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Abstract. We describe a neglected algorithm, based on simple continued fractions, due

to Lagrange, for deciding the solubility of x2−Dy2 = N , with gcd(x, y) = 1, where D > 0

and is not a perfect square. In the case of solubility, the fundamental solutions are also

constructed.

1. Introduction. In a memoir of 1768 (see [6, Oeuvres II, pages 377–535]), La-
grange gave a recursive method for solving x2 − Dy2 = N , with gcd(x, y) = 1,
where D > 1 and is not a perfect square, thereby reducing the problem to the case
where |N | <

√
D, in which case the positive solutions (x, y) will be found amongst

the pairs (pn, qn), with pn/qn a convergent of the simple continued fraction for
√
D.

It does not seem to be widely known that Lagrange also gave another algorithm
in a memoir of 1770 (see [6, Oeuvres II, pages 655–726]), which may be regarded as
a generalisation of the well–known method of solving Pell’s equation x2−Dy2 = ±1
using the simple continued fraction for

√
D.

In this paper, we give a version of Lagrange’s second algorithm which uses only
the language of simple continued fractions. Also Lagrange’s proof of the necessity
condition in Theorem 1 is long and not easy to follow and we have replaced it by
a much simpler proof.

A. Nitaj has also given a related algorithm in his PhD. Thesis [4, pages 57–
88]. His treatment of Theorem 1 requires the cases D = 2 or 3 and N < 0 to be
treated separately. Also unlike our algorithm, his requires the calculation of the
fundamental solution η of Pell’s equation.

Lagrange’s algorithm has been rediscovered by R. Mollin [2, pages 333–340]. His
treatment is more complicated than ours, as it uses the language of ideals and
semi–simple continued fractions, in addition to that of simple continued fractions.
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2. Constructing solutions of x2 −Dy2 = N .
A necessary condition for the solubility of x2 −Dy2 = N , with gcd(x, y) = 1, is

that the congruence u2 ≡ D (modQ0) shall be soluble, where Q0 = |N |.
The sufficiency part of Lagrange’s algorithm was given by Perron in his intro-

duction to a paper of Patz [5]. Perron starts with a solution P0 of the above

congruence. If xn = (Pn +
√
D)/Qn is the n–th complete convergent of the simple

continued fraction for ω = (P0 +
√
D)/Q0, An/Bn is the n–th convergent to ω and

Gn−1 = Q0An−1 − P0Bn−1, then ([2, pages 246–248])

(1) G2
n−1 −DB2

n−1 = (−1)nQ0Qn.

Hence if Qn = (−1)nN/|N |, it follows that equation (1) gives a solution (x, y) =
(Gn−1, Bn−1) of x2 −Dy2 = N . We also have gcd(x, y) = 1.

For gcd (Gn−1, Bn−1) = gcd(Q0An−1, Bn−1) = gcd(Q0, Bn−1) and equation (1)
gives

(Q0An−1 − P0Bn−1)2 −DB2
n−1 = N

Q2
0A

2
n−1 − 2Q0P0An−1Bn−1 + (P 2

0 −D)B2
n−1 = N

Q0A
2
n−1 − 2P0An−1Bn−1 +

(P 2
0 −D)

Q0
B2
n−1 = N/|N | = ±1.

Hence gcd(Q0, Bn−1) = 1.

In part (a) of Theorem 2, we prove that this construction can be reversed, to
provide a simple necessary condition for the solubility of x2 − Dy2 = N where
gcd(x, y) = 1. (Such solutions are called primitive.)

In section 6, we give three numerical examples.

3. Equivalence of solutions (See Nagell [3, pages 204–205].)

Primitive solutions α1 = x1 + y1
√
D and α2 = x2 + y2

√
D of x2 −Dy2 = N are

called equivalent if their ratio is a solution u+v
√
D of Pell’s equation u2−Dv2 = 1.

A necessary and sufficient condition for α1 and α2 to be equivalent is that

(2) x1x2 −Dy1y2 ≡ 0 (modQ0), x1y2 − y1x2 ≡ 0 (modQ0).

