odd, f

can have up to one factor of 2. Quadratic residues of 16 are 0, 1, 4, 9, so if

4|f , then 4|a and 4|b.)
Further to some of the arguments above, it is easy to see that if d is a

sum of squares, then there is a principal ideal in O1 that is generated by an

element of negative norm and is the square of another ideal. For t2 + v2 = d

with v odd, consider the ideals J = [v, t +
√
d], K = J2, and the element

α = t+
√
d, with norm N(α) = t2 − d = −v2. Then

J2 = [v, t+
√
d]2 = [v2, v(t+

√
d), t2+2t

√
d+d] = [v2, v(t+

√
d), t2+2t

√
d+v2+t2] =

[v2, v(t+
√
d), 2t(t+

√
d) + v2] = [v2, gcd(v, 2t)(t+

√
d)].

Since gcd(v, 2t) = 1, then J2 = [v2, t+
√
d]. Also,

(α) = (t+
√
d) = [t+

√
d, t
√
d+ d] =

[t+
√
d, t
√
d+ t2 + v2] = [t+

√
d, t(t+

√
d) + v2] = [t+

√
d, v2] = J2.

So, (α) = J2. Also (α) ∼ (
√
d) because both are principal ideals gener-

ated by elements of negative norm (N(
√
d) = −d). So the class of (

√
d) is

the square of the class of J .

If t2 + v2 = f 2d, the same sort of argument carries through in Of .
More generally, for f ≥ 1 we can define Types I, II, III, IV as follows:

Type I—d < 0

Type II—d > 0 and N(ε1) = −1

Type III—d > 0, N(ε1) = +1, and for some i, χi(−1) = −1

Type IV—d > 0, N(ε1) = +1, and for all i, χi(−1) = +1
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Then we have the following as theorems:

For Type I or II, H+ = H (so h+ = h).

For Type III, H+ = H × Z/2Z (so h+ = 2h).

For Type IV, h+ = 2h and H+ 6= H × Z/2Z.

∆ is Type III if and only if 16|∆ or there is a prime p ≡ 3 (mod 4) so

that p|∆

∆ is Type III if and only if neither ∆ nor ∆/4 is as sum of two relatively

prime squares.

An alternative statement of some of the above for ∆ > 0 is that H+ =

H ×Z/2Z if and only if 16|∆ or there is a prime p ≡ 3 (mod 4) so that p|∆.

Otherwise, i.e., if ∆ = 2α
∏
pαi
i with α ∈ {0, 2, 3} and pi ≡ 1 (mod 4) for all

i, then

if N(ε1) = −1 then H+ = H (so h+ = h), and

if N(ε1) = +1 then h+ = 2h and H+ 6= H × Z/2Z.

38 Example of picking representatives for H

As an example, here are two ways to pick representative ideals for H for

∆ = d = 2233, f = 1 (Type III). The characters for ∆ = 2233 = 7 ·11 ·29 are

χ1(m) =
(
m
7

)
, χ2(m) =

(
m
11

)
, and χ3(m) =

(
m
29

)
. As χ1(−1) = (−1/7) = −1,

χ2(−1) = (−1/11) = −1, and χ3(−1) = (−1/29) = +1, either of the first

two can be used to select elements of H.

The table, “Characters of H+(2233)” has a row for each class, and gives

a representative form (a, b, c), a value m represented by the form so that

gcd(2∆,m) = 1, and the values of the three characters for the form. (The

numbering of the classes, “Index,” is arbitrary.) The classes selected using
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Characters in H+(2233)

Index Form m
(
m
7

) (
m
11

) (
m
29

)
1 (−1, 47, 6) −1 −1 −1 1

2 (1, 47, −6) 1 1 1 1

3 (−32, 21, 14) 3 −1 1 −1

4 (32, 21, −14) −3 1 −1 −1

5 (−32, 43, 3) 3 −1 1 −1

6 (32, 43, −3) −3 1 −1 −1

7 (−11, 33, 26) 27 −1 1 −1

8 (29, 29, −12) −27 1 −1 −1

9 (−28, 21, 16) 9 1 1 1

10 (28, 21, −16) −9 −1 −1 1

11 (−28, 35, 9) 9 1 1 1

12 (28, 35, −9) −9 −1 −1 1

Table 4: Characters in H+(2233)
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Structure of H+(2233)

Weakly Improperly Genus Group

Index Ideal Form Equiv to Equiv to Class Element

1 [6, ω] (−1, 47, 6) 2 1 A 100

2 [1, ω] (1, 47, −6) 1 2 B 000

3 [3, 2 + ω] (−32, 21, 14) 4 5 C 011

4 [2, ω] (32, 21, −14) 3 6 D 111

5 [3, ω] (−32, 43, 3) 6 3 C 012

6 [2, 1 + ω] (32, 43, −3) 5 4 D 112

7 [12, 2 + ω] (−11, 33, 26) 8 7 C 010

8 [8, 2 + ω] (29, 29, −12) 7 8 D 110

9 [4, 1 + ω] (−28, 21, 16) 10 11 B 001

10 [6, 3 + ω] (28, 21, −16) 9 12 A 101

11 [4, 2 + ω] (−28, 35, 9) 12 9 B 002

12 [6, 2 + ω] (28, 35, −9) 11 10 A 102

Table 5: Various relations in H+(2233)
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χ1 are 2, 4, 6, 8, 9, 11, and the classes selected using χ2 are 2, 3, 5, 7, 9,

11. Using the table, “Structure of H+(2233),” you can verify that either of

these choices works. Each row in this table represents a class and gives a

representative ideal, the same representative form as above, the index of the

weakly equivalent class, the index of the properly equivalent class, the genus

class, and the group element. The group H+(2233) is Z/2Z⊕Z/2Z⊕Z/3Z,

and in the table we write the element (i1, i2, i3) as “i1 i2 i3.” For example,

the identity element is written “0 0 0.” The group operation is additive.

