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Abstract

We derive limited information about the period of the continued
fraction expansion of

√
22n+1: The period-length is a multiple of 4 if

n > 1. Also the central norm Qm = 4 and the central partial quotient
am = b

√
22n−1c or b

√
22n−1c − 1, whichever is odd. It seems likely

that ln/2n → .7427 · · · .

1 Introduction

Let Dn = 22n+1 and ln be the length of the period of the continued fraction
for

√
Dn.

We observe that ln is even, as otherwise the negative Pell equation x2 −
22n+1y2 = −1 would have a solution. Here x is odd, giving the contradiction
x2 ≡ −1 (mod 8).

n The continued fraction expansion of
√

22n+1 ln

0 [1, 2] 1
1 [2, 1, 4] 2
2 [5, 1, 1, 1, 10] 4
3 [11, 3, 5, 3, 22] 4
4 [22, 1, 1, 1, 2, 6, 11, 6, 2, 1, 1, 1, 44] 12
5 [45, 3, 1, 12, 5, 1, 1, 2, 1, 2, 4, 1, 21, 1, 4, 2, 1, 2, 1, 1, 5, 12, 1, 3, 90] 24

The values of ln for n ≤ 31 are given in sequence A059927 of [6]. Don Reble
communicated l32 to the author:
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n ln
0 1
1 2
2 4
3 4
4 12
5 24
6 48
7 96
8 196
9 368
10 760
11 1524
12 3064
13 6068
14 12168
15 24360
16 48668
17 97160
18 194952
19 389416
20 778832
21 1557780
22 3116216
23 6229836
24 12462296
25 24923320
26 49849604
27 99694536
28 199394616
29 398783628
30 797556364
31 1595117676
32 3190297400
33 6380517544
34 12761088588
35 25522110948
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We prove that ln is a multiple of 4 if n > 1. Also with ln = 2m, the central
norm Qm = 4 and the central partial quotient am = b

√
Dn−1c or b

√
Dn−1c−1,

whichever is odd.
We need some facts about the least solution of the Pell equation x2 −

22n+1y2 = 1.
Let Dn = 22n+1 and εn denote the fundamental solution of the Pell equa-

tion x2 − 22n+1y2 = 1, ie. the solution with least positive x and y.
Then J. Schur ([5, p. 36]) gave the following formula for εn. (There was

a misprint - D′ = 22l+1 should be D′ = 22l−1.)
Lemma 1.

εn = (3 +
√

8)2n−1

(= (1 +
√

2)2n

) (1)

Proof. Let un and vn be defined by for n ≥ 1 by u1 = 3, v1 = 1 and

un = 22nv2
n−1 + 1, vn = un−1vn−1.

for n > 1. Then we see by induction that

1. vn is odd,

2. u2
n −Dnv

2
n = 1 for all n ≥ 1,

3. un + vn

√
Dn = (un−1 + vn−1

√
Dn−1)

2,

4. un + vn

√
Dn = (3 +

√
8)2n−1

.

We now prove that εn = un +vn

√
Dn. This true when n = 1. So let n > 1

and assume εn−1 = un−1 + vn−1

√
Dn−1.

Now assume 1 = u2 − 22n+1v2, u ≥ 1, v ≥ 1.
Then u2 − 22n−1(2v)2 = 1, so

u + 2v
√

Dn−1 = (un−1 + vn−1

√
Dn−1)

i,

for some i ≥ 1. But i = 1 would imply 2v = vn−1, contradicting the fact
that vn−1 is odd. Also

(un−1 + vn−1

√
Dn−1)

2 = u2
n−1 + v2

n−1Dn−1 + 2un−1vn−1

√
Dn−1.

Hence 2v ≥ 2un−1vn−1 = 2vn and so v ≥ vn and hence un + vn

√
Dn = εn.
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n εn

1 3 +
√

8

2 17 + 3
√

32

3 577 + 51
√

128

4 665857 + 29427
√

512

5 886731088897 + 19594173939
√

2048

/
J.H.E. Cohn has remarked in [2, p. 21] that for the sequence ln, there

exist positive constants A and B such that

A2n

n
< ln < B2nn,

so that log ln
n
→ log 2 as n →∞.