Each primitive solution x+ y
√
D determines a unique integer P0 satisfying x ≡

−P0y (modQ0) and P 2
0 ≡ D (modQ0), with −Q0/2 < P0 ≤ Q0/2. We say that

x+ y
√
D belongs to P0.

x+ y
√
D and −x+ y

√
D determine conjugate classes.

If these classes are equal, the class is called ambiguous.
Ambiguous classes occur precisely when P0 = 0 or Q0/2. Also P0 = 0 if and

only if Q0|D, while if Q0 is even, P0 = Q0/2 if and only if either (a) 4|Q0 and Q0|D
or (b) Q0|2D and D is odd.

There are finitely many equivalence classes and these are represented by funda-
mental solutions x+ y

√
D, where y is positive and has least value for the class. If

the class is ambiguous, we can assume that x ≥ 0.

The equivalence class containing the fundamental solution x0 + y0
√
D consists

of the numbers ±(x0 + y0
√
D)ηn, n ∈ Z, where η = u + v

√
D is the fundamental

solution of Pell’s equation u2 −Dv2 = 1.
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4. A necessary condition for solubility of x2 −Dy2 = N .

Theorem 1. Suppose x2 − Dy2 = N is soluble in integers x ≥ 0 and y > 0,
gcd(x, y) = 1 and let Q0 = |N |. Then gcd(Q0, y) = 1. Define P0 by x ≡
−P0y (modQ0), where D ≡ P 2

0 (modQ0) and −Q0/2 < P0 ≤ Q0/2.

Let ω = (P0 +
√
D)/Q0 and x = Q0X − P0y. Then

(i) X/y is a convergent An−1/Bn−1 of ω;

(ii) Qn = (−1)nN/|N |.
We need a result which is an extension of Theorem 172 [1, pages 140—141].

Lemma. If ω = Pζ+R
Qζ+S , where ζ > 1 and P,Q,R, S are integers such that Q >

0, S > 0 and PS −QR = ±1, or S = 0 and Q = 1 = R, then P/Q is a convergent
to ω. Moreover if Q 6= S > 0, then R/S = (pn−1 + kpn)/(qn−1 + kqn), k ≥ 0. Also
ζ + k is the (n+ 1)–th complete convergent to ω. Here k = 0 if Q > S, while k ≥ 1
if Q < S.

Proof. Hardy and Wright deal only with the case Q > S > 0. They write

P

Q
= [a0, a1, . . . , an] =

pn
qn
,

and assume PS −QR = (−1)n−1. Then

pnS − qnR = PS −QR = pnqn−1 − pn−1qn,
so pn(S − qn−1) = qn(R− pn−1).

Hence qn|(S− qn−1). Then from qn = Q > S > 0 and qn ≥ qn−1 > 0, we deduce
|S − qn−1| < qn and hence S − qn−1 = 0. Then S = qn−1 and R = pn−1.

Also

ω =
Pζ +R

Qζ + S
=
pnζ + pn−1
qnζ + qn−1

= [a0, a1, . . . , an, ζ].

If S = 0 and Q = R = 1, then ω = [P, ζ] and P/Q = P/1 = p0/q0.

If Q = S, then Q = S = 1 and P − R = ±1. If P = R + 1, then ω = [R, 1, ζ],
so P/Q = (R + 1)/1 = p1/q1. If P = R − 1, then ω = [R − 1, 1 + ζ] and P/Q =
(R− 1)/1 = p0/q0.

If Q < S, then from qn|(S − qn−1) and

S − qn−1 > Q− qn−1 = qn − qn−1 ≥ 0,

we have S − qn−1 = kqn, where k ≥ 1. Then

ω =
Pζ +R

Qζ + S
=
pnζ + pn−1 + kpn
qnζ + qn−1 + kqn

=
pn(ζ + k) + pn−1
qn(ζ + k) + qn−1

and ω = [a0, . . . , an, ζ + k].