This method cannot work for ∆ = d = 1345, f = 1 (Type IV) because

the class of I = (
√

1345), which is the class of principal ideals generated by

elements of negative norm, is the square of an ideal class, containing, say, J .

Then J2 ≈ (JI)2 ≈ I, so neither the class of J nor the class of JI can be in

H, as H is closed under multiplication, and the class of I is not in H. Here’s

an explicit example:

(35+2ω) =

(
7 0

0 1

)2

=

(
49 42

0 1

)
≈

(
336 0

0 1

)
= (−1+2ω) = (

√
1345).

For more on the material above, see chapter 14 of Cohn [8], especially

pages 142 and 143; 150 to 153, including remark 14.47; and exercise 14.15 on

page 161.

39 Singular ideals

An ideal in the maximal order is singular if it is strictly principal and am-

biguous. It is strictly principal if is strictly equivalent to (1), or, equivalently,

if it is generated by an element of positive norm. It is ambiguous if it is equal

to its conjugate, i.e., [t + uω, v + wω] is equal to [t + uω, v + wω]. An ideal

class is called ambiguous if it is improperly equivalent to itself (an ambiguous

ideal class contains two ambiguous ideals).

Note that (1) is always a singular ideal. Also, (
√
d) is always equal to its

conjugate (−
√
d). So if (

√
d) ≈ (1), as for Type I and Type II, (

√
d) is the

other singular ideal.
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If (
√
d) 6≈ (1), then some other ideal has to be the other singular ideal.

Let t+ uω be a fundamental unit in O. Then N(t+ uω) = +1, as otherwise

we’d be in Type II. Set g = gcd(1 + t, u), v = (1 + t)/g, w = u/g. Then

(v + wω) is a singular ideal. This ideal might or might not be reduced.

40 Prime and irreducible elements of an or-

der

The factorization of elements in an order is driven by the fact that the max-

imal order (f = 1) is always a Dedekind domain, while the smaller orders

(f > 1) are Noetherian, but not Dedekind domains. Because orders with

f > 1 are not Dedekind domains, they can never be UFDs.

A ring is Noetherian if it satisfies the following three equivalent conditions:

Every ideal is finitely generated.

The ascending chain condition (for any infinite sequence of ideals I1 ⊂
I2 ⊂ · · · ⊂ Ik ⊂ · · · , there is an i so that if j > i then Ij = Ii).

Maximal ideal condition (for any set of ideals, there is at least one not

contained in any of the others).

A ring is a Dedekind domain if it is Noetherian, it is integrally closed,

and every prime ideal is maximal. A ring R is integrally closed if whenever

a/b with a ∈ R, b ∈ R−{0} satisfies a monic polynomial with coefficients in

R, then a/b ∈ R [8, p. 9] [40, pp. 27-30]. Alternatively, a ring is a Dedekind

domain if every ideal is invertible.

Every order Of with f ≥ 1 is Noetherian, and in every order every prime

ideal is maximal. So what distinguishes an order Of with f > 1 from O1 is

that O1 is integrally closed while Of with f > 1 is never integrally closed, as

we now show.

Every element a + bω of the maximal order is in the integral closure of

Of for any f ≥ 1. To see this, note that Z ⊂ Of , and every element of the
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maximal order is an algebraic integer and so is the root of a monic polynomial

with coefficients in Z hence in Of . We can take r = af + bfω, s = f and

we have r ∈ Of and s ∈ Of − {0}. So r/s = a+ bω is in the integral closure

of Of . It might be simpler to just note that ω is in the integral closure of

any order (any f) because ω = fω
f

is a root of either x2 + x + (1 − d)/4 or

x2 − d depending on whether d ≡ 1 (mod 4) or not, but ω is an element of

the order only if the order is the maximal order.

A Dedekind domain is a UFD if and only if its class number is 1. The only

UFDs Q(
√
d) with negative discriminant are those for d = −1, −2, −3, −

7, −11, −19, −43, −67, −163 [41, 1, 15]. It is not known whether there

are arbitrarily large positive d so that Q(
√
d) has class number 1. Those d

up to 500 so that Q(
√
d) has class number 1 are

d = 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38,

41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93,

94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131, 133, 134, 137,

139, 141, 149, 151, 157, 158, 161, 163, 166, 167, 173, 177, 179,

181, 191, 193, 197, 199, 201, 206, 209, 211, 213, 214, 217, 227,

233, 237, 239, 241, 249, 251, 253, 262, 263, 269, 271, 277, 278,

281, 283, 293, 301, 302, 307, 309, 311, 313, 317, 329, 331, 334,

337, 341, 347, 349, 353, 358, 367, 373, 379, 381, 382, 383, 389,

393, 397, 398, 409, 413, 417, 419, 421, 422, 431, 433, 437, 446,

449, 453, 454, 457, 461, 463, 467, 478, 479, 487, 489, 491, 497.

When f > 1 an order might have class number 1, but, as noted above,

the order will not be a UFD. For example, for d = 5, f = 2, ∆ = 20, we

have that h+(20) = h(20) = 1, and 4 = 2 · 2 = (
√

5 − 1)(
√

5 + 1) gives two

factorizations of 4 into irreducibles in O2.

