PERIOD 2 NSCF AND NICF EXPANSIONS OF \sqrt{D}

KEITH MATTHEWS

ABSTRACT. We prove a conjecture of John Robertson.

Theorem 1. If $\sqrt{D} = \tilde{b}_0 + \frac{\epsilon_1|}{|\tilde{b}_1|} + \frac{\epsilon_2|}{|\tilde{b}_2|}$ is a NSCF or NICF period 2 expansion, then

$$(\epsilon_1, \epsilon_2) = (1, 1) \text{ or } (-1, -1).$$

Proof. Assume \sqrt{D} has NSCF and NICF period-length 2 and that $\epsilon_1 \epsilon_2 = -1$. Then the RCF expansion has period-length 3. We consider the RCF to NSCF and NICF transformations.

Case 1. $\epsilon_1 = 1, \epsilon_2 = -1$. Then $\epsilon_1 = 1$ implies $\tilde{\xi}_1 = \xi_1$ and $\epsilon_2 = -1$ implies (0.1) $\tilde{\xi}_2 = \xi_3 + 1$.

But $\epsilon_3 = 1$ by NSCF/NICF periodicity, so (0.1) implies

$$(0.2) b_2 = b_3 + 1$$

However $\tilde{b}_2 = 2b_0 = b_3$, so (0.2) gives the contradiction $2b_0 = 2b_0 + 1$.

Case 2. $\epsilon_1 = -1, \epsilon_2 = 1$. Then $\epsilon_1 = -1$ implies $\tilde{\xi}_1 = \xi_2 + 1$ and $\epsilon_2 = 1$ implies (0.3) $\tilde{\xi}_2 = \xi_3$.

But $\epsilon_3 = -1$ by NSCF/NICF periodicity, so (0.3) implies

$$(0.4) b_2 = b_3 + 1$$

and again we get a contradiction.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QUEENSLAND, BRISBANE, AUSTRALIA, 4072 AND CENTRE FOR MATHEMATICS AND ITS APPLICATIONS, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT 0200, AUSTRALIA

 $E\text{-}mail\ address: \texttt{keithmatt}\texttt{Qgmail.com}$