Proof of the Theorem. With Q0 = |N |, x = Q0X − P0y and x2 −Dy2 = N, we
have

P0x+Dy ≡ −P 2
0 y +Dy ≡ (−P 2

0 +D)y ≡ 0 (modQ0).

Hence the matrix [
P R
Q S

]
=

[
X P0x+Dy

Q0

y x

]
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has integer entries and determinant ∆ = ±1. For

∆ = Xx− y(P0x+Dy)

Q0

=
(x+ P0y)x

Q0
− y(P0x+Dy)

Q0

=
x2 −Dy2

Q0
= ±1.

Also if ζ =
√
D and ω = (P0 +

√
D)/Q0, it is easy to verify that ω = Pζ+R

Qζ+S . Then

the lemma implies that X/y is a convergent to ω.

Finally x = Q0X − P0y = Q0An−1 − P0Bn−1 = Gn−1 and

N = x2 −Dy2 = G2
n−1 −DB2

n−1 = (−1)nQ0Qn.

Hence Qn = (−1)nN/|N |.
Remark. The solutions u of u2 ≡ D (modQ0) come in pairs ±u1, . . . ,±ur, where
0 < ui ≤ Q0/2, together with possibly ur+1 = 0 and ur+2 = Q0/2. Hence we can
state the following:

Corollary. Suppose x2 −Dy2 = N is soluble, with x ≥ 0 and y > 0, gcd(x, y) = 1
and Q0 = |N |. Let x ≡ −P0y (modQ0), where P0 ≡ ±ui (modQ0) and x =

Q0X − P0y. Then X/y will be a convergent An−1/Bn−1 of ωi = (ui +
√
D)/Q0 or

ω′i = (−ui +
√
D)/Q0 and Qn = (−1)nN/|N |.

5. An algorithm for solving x2 − Dy2 = N . In view of the Corollary, we
know that the primitive solutions to x2 − Dy2 = N with y > 0 will be found by
considering the continued fraction expansions of both ωi and ω′ for 1 ≤ i ≤ r + 2.

One can show that each equivalence class contains solutions (x, y) with x ≥ 0
and y > 0, so the necessary condition Qn = (−1)nN/|N | shall occur for some n
holds for both ωi and ω′i. Hence to check for solubility, we need only consider ωi.

Suppose that ωi = (ui +
√
D)/Q0 = [a0, . . . , at, at+1, . . . , at+l].

If x2 − Dy2 = N is soluble with x ≥ 0 and y > 0, there are infinitely many
such solutions and hence Qn = ±1 holds for ωi for some n > t + l and hence, by
periodicity, also in the range t + 1 ≤ n ≤ t + l. Any such n must have Qn = 1, as
(Pn +

√
D)/Qn is reduced for n in this range and so Qn > 0. Moreover if l is even,

the condition Qn = (−1)nN/|N | is also preserved.

Moreover there can be at most one n in the range t+1 ≤ n ≤ t+l for which Qn =
1. For if Pn +

√
D is reduced, then Pn = b

√
Dc and hence two such occurrences of

Qn = 1 within a period would give a smaller period.

We also remark that l is odd, if and only if the fundamental solution η0 of the
Pell equation x2 − Dy2 = ±1 has norm equal to −1. Consequently a solution of
x2 − Dy2 = N gives rise to a solution of x2 − Dy2 = −N ; indeed we see that if
t+ 1 ≤ n ≤ t+ l and k ≥ 1, then Gn+kl−1 +Bn+kl−1

√
D = ηk0 (Gn−1 +Bn−1

√
D).

Hence G2
n+l−1 −DB2

n+l−1 = −(G2
n−1 −DB2

n−1) if Norm(η0) = −1.

Putting these observations together, we have the following:
Theorem 2. For 1 ≤ i ≤ r + 2, let

ωi = (ui +
√
D)/Q0 = [a0, . . . , at, at+1, . . . , at+l].