For d = 13, f = 7, ∆ = 637, we have that h+(637) = 2, h(637) = 1, and

49 = 72 = (91 + 10ω)(-161 + 10ω) = (-14 + 1ω)(7 + 1ω) = (-532 + 33ω)(-532

+ 33ω) = (28 + 3ω)(-49 + 3ω), where each term shown is irreducible.

For d = −3, f = 3, ∆ = −27, we have that h+(−27) = h(−27) = 1, and

27 = 33 = (−ω)3 = (3− 2ω)2 = (6−ω)(3 +ω) = (−3 +ω)3 = (3)(ω)(3−ω).
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Note that some of these factorizations involve 2 irreducibles, and some involve

3.

For d = 79, f = 1, ∆ = 316, we have that h+(316) = 6, h(316) = 3, and

27 = 33 = (−17 + 2ω)(17 + 2ω).

To see whether an element α with N(α) = n is irreducible, for every

1 < m ≤
√
n, m|n, test divide by one element β from each class of elements

with N(β) = m.

If α ∈ Of is prime, then α|p for some rational prime p. In particular,

N(α) is p or p2. If N(α) = p for a rational prime p then α is prime. If

N(α) = p2, and α is irreducible, then α is prime if and only if there are no

solutions to

x2 ≡ f 2d (mod 8)

if d ≡ 1 (mod 4) and p = 2, or to

x2 ≡ f 2d (mod p)

otherwise.

In particular, if p|f then p is irreducible but not prime (when p|f there are

no solutions to N(x) = p, but there are always solutions to the appropriate

equation just above). This makes it easy to generate examples of non-unique

factorization in orders with f > 1. For instance, for d 6≡ 1 (mod 4) and p odd,

(f
√
d)2 = (p)2(f/p)2(d). The factor f

√
d is irreducible in Of . While (f/p)

and d might factor further into rational primes, none of those primes will

divide f
√
d in Of . When d ≡ 1 (mod 4), examples look more complicated

but follow from the same considerations.

Note that the norm of an irreducible element need not be prime. But if

N(α) = pa11 p
a2
2 · · · p

ak
k q

b1
1 q

b2
2 · · · q

b`
`

where α is irreducible, gcd(pi, f) = 1, and qi|f , then a1+a2+· · ·+ak ≤ h(∆).
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41 Prime ideals

An ideal I ∈ Of is said to divide an ideal J ∈ Of (written I|J) if I ⊃ J . To

see whether I divides J it suffices to determine whether each element of a

basis for J is in I. Alternatively I|J ⇐⇒ I+J = I. Along these lines, note

that IJ ⊂ I ∩ J ⊂ I ⊂ I + J and similarly for J [6, p. 180]. The notion of

divisibility of ideals is a little different from that for elements. If the element

a divides the element b, then there is an element c so that ac = b. If an ideal

I divides an ideal J , there is not necessarily an ideal K so that IK = J ,

although in many cases there is such a K. For instance, in O2 of Q(
√

5),

for I = [2, ω] and J = [4, ω], I|J , but there is no K so that IK = J . Note

that here, I2 = [4, 2ω]. (But be aware that authors differ on the definition

of divisibility of ideals. For instance, Narkiewicz defines divisibility as I|J if

there is an ideal K so that IK = J [31, p. 8].)

The ideal I of Of is a prime ideal if I 6= Of and if the quotient ring Of/I
is an integral domain, i.e., xy ∈ I implies x ∈ I or y ∈ I [8, p. 43] [6, pp.

182-183]. Equivalently, an ideal I is prime if whenever I divides I1I2, then I

divides at least one of I1, I2 [8, p. 43]. Additional equivalent definitions are

given in [8, pp. 42-43].

In general, a maximal ideal is always a prime ideal (in any ring), but a

prime ideal is not always maximal. But, in an order of a quadratic number

field, a prime ideal (other than {0}) is always maximal.

In general, in orders, we do not have factorization of ideals into primes.

But every ideal contains a product of prime ideals. In fact, for every ideal I

there are prime ideals P1, P2, . . ., Pk so that

P1P2 · · ·Pk ⊂ I ⊂ P1 ∩ P2 ∩ · · · ∩ Pk.

For example, for d = −3, f = 2, I =

(
4 0

0 1

)
and P =

(
2 0

0 1

)
, we have

that P 2 =

(
4 0

0 2

)
, and

P 2 ⊂ I ⊂ P = P ∩ P.
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Here, P is prime, while the other ideals discussed are not.

In general, N(I)N(J) = N(IJ) if at least one of I, J is proper, but

this might not hold if neither I nor J is proper. In the example just given,

N(P ) = 2, while N (P 2) = 8. In any event, N(I)N(J) ≤ N(IJ).

In the maximal order (f = 1), any ideal can be factored uniquely into a

product of prime ideals. In smaller orders (f > 1), ideals relatively prime to

f can be factored uniquely into a product of prime ideals. Note that an order

with f > 1 will have ideals that are invertible but not relatively prime to f .

These ideals will not be a product of prime ideals. An order with f > 1 will

also have ideals that are not invertible (which will not be relatively prime to

f). These ideals might or might not be a product of prime ideals.

Every prime ideal divides (p) for some rational prime p > 0. So, to find

prime ideals, it suffices to consider divisors of these (p). This means that

prime ideals are either (p) =

(
p 0

0 p

)
or

(
p v

0 1

)
for some v. If d ≡ 1

(mod 4) and there is a solution v to

(21) f 2(d− 1)/4− v(v + f) ≡ 0 (mod p)

then there is a prime ideal

(
p v

0 1

)
that divides (p). If there is no such v,

then (p) is prime. Another way to write (21) that can be useful is

(22) f 2d− (2v + f)2 ≡ 0 (mod 4p).