Denoting the i-th convergent by Ai/Bi, the right hand inequality can be

improved by using Cohn’s inequality Bm−1 ≥ Fm = (1+
√

5
2

)m with Bm−1 =
vn−1 from equation (2) below. For un−1 >

√
Dn−1vn−1 and hence

2
√

22n−1vn−1 < un−1 +
√

Dn−1vn−1 = εn−1 = (1 +
√

2)2n−1(
1 +

√
5

2

)m

< vn−1 < (1 +
√

2)2n−1

/
√

22n+1

m <
2n−1 log (1 +

√
2)− (2n+1)

2
log 2

log 1+
√

5
2

ln = 2m <
2n log (1 +

√
2)− (2n + 1) log 2

log 1+
√

5
2

.

On the limited evidence from the table, perhaps ln/2
n → .7427 · · · .

Let
√

Dn = [a0, a1, . . . , am−1, am, am+1, . . . , a2m], where m = ln/2.
Lemma 3. The central partial quotient am is odd. More generally, if the
length l of the period of the continued fraction of

√
D is even, say l = 2m

and the fundamental solution x0 + y0

√
D has y0 odd, then am is odd.

Proof. Take u = x0, v = y0, r = ln = 2m in Lemma 1. Then because of the
palindromic nature of a1, ..., a2m−1 (see [4, p. 81]), we have
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(
Dy0 x0

x0 y0

)
= A

(
am 1
1 0

)
At

=

(
x y
a b

)(
am 1
1 0

)(
x a
y b

)
=

(
amx2 + 2xy amxa + ay + xb

amxa + ay + xb a(ama + 2b)

)
.

Hence y0 = a(ama + 2b) and so a, ama + 2b and hence am, are odd.
Lemma 4. Let (Pi +

√
D)/Qi denote the i-th complete convergent to

√
Dn.

Then

Am−1 = 2un−1, Bm−1 = vn−1, m is even and Qm = 4, if n > 1. (2)

Proof. The statement is a consequence of Theorem 5, [3, p. 21]. However
we will give a different proof. We have

u2
n−1 − 22n−1v2

n−1 = 1

(2un−1)
2 − 22n+1v2

n−1 = 4.

Then as 4 <
√

Dn if n > 1, it follows that 2un−1/vn−1 = Ar−1/Br−1 for
some r ≥ 1. Hence Ar−1 = 2un−1 and Br−1 = vn−1. Also A2

r−1 −DnB
2
r−1 =

(−1)rQr, so r is even and Qr = 4.
Next we show that r = m. This will follow from the uniqueness result

Lemma 5 below and the symmetry of the Qi in the range 0 ≤ i ≤ m− 1 (see
[4, p. 81]):
Lemma 5. If Qt = 4 and 1 ≤ t < 2m− 1, then t = r.
Proof. Qt = 4 implies A2

t−1 − DnB
2
t−1 = (−1)t4 and hence t is even. Also

At−1 is even. Hence
(At−1/2)2 −Dn−1B

2
t−1 = 1

and
At−1 + Bt−1

√
Dn−1 = (un−1 + vn−1

√
Dn−1)

i,

for some i ≥ 1. But if i ≥ 2, we would have the contradiction

vn = B2m−1 > Bt−1 ≥ 2un−1vn−1 = 2vn.
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Hence i = 1, Bt−1 = vn−1 = Br−1, so t = r.
Lemma 6. am = b

√
Dn−1c or b

√
Dn−1c − 1, whichever is odd.

Proof. (Pm +
√

Dn)/Qm is reduced, so

− 1 < (Pm −
√

Dn)/Qm < 0√
Dn − 4 < Pm <

√
Dn.

The symmetry of the Pi in the range 1 ≤ i ≤ m (see [4, p. 81]) then gives
Pm = Pm+1. But Pm+1 = Qmam − Pm = 4am − Pm, so Pm = 2am. Hence√

Dn−1 − 2 < am <
√

Dn−1

and am = b
√

Dn−1c or b
√

Dn−1c − 1.
Examples.

1. n = 2. Here ln = 2, m = 1, Also Dn−1 = 8 and b
√

8c = 2. Hence
a1 = b

√
8c − 1 = 1.

2. n = 4. Here ln = 12, m = 6, Also Dn−1 = 128 and b
√

128c = 11.
Hence a6 = b

√
8c = 11.
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Stuttgart, 1954.

[5] J. Schur, Einige Bermerkungen zu vorstehenden Arbeit des Herrn G.
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