5

(a) Then a necessary condition for x2 − Dy2 = N , gcd(x, y) = 1, to be soluble is
that for some i in i = 1, . . . , r + 2, we have Qn = 1 for some n in t+ 1 ≤ n ≤ t+ l,
where if l is even, then (−1)nN/|N | = 1.

(b) Conversely, suppose for ωi, we have Qn = 1 for some n with t+ 1 ≤ n ≤ t+ l.
Then

(i) If l is even and (−1)nN/|N | = 1, then x2−Dy2 = N is soluble with solution

Gn−1 +Bn−1
√
D.

(ii) If l is odd, then Gn−1 + Bn−1
√
D is a solution of x2 − Dy2 = (−1)n|N |,

while Gn+l−1 +Bn+l−1
√
D will be a solution of x2 −Dy2 = (−1)n+1|N |.

(iii) At least one of the Gm−1 + Bm−1
√
D with least Bm−1 satisfying Qm =

(−1)mN/|N |, which arise from the continued fraction expansions of ωi and
ω′i, will be a fundamental solution of x2 −Dy2 = N .

Remarks. 1. Unlike the case of Pell’s equation, Qn = ±1 can also occur for
n < t+ 1 and can contribute to a fundamental solution. If Norm (η) = 1, one sees
that to find the fundamental solution for x2 − Dy2 = N , it suffices to examine
only the cases Qn = ±1, n <= t + l. However if Norm (η) = −1, one may have to
examine the range t+ l + 1 ≤ n ≤ t+ 2l as well.

2. It can happen that l is even and that x2 − Dy2 = N is soluble with x ≡
±(−uiy) (modQ0), while x2 −Dy2 = −N is soluble with x ≡ ±(−ujy) (modQ0),
with i 6= j. (Of course if |N | = p is prime, this cannot happen, as the congruence
u2 ≡ D (mod p) has two solutions if p does not divide D and one solution if p divides
D.)

An example of this is D = 221, N = 217 (see Example 2 later). Then u1 =

2, u2 = 33. Also l = 6 and (2 +
√

221)/217 produces the solution −2 +
√

221 of

x2−221y2 = −217, whereas (33−
√

221)/217 produces the solution −179+12
√

221
of x2 − 221y2 = 217.

6. Example 1 (Lagrange [6, pages 719–723]). x2 − 13y2 = ±101.
We find the solutions of P 2

0 ≡ 13 (mod 101) are ±35.

(a) 35+
√
13

101 = [0, 2, 1, 1, 1, 1, 1, 1, 6].

i 0 1 2 3 4 5 6 7 8
Pi 35 −35 11 −2 3 1 2 1 3
Qi 101 −12 9 1 4 3 3 4 1
Ai 0 1 1 2 3 5 8 13 86
Bi 1 2 3 5 8 13 21 34 225

We observe that Q3 = Q8 = 1. The period length is odd, so both the equations
x2 − 13y2 = ±101 are soluble. With Gn = Q0An − P0Bn, we have
G2 = 101 · 1− 35 · 3 = −4. x+ y

√
13 = −4 + 3

√
13, x2 − 13y2 = −101;

G7 = 101 · 13− 35 · 34 = 123. x+ y
√

13 = 123 + 34
√

13, x2 − 13y2 = 101.

(b) −35+
√
13

101 = [−1, 1, 2, 4, 1, 1, 1, 1, 6].

i 0 1 2 3 4 5 6 7 8
Pi −35 −66 23 1 3 1 2 1 3
Qi 101 −43 12 1 4 3 3 4 1
Ai −1 0 −1 −4 −5 −9 −14 −23 −152
Bi 1 1 3 13 16 29 45 74 489
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We observe that Q3 = Q8 = 1. Hence
G2 = 101 · (−1)− (−35) · 3 = 4. x+ y

√
13 = 4 + 3

√
13, x2 − 13y2 = −101;

G7 = 101 · (−23)− (−35) · 74 = 267. x+ y
√

13 = 267 + 74
√

13, x2− 13y2 = 101.