If d ≡ 2 or 3 (mod 4) then the equivalent of equation (21) is

(23) f 2d− v2 ≡ 0 (mod p).

Some specific cases are as follows (see also [8, p. 90]). If p|f (including

p = 2) then I =

(
p 0

0 1

)
is the unique irreducible ideal that divides (p).

This ideal is not invertible. Here, (p) divides I2 but is not equal to I2 =(
p2 0

0 p

)
(the norm of I2 is p3, while the norm of (p) is p2.)
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If p - f , p is odd, and p|d then p ramifies, i.e., there is a unique v so that

for I =

(
p v

0 1

)
, I divides (p). In fact, I2 = (p). If d ≡ 1 (mod 4), then v

can be taken to be either −f/2 of (p − f)/2, depending on the parity of f .

If d 6≡ 1 (mod 4) then v can be taken to be 0.

If p - f , p is odd, p - d, and x2 ≡ d (mod p) has a solution then p splits,

i.e. there are v1 6= v2 so that for Ii =

(
p vi

0 1

)
, with i = 1, 2, I1I2 = (p).

If p - f , p is odd, p - d, and x2 ≡ d (mod p) has no solutions then p

remains inert, i.e., (p) is prime.

If 2 - f , d ≡ 2 or 3 (mod 4) (so 2 divides the discriminant 4f 2d), then

2 ramifies, i.e., there is a v so that for I =

(
2 v

0 1

)
, I2 = (2). If d ≡ 2

(mod 4) then v = 0, and if d ≡ 3 (mod 4) then v = 1.

If f 2d ≡ 1 (mod 8) then 2 splits, i.e.,(
2 0

0 1

)(
2 1

0 1

)
=

(
2 0

0 2

)
.

If f 2d ≡ 5 (mod 8) then 2 remains inert, i.e., (2) is prime.

Alternatively, we can test whether a general ideal I = [t, v + wfω] is

prime relatively easily. We just generate (tw)2 pairs of elements from the

cosets of I in Of and see whether some product of two nonzero elements is

in I. Representatives of the cosets are given by i + jfω for 0 ≤ i ≤ t − 1,

0 ≤ j ≤ w− 1. If any i1 + j1fω 6= 0 times i2 + j2fω 6= 0 is in I, then I is not

prime. If no such product is in I then I is prime.

42 Ambiguous classes

Gauss discovered that proper classes of forms have a natural group structure,

induced by the operation of composition of forms. Proper classes of forms

correspond to strict classes of ideals, and the structure Gauss discovered
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applies to either set of classes. For strict classes of ideals, this structure is

induced by multiplication of ideals.

Forms and ideals have broader definitions of equivalence than proper and

strict equivalence. For forms, there is improper equivalence and for ideals

there is weak equivalence. These two broader definitions of equivalence do not

correspond in any natural way. Weak equivalence of ideals results in either

exactly the same classes as strict equivalence, or exactly half as many classes.

That is, under weak equivalence, either every class is weakly equivalent to

itself and no other classes, or every class is weakly equivalent to some one

other class and not to itself (you cannot have some classes weakly equivalent

to themselves and others weakly equivalent to classes other than themselves).

Classes under weak equivalence also have a natural group structure, again

induced by multiplication of ideals.

For forms under improper equivalence, generally some proper classes will

be improperly equivalent to themselves, while other classes will be improp-

erly equivalent to proper classes other than themselves. This wreaks complete

havoc with the group structure on proper classes, and it is (generally) im-

possible to put a natural group structure on proper-and-improper classes of

forms. This is part of what makes ambiguous classes so interesting.

A form (a, b, c) is ambiguous if a|b. An ideal I is ambiguous if I = I ′

where I ′ is the conjugate of I.

A class of forms in H+(∆) is ambiguous if it contains an ambiguous form.

A class of ideals in H+(∆) is ambiguous if it contains an ideal I for which

I ≈ I ′.

Under any of the usual isomorphisms between proper classes of forms and

strict classes of ideals, ambiguous classes of forms and ambiguous classes of

ideals correspond. That is, the class of forms is ambiguous if and only if the

corresponding class of ideals is ambiguous.

For the remainder of this section, “class” will mean proper class of forms

or strict class of ideals, i.e., a class of H+(∆).

Here are some properties of ambiguous classes of forms. A class of forms
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is ambiguous if and only if

1. Some form in the class is improperly equivalent to itself, in which

case every form in the class is improperly equivalent to itself.

2. The class is improperly equivalent to itself.

3. The class is its own inverse.

4. The class has order 1 or 2 in H+(∆).

5. If d > 0, the class has exactly two reduced ambiguous forms. If

d < 0, the class has two ambiguous forms of the form (a, 0, c) or (a, a, c)

(at most one of which is reduced).

A form (a, b, c) is ambiguous if it is properly equivalent to its inverse

(a,−b, c), or, equivalently, to (c, b, a). Note that (a, b, c) is always improperly

equivalent to both of these last two. When d > 0, all ambiguous forms are

properly equivalent to a reduced ambiguous form.

A class of ideals is ambiguous if and only if

1. Some ideal in the class is strictly equivalent to its conjugate, in which

case every ideal in the class is strictly equivalent to its own conjugate.

2. The class is its own conjugate.

3. The class is its own inverse.

4. The class has order 1 or 2 in H+(∆).

5. The class has exactly two primitive ambiguous ideals.

When d > 0 the number of ambiguous ideals in an order is equal to the

number of reduced ambiguous forms. Each of these is twice the number of

genera. The number of reduced ambiguous ideals in an order is equal to the

number of genera.
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Classes for Q(34)

Class Ideal Order

A [1,
√

34] 1

B [9, 4 +
√

34] 2

C [3, 1 +
√

34] 4

D [3, 2 +
√

34] 4

Table 6: Classes, representative ideals, and orders for maximal order of Q(34)

When d < 0 the number of ambiguous ideals in an order is equal to the

number of ambiguous forms of the form (a, 0, c) or (a, a, c). Each of these is

twice the number of genera. The number of reduced ambiguous ideals in an

order is less than or equal to twice the number of genera.

If d < 0, an ambiguous class of ideals can have exactly 0 or 1 reduced

ambiguous ideals as members, while if d > 0 an ambiguous class of ideals

can have exactly 0, 1, or 2 reduced ambiguous ideals as members. If d > 0

and an ambiguous class does not have a reduced ambiguous ideal, or has

two reduced ambiguous ideals, then the order has no unit of norm −1. The

converse is not true.

Here are two examples. We consider the maximal orders of Q(34) and

Q(146). Both have strict ideal class groups that are cyclic of order 4. For

Q(34), we can label the classes A, B, C, D, with representative ideals and

orders in H+(∆) as in the table, “Classes for Q(34).”

Class A is the principal class generated by elements of positive norm and

so has order 1 in H+(4 · 34). Class B is the principal class generated by

elements of negative norm and so has order 2 in H+(4 · 34).

The table “Ambiguous Ideals in Q(34)” lists the ambiguous ideals in

Q(34), tells what class each is in, and whether the ideal is reduced. The

maximal order of Q(34) has four ambiguous ideals, two of which are reduced,

and both reduced ambiguous ideals are in class A. The ideal [2,
√

34] is the
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Ambiguous Ideals in Q(34)

Ideal Class Reduced?

[1,
√

34] A Yes

[2,
√

34] A Yes

[17,
√

34] B No

[34,
√

34] B No

Table 7: Ambiguous ideals, classes, and whether reduced for maximal order

of Q(34)

Classes for Q(146)

Class Ideal Order

A [1,
√

146] 1

B [2,
√

146] 2

C [5, 1 +
√

146] 4

D [5, 4 +
√

146] 4

Table 8: Classes, representative ideals, and orders for maximal order of

Q(146)

non-trivial singular ideal, generated by 6 +
√

34.

Similarly, for Q(146), we can label the classes A, B, C, D, with repre-

sentative ideals and orders in H+(∆) as in the table, “Classes for Q(146).”

Again, the ambiguous classes are A and B. The table “Ambiguous Ideals

in Q(146)” lists the ambiguous ideals in Q(146), tells what class each is in,

and whether the ideal is reduced. The maximal order of Q(146) has four

ambiguous ideals, two of which are reduced, one reduced ambiguous ideal is

in class A, and one reduced ambiguous ideal is in class B. The non-trivial

singular ideal is [73,
√

146], which is generated by 73 + 6
√

146.
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Ambiguous Ideals in Q(146)

Ideal Class Reduced?

[1,
√

146] A Yes

[2,
√

146] B Yes

[73,
√

146] A No

[146,
√

146] B No

Table 9: Ambiguous ideals, classes, and whether reduced for maximal order

of Q(146)

43 Numeri idonei

Euler used his numeri idonei in 1778 to show that

18518809 = 1972 + 1848 · 1002

is prime, an impressive feat at the time (here 1848 is a numerus idoneus).

As there are better methods for testing primality now, this method is not

currently in vogue, but numeri idonei (aka idoneal numbers, suitable numbers,

convenient numbers) are of certain inherent interest. The main fact about

numeri idonei is that if n is a numerus idoneus, n = ab, and m > 1 is an

odd integer for which there is exactly one representation m = ax2 + by2 with

x, y ≥ 0, and if for this representation gcd(ax, by) = 1, then m is prime.

Conversely, numeri idonei are the only numbers with this property. Euler

had a method for determining whether an n was a numerus idoneus, which

apparently was not quite correct. He did however identify the 65 numeri

idonei known today. Ribenboim [37, p. 357] gives the following criterion due

to Grube for determining whether a number is idoneal.

Thus, n is a convenient number if and only if for every x ≥ 1

such that q = n + x2 ≤ 4n
3

, if q = rs and 2x ≤ r ≤ s, then r = s

or r = 2x.
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But there is more than the main fact, above, that can be said about numeri

idonei and the form of numbers uniquely, or nearly uniquely, represented

by idoneal forms (ax2 + by2, where ab = n is a numerus idoneus). First, a

criterion for n in the context of the structure of the quadratic orders is that

n is one of Euler’s numeri idonei if n > 0 and the order with discriminant

∆ = −4n has exactly one class (proper class of forms or strict class of ideals)

in each genus class. For n a numerus idoneus, and ab = n, consider the form

g(x, y) = ax2 + by2. With two minor exceptions noted below, we have:

If m > 1 is represented by g in a unique way (see comment below)

by x, y > 0 with gcd(ax, by) = 1, and is not represented by any

other x, y ≥ 0, then m is a prime or 2 times an odd prime (Type

1 representation).

If m > 1 is represented by g in a unique way by x, y > 0 with

gcd(ax, by) = 1, and is represented by some other x, y ≥ 0, then

m is a non-trivial prime power or 2 times a non-trivial odd prime

power (Type 2 representation).