Hence −4 + 3
√

13 and 123 + 34
√

13 are fundamental solutions for the equations
x2 − 13y2 = −101 and x2 − 13y2 = 101 respectively.

We have η = 649 + 180
√

13, so the complete solution of x2 − 13y2 = −101
is given by x + y

√
13 = ±ηn(±4 + 3

√
13), n ∈ Z, while the complete solution of

x2 − 13y2 = 101 is given by x+ y
√

13 = ±ηn(±123 + 34
√

13), n ∈ Z.
Example 2. x2 − 221y2 = ±217.

We find the solutions of P 2
0 ≡ 221 (mod 217) are ±2 and ±33.

(a) 2+
√
221

217 = [0, 12, 1, 6, 2, 6, 1, 28].

i 0 1 2 3 4 5 6 7
Pi 2 −2 14 11 13 13 11 14
Qi 217 1 25 4 13 4 25 1
Ai 0 1 1 7 15 97 112 3233
Bi 1 12 13 90 193 1248 1441 41596

We observe that Q1 = Q7 = 1. The period length is even and (−1)7 = −1.
Hence the equation x2 − 221y2 = −217 is soluble.
G0 = 217 · 0− 2 · 1 = −2. x+ y

√
221 = −2 +

√
221, x2 − 221y2 = −217.

There is no need to expand −2+
√
221

217 , as −2 +
√

221 is a fundamental solution.

(b) 33+
√
221

217 = [0, 4, 1, 1, 6, 1, 28, 1, 6, 2].

i 0 1 2 3 4 5 6 7 8 9
Pi 33 −33 17 0 13 11 14 14 11 13
Qi 217 −4 17 13 4 25 1 25 4 13
Ai 0 1 1 2 13 15 433 448 3121 6690
Bi 1 4 5 9 59 68 1963 2031 14149 30329

We observe that Q6 = 1. The period length is even and (−1)6 = 1. Hence the
equation x2 − 221y2 = 217 is soluble.
G5 = 217 · 15− 33 · 68 = 1011. x+ y

√
221 = 1011 + 68

√
221, x2 − 221y2 = 217.

(c) −33+
√
221

217 = [−1, 1, 10, 1, 28, 1, 6, 2, 6].

i 0 1 2 3 4 5 6 7 8
Pi −33 −184 29 11 14 14 11 13 13
Qi 217 −155 4 25 1 25 4 13 4
Ai −1 0 −1 −1 −29 −30 −209 −448 −2897
Bi 1 1 11 12 347 359 2501 5361 34667

We observe that Q4 = 1. The period length is even and (−1)4 = 1. Hence the
equation x2 − 221y2 = 217 is soluble. We have
G3 = 217 ·(−1)−(−33) ·12 = 179. x+y

√
221 = 179+12

√
221, x2−221y2 = 217.

It follows from (b) and (c) that 179 + 12
√

221 is a fundamental solution.
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We have η = 1665 + 112
√

221, so the complete solution of x2 − 221y2 = −217
is given by x + y

√
221 = ±ηn(±2 +

√
221), n ∈ Z, while the complete solution of

x2 − 221y2 = 217 is given by x+ y
√

221 = ±ηn(±179 + 12
√

221), n ∈ Z.
Example 3. (Lagrange [6, pages 723–725]) x2−79y2 = ±101. We find the solutions

of P 2
0 ≡ 79 (mod 101) are ±33. However (33+

√
79)/101 = [0, 2, 2, 2, 3, 5, 1, 1, 1] and

from the table

i 0 1 2 3 4 5 6 7 8
Pi 33 −33 13 5 7 8 7 3 4
Qi 101 −10 9 6 5 3 10 7 9

we see that the condition Qn = 1 does not hold for 3 ≤ n ≤ 8.

Hence the equations x2 − 79y2 = ±101 are not soluble.

The calculations were carried out with the author’s number theory program CALC
and bc program surd.
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