We consider a representation ofm as g(x1, y1) with x1, y1 ≥ 0, gcd(ax1, by1) =

1 to be unique if for any other x2, y2 so that x2, y2 ≥ 0, gcd(ax2, by2) = 1,

and m = g(x2, y2) either x1 = x2 and y1 = y2, or n = a = b = 1 and x1 = y2

and y1 = x2.

The two small exceptions are that 8 is represented uniquely by nonnega-

tive x, y by the forms x2 + 7y2 and 3x2 + 5y2.

There are 65 known numeri idonei, and it is known that there is at most

one more square-free numerus idoneus. If there is such a 66th numerus

idoneus, it is larger than 1060/4 [37, pp. 142, 161, 357]. The 65 known

numeri idonei are:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28,

30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102,

105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253,
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273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320,

1365, 1848.

Here’s an example of a non-idoneal number. Consider that the form x2+11y2

represents 15 uniquely with x, y positive, 15 = 22+11·12, but 15 is composite,

so 11 is not idoneal.

The known numeri idonei produce 204 forms ax2 + by2 with 0 < a ≤ b,

gcd(a, b) = 1. Table 1 gives a little more information about the properties

of numbers represented by these idoneal forms. In this table, there are five

forms that represent slightly different classes of numbers than the remaining

199 forms, and we refer to these five as “special.” “Type 1” and “Type 2”

are defined above, while p represents an odd prime. Note that for “Type 2”

representations, the powers of p are all at least 2.

For more extensive discussion, see [45, pp. 188, 219-226], [10, pp. 59-63],

[14, §303, pp. 361-363, §334 pp. 404-406], [37, pp. 356-358, 142, 161], [12, p.

89], [5, p. 193], [3], [11, p. 361]. Brown [3] gives further sources, and some

cautions about statements in the literature.
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Types of Representation

Form Type 1 Type 2

Special Forms

x2 + y2 2, p, 2p pk+1, 2pk+1

x2 + 3y2 p 22k, pk+1

x2 + 7y2 8, p 2k+3, pk+1

x2 + 15y2 p 22k, pk+1

3x2 + 5y2 8, p 22k+3, p2k+1

Other than Special Forms

a = 1, b even p pk+1

a = 1, b odd p, 2p pk+1, 2p2k+1

1 < a < b, ab odd p, 2p p2k+1, 2p2k+1

1 < a < b, ab even p p2k+1

Table 10: Forms of numbers represented by idoneal forms (k ≥ 1)

Here are a few examples of representations of various m by forms ax2+by2

where ab is idoneal. In each case, we give all representations of m by the

form with x, y ≥ 0.

191 = 3 · 72 + 11 · 22

2 · 79 = 3 · 72 + 11 · 12

193 = 822 + 15 · 32 = 382 + 15 · 192

34 = 12 + 5 · 42 = 62 + 5 · 32 = 92 + 5 · 02

27 = 3 · 12 + 5 · 52 = 3 · 62 + 5 · 22 = 3 · 42 + 5 · 42

26 = 72 + 15 · 12 = 22 + 15 · 22 = 82 + 15 · 02

2 · 35 = 192 + 5 · 52 = 212 + 5 · 32 = 92 + 5 · 92

2 · 172 = 232 + 72 = 172 + 172
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44 So how are idoneal numbers a special case

of something?

You might ask are there other forms with analogous properties, why was it

mentioned that n > 0 is an idoneal number if the discriminant −4n has one

class per genus class, and what about forms ax2 + bxy + cy2 with b 6= 0 and

discriminant ∆ with one class per genus class? And how about forms with

positive discriminant? Well, forms of discriminants with one class per genus

have properties that are just the same as the idoneal forms above.

First, let’s give some background on how many ways a prime can be

represented by forms of a given discriminant. The short answer will turn out

to be that any prime p that is represented by a form is represented by that

form in an “essentially unique” way, and that at most two proper classes of

forms with the same discriminant can represent p. We begin by elaborating

on this.

Consider first the case where, given a discriminant ∆, we let p be an odd

prime so that gcd(∆, p) = 1. Recall from the section “Solving ax2 + bxy +

cy2 = m,” that any form g that represents p is properly equivalent to a form

g′ = px2 + bxy + cy2, with 0 ≤ b < 2p, and the representation of p by g

corresponds to the representation of p by (1, 0) in g′. So, how many such

forms are there? Well, let’s count solutions to

(24) b2 ≡ ∆ (mod 4p).

This has no solutions unless

(25) x2 ≡ ∆ (mod p)

has solutions. When this last equation has solutions, which we assume hence-

forth, it has exactly 2 with 0 < x < p. And x2 ≡ ∆ (mod 4) always has

exactly 2 solutions with 0 ≤ x < 4. So, by the Chinese Remainder Theorem,

(24) has exactly 4 solutions with 0 ≤ b < 4p. Clearly if b is a solution, then

so are 4p − b, 2p + b, and 2p − b. So, exactly 2 solutions satisfy 0 ≤ b < 2p
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and we get two forms, g1 = px2 +b1xy+c1y
2, and g2 = px2 +b2xy+c2y

2 with

0 ≤ bi < 2p. How are these forms related, and what does that tell us about

representations of p by forms of discriminant ∆? Well, g1 and g2 are in the

same genus class because they both represent p and p is relatively prime to

∆. In fact, g1 and g2 are improperly equivalent under the transform

T =

(
1 1

0 −1

)
.

If g1 and g2 are properly equivalent, then they are in an ambiguous class

and each is improperly equivalent to itself. If g1 and g2 are not properly

equivalent, then neither is in an ambiguous class and neither is improperly

equivalent to itself.

As an example, consider representations of 241 by the form g = −x2 +

75xy + 25y2, a form of discriminant 5725 = 52 · 229. The two solutions to

x2 ≡ 5725 (mod 4 · 241) with 0 < x < 2 · 241 are x = 69, 413. So our forms

are g1 = 241x2 + 69xy − y2 and g2 = 241x2 + 413xy + 171y2. These are

properly equivalent, as shown by the transform

T =

(
1 1

69 70

)
,

for which g1T = g2. From the representation 241 = g1(1, 0) and the transform

g

(
72 −1

1 0

)
= g1

we have that g1 and g are properly equivalent, and we get the representation

241 = g(72, 1). Similarly from the representation 241 = g2(1, 0) and the

transform

g

(
3 2

1 1

)
= g2

we get the representation 241 = g(3, 1). From these two representations we

get all representations of 241 by g from the automorphs of g. But since either
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of these two representations can be derived from the other by a transforma-

tion of determinant −1, (for example,

g

(
−1 75

0 1

)
= g

carries the representation by (72, 1) to the representation by (3, 1)). So any

representation of 241 by g can be derived from any other such representation

by a transform of determinant ±1 that takes g to itself. In this sense, the

representation of 241 by g is “essentially unique”.

Continuing with odd primes p, if p2|∆, then no primitive form of discrim-

inant ∆ can represent p (for the form px2 + bxy+ cy2, p2|b2− 4pc, so p|b and

p|c). If p|∆, p2 - ∆, then p can be represented by primitive forms of discrim-

inant ∆. Here (25) has just one solution with 0 ≤ x < p, namely x = 0. The

result is that if such a p is represented by a form g, that representation is

essentially unique, in the sense above.

There are several cases that need to be considered when p = 2, but,

as with odd primes, if 2 is represented by a form g, that representation is

essentially unique.

Now, for comparison, let’s consider representations of the composite num-

ber pq by forms of discriminant ∆, where p and q are distinct odd primes,

and gcd(pq,∆) = 1. As above, to find all such representations, we start by

looking for forms pqx2 + bxy + cy2 with,

(26) b2 ≡ ∆ (mod 4pq),

and

(27) 0 ≤ b < 2pq.

How many solutions will there be? If the equation (26) has solutions, there

will be exactly four solutions that satisfy (27). To see this, observe that each

of the equations b2 ≡ ∆ (mod 4), b2 ≡ ∆ (mod p), and b2 ≡ ∆ (mod q)

must have solutions, and each has exactly 2 non-negative solutions less than
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the modulus (4, p, or q). So we get 8 solutions b satisfying 0 ≤ b < 4pq,

and of these 4 satisfy 0 ≤ b < 2pq (because if b is a solution, so is 4pq − b).
This gives us 4 forms that represent pq. There might or might not be pairs

of these forms that are properly equivalent. Each of these 4 forms will be

improperly equivalent to one of the 4, possibly itself (if it is in an ambiguous

class).

Let’s look at some examples. Consider ∆ = 401, p = 5, and q = 7. The

four forms from the above procedure are (35, 11,−2), (35, 59, 22), (35, 31, 4),

and (35, 39, 8). No two of these are properly equivalent. The first and second

are improperly equivalent, as are the third and fourth. The representations

of 35 by any of these four forms, or any form properly equivalent to any of

these four, are essentially unique. Note that h+(401) = h(401) = 5.

Next, let’s look at ∆ = 29, again with p = 5, and q = 7. Note that

h+(29) = h(29) = 1. The four forms from the above procedure are (35, 13, 1),

(35, 27, 5), (35, 43, 13), and (35, 57, 23). Any pair of these are properly and

improperly equivalent. For any of these forms, there are two essentially dif-

ferent representations of 35. For example, for the form g = (35, 13, 1), there is

no transformation of determinant ±1 that takes either of the solutions (x, y)

= (1, 0) and (2,−5) to the other. Note that a transformation of determinant

−1 that takes g to itself is (
−1 0

13 1

)
.

So what’s the difference between the cases ∆ = 401 and ∆ = 29? In the

first case, h+(401) = 5, and the four forms corresponding to the solutions to

x2 ≡ 401 (mod 140) are each in separate proper equivalence classes. So each

can represent 35 essentially uniquely. But in the second case, h+(29) = 1, so

the four forms corresponding to the solutions to x2 ≡ 29 (mod 140) are all

in the same proper equivalence class. The transformations of determinant

−1 can associate pairs of solutions, but this leaves two pairs of solution that

cannot be related by transformations of determinant ±1.

For the idoneal forms, the m with essentially unique representations are
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those m with exactly 1 positive solution.

We hope the above has motivated the more precise description that fol-

lows.

Recall the following, which defines the d and f associated with ∆. For a

discriminant ∆, define k to be the largest integer so that k2|∆ and define d =

∆/k2. If d ≡ 1 (mod 4) then define f = k, otherwise define f = k/2. (Note

that ∆ is then the discriminant of the quadratic order Of in the quadratic

number field Q(
√
d).)

Call a representation g(x, y) = ax2 + bxy + cy2 = m of m by the form

g primitively essentially unique if every primitive representation of m by

g can be derived from any other primitive representation of m by g by a

transformation of g to itself of determinant ±1.

We say a representation of m by g is Type 1 if the representation is

primitively essentially unique, and there are no other representations of m

by g. For example 5 = 12 + 22 is a Type 1 representation of 5 by g = x2 + y2.

We say a representation of m by g is Type 2 if the representation is

primitively essentially unique, and there are other representations of m by

g. For example 25 = 32 + 42 = 02 + 52 is a Type 2 representation of 25 by

g = x2 + y2.

We say a form g is good if the only m with gcd(m, fd) = 1 and Type 1

representations by g are those m that are prime or 2 times an odd prime,

or, equivalently, the only m with gcd(m, fd) = 1 and Type 2 representations

are those m that are a prime power, with exponent at least 2, or 2 times

an odd prime power, again with exponent at least 2. That the condition

gcd(m, fd) = 1 is needed is shown by the primitive essentially unique repre-

sentation of the composite 15 by the form 6x2 + 6xy − y2 of discriminant 60

(and more specifically that there are many composites primitively essentially

uniquely represented by g, but all such composites have gcd(m, 15) > 1).

As usual, let h(∆) be the class number of the discriminant ∆, h+(∆) be

the strict (or proper) class number of ∆, and |G| the number of genus classes

for ∆.
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Then

Lemma 2 A form g of discriminant ∆ is good if and only if one of the

following is true:

h+(∆) = |G|, or

h+(∆) = 2|G| and g is not in an ambiguous class.

For forms g = ax2 + bxy + cy2 with a, c > 0, b = 0 (so the form is

g = ax2+cy2), the above conditions have an equivalent, but easier statement.

Namely, if the discriminant −4ac has one class per genus then if there is a

unique x > 0 and y > 0 so that g(x, y) = m, and if for this x, y, gcd(ax, cy) =

1, then m is a prime or 2 times an odd prime (with two minor exceptions for

x2 + 7y2 = 8 and 3x2 + 5y2 = 8). For these forms, n = ac is called an idoneal

number. Note that the only transformations that take any of these forms of

these forms to itself are

(
±1 0

0 ±1

)
, and, if a = c = 1,

(
0 ±1

±1 0

)
. The

± signs can be taken independently.

To recap the main points. Consider a composite pq, with p, q distinct odd

primes. If there are solutions to x2 ≡ ∆ (mod 4pq) with 0 ≤ x < 2pq then

there will be exactly 4 solutions. These give 4 inequivalent solutions for some

forms of discriminant ∆. No two of these 4 can be equivalent. That means

that if two (or more) are equiv to the same form, there is no transformation

of determinant +1 that takes that form to itself, and maps one solution to

another. But there might be a transform of determinant −1 that maps the

form to itself and takes one of the solutions to another.

So, if h+/|G| = 1, all 4 solutions are in the same class, and even after

possible pairing, there are at least one pair for which there is no transform

of determinant ±1 that carries either solution to the other, so no form can

primitively essentially uniquely represent a composite pq.

If h+/|G| ≥ 3, two classes can each have one solution, and a third can

have 2. If this last is ambiguous, all 3 can essentially uniquely represent pq.

If h+/|G| = 2, then the two classes can each have 2 solutions. If these

two classes are ambiguous, each can essentially uniquely represent pq. But, if
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one of these classes is not ambiguous, that class cannot essentially uniquely

represent pq.

So, a form of discriminant ∆ is good if either {h+/|G| = 1} or {h+/|G| = 2

and the form is not in an ambiguous class}.
Note that the above does not apply to 2p as there is only one solution

to x2 ≡ ∆ (mod 2), and so only 2 solutions to x2 ≡ ∆ (mod 8p) with

0 ≤ x < 4p, and these can be equivalent under a transform of determinant

−1.

45 Notation

Refer to the tables “List of Notations” for notations used.
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List of Notations

Symbol Definition

d A squarefree integer 6= 0, 1

ω With 1, a basis for the ring of integers in Q(
√
d),

=
√
d if d 6≡ 1 (mod 4),

= (1 +
√
d)/2 if d ≡ 1 (mod 4).

f Conductor of the quadratic order Of = [1, fω].

∆ Discriminant of an order or of a quadratic form,

= 4f 2d if d 6≡ 1 (mod 4),

= f 2dif d ≡ 1 (mod 4),

= b2 − 4ac for the form g(x, y) = ax2 + bxy + cy2.

∆0 Fundamental discriminant (f = 1).

(a, b, c) The form g(x, y) = ax2 + bxy + cy2.

α The conjugate of α ∈ Of .
N(α) The norm of the element α. N(α) = αα.

N(I) The norm of the ideal I.(
r
s

)
Kronecker symbol.

(α) the ideal generated by α.

I|J The ideal I divides the ideal J .

ε Any unit. N(ε) = ±1.

ε1 The fundamental unit in O. Every unit in O is ±εn1 , n ∈ Z.

If ε1 is written as (x+ y
√
d)/2 then x, y > 0 and

x, y are the smallest positive solutions to x2 − dy2 = ±4

ε+ The generator of totally positive units in O; N(ε+) = 1.

ε+ = ε1 or ε21.

h(∆) The ideal class number of the discriminant ∆.

h+(∆) The strict ideal class number of the discriminant ∆.

H(∆) The ideal class group for the discriminant ∆.

H+(∆) The strict ideal class group for the discriminant ∆.

∼ Equivalent forms (properly or improperly) or ideals (strictly or weakly).

≈ Properly equivalent forms or strictly equivalent ideals.
∼∼∼ Denotes genus equivalence of forms or ideals.

χ Character.

Table 11: Definitions of symbols used
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List of Notations

Symbol Definition

E The smallest power of ε1 that lies in Of .
E+ The smallest power of ε+ that lies in Of .
φFI A map from proper classes of forms to strict classes of ideals.

φIF A map from strict classes of ideals to proper classes of forms.

φQI A map from classes of quadratic irrationals to strict classes of ideals.

φIQ A map from strict classes of ideals to classes of quadratic irrationals.

Table 12: Definitions of symbols used
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