The Diophantine Equation $x^{2}-D y^{2}=N, D>0$

Keith Matthews

Abstract

We describe a neglected algorithm, based on simple continued fractions, due to Lagrange, for deciding the solubility of $x^{2}-D y^{2}=N$, with $\operatorname{gcd}(x, y)=1$, where $D>0$ and is not a perfect square. In the case of solubility, the fundamental solutions are also

 constructed.1. Introduction. In a memoir of 1768 (see [6, Oeuvres II, pages 377-535]), Lagrange gave a recursive method for solving $x^{2}-D y^{2}=N$, with $\operatorname{gcd}(x, y)=1$, where $D>1$ and is not a perfect square, thereby reducing the problem to the case where $|N|<\sqrt{D}$, in which case the positive solutions (x, y) will be found amongst the pairs $\left(p_{n}, q_{n}\right)$, with p_{n} / q_{n} a convergent of the simple continued fraction for \sqrt{D}.

It does not seem to be widely known that Lagrange also gave another algorithm in a memoir of 1770 (see [6, Oeuvres II, pages 655-726]), which may be regarded as a generalisation of the well-known method of solving Pell's equation $x^{2}-D y^{2}= \pm 1$ using the simple continued fraction for \sqrt{D}.

In this paper, we give a version of Lagrange's second algorithm which uses only the language of simple continued fractions. Also Lagrange's proof of the necessity condition in Theorem 1 is long and not easy to follow and we have replaced it by a much simpler proof.
A. Nitaj has also given a related algorithm in his PhD . Thesis [4, pages $57-$ 88]. His treatment of Theorem 1 requires the cases $D=2$ or 3 and $N<0$ to be treated separately. Also unlike our algorithm, his requires the calculation of the fundamental solution η of Pell's equation.

Lagrange's algorithm has been rediscovered by R. Mollin [2, pages 333-340]. His treatment is more complicated than ours, as it uses the language of ideals and semi-simple continued fractions, in addition to that of simple continued fractions.
2. Constructing solutions of $x^{2}-D y^{2}=N$.

A necessary condition for the solubility of $x^{2}-D y^{2}=N$, with $\operatorname{gcd}(x, y)=1$, is that the congruence $u^{2} \equiv D\left(\bmod Q_{0}\right)$ shall be soluble, where $Q_{0}=|N|$.

The sufficiency part of Lagrange's algorithm was given by Perron in his introduction to a paper of Patz [5]. Perron starts with a solution P_{0} of the above congruence. If $x_{n}=\left(P_{n}+\sqrt{D}\right) / Q_{n}$ is the n-th complete convergent of the simple continued fraction for $\omega=\left(P_{0}+\sqrt{D}\right) / Q_{0}, A_{n} / B_{n}$ is the n-th convergent to ω and $G_{n-1}=Q_{0} A_{n-1}-P_{0} B_{n-1}$, then ([2, pages 246-248])

$$
\begin{equation*}
G_{n-1}^{2}-D B_{n-1}^{2}=(-1)^{n} Q_{0} Q_{n} \tag{1}
\end{equation*}
$$

Hence if $Q_{n}=(-1)^{n} N /|N|$, it follows that equation (1) gives a solution $(x, y)=$ $\left(G_{n-1}, B_{n-1}\right)$ of $x^{2}-D y^{2}=N$. We also have $\operatorname{gcd}(x, y)=1$.

For $\operatorname{gcd}\left(G_{n-1}, B_{n-1}\right)=\operatorname{gcd}\left(Q_{0} A_{n-1}, B_{n-1}\right)=\operatorname{gcd}\left(Q_{0}, B_{n-1}\right)$ and equation (1) gives

$$
\begin{aligned}
\left(Q_{0} A_{n-1}-P_{0} B_{n-1}\right)^{2}-D B_{n-1}^{2} & =N \\
Q_{0}^{2} A_{n-1}^{2}-2 Q_{0} P_{0} A_{n-1} B_{n-1}+\left(P_{0}^{2}-D\right) B_{n-1}^{2} & =N \\
Q_{0} A_{n-1}^{2}-2 P_{0} A_{n-1} B_{n-1}+\frac{\left(P_{0}^{2}-D\right)}{Q_{0}} B_{n-1}^{2} & =N /|N|= \pm 1 .
\end{aligned}
$$

Hence $\operatorname{gcd}\left(Q_{0}, B_{n-1}\right)=1$.
In part (a) of Theorem 2, we prove that this construction can be reversed, to provide a simple necessary condition for the solubility of $x^{2}-D y^{2}=N$ where $\operatorname{gcd}(x, y)=1$. (Such solutions are called primitive.)

In section 6, we give three numerical examples.
3. Equivalence of solutions (See Nagell [3, pages 204-205].)

Primitive solutions $\alpha_{1}=x_{1}+y_{1} \sqrt{D}$ and $\alpha_{2}=x_{2}+y_{2} \sqrt{D}$ of $x^{2}-D y^{2}=N$ are called equivalent if their ratio is a solution $u+v \sqrt{D}$ of Pell's equation $u^{2}-D v^{2}=1$.

A necessary and sufficient condition for α_{1} and α_{2} to be equivalent is that

$$
\begin{equation*}
x_{1} x_{2}-D y_{1} y_{2} \equiv 0\left(\bmod Q_{0}\right), x_{1} y_{2}-y_{1} x_{2} \equiv 0\left(\bmod Q_{0}\right) . \tag{2}
\end{equation*}
$$

Each primitive solution $x+y \sqrt{D}$ determines a unique integer P_{0} satisfying $x \equiv$ $-P_{0} y\left(\bmod Q_{0}\right)$ and $P_{0}^{2} \equiv D\left(\bmod Q_{0}\right)$, with $-Q_{0} / 2<P_{0} \leq Q_{0} / 2$. We say that $x+y \sqrt{D}$ belongs to P_{0}.
$x+y \sqrt{D}$ and $-x+y \sqrt{D}$ determine conjugate classes.
If these classes are equal, the class is called ambiguous.
Ambiguous classes occur precisely when $P_{0}=0$ or $Q_{0} / 2$. Also $P_{0}=0$ if and only if $Q_{0} \mid D$, while if Q_{0} is even, $P_{0}=Q_{0} / 2$ if and only if either (a) $4 \mid Q_{0}$ and $Q_{0} \mid D$ or (b) $Q_{0} \mid 2 D$ and D is odd.

There are finitely many equivalence classes and these are represented by fundamental solutions $x+y \sqrt{D}$, where y is positive and has least value for the class. If the class is ambiguous, we can assume that $x \geq 0$.

The equivalence class containing the fundamental solution $x_{0}+y_{0} \sqrt{D}$ consists of the numbers $\pm\left(x_{0}+y_{0} \sqrt{D}\right) \eta^{n}, n \in \mathbb{Z}$, where $\eta=u+v \sqrt{D}$ is the fundamental solution of Pell's equation $u^{2}-D v^{2}=1$.

4. A necessary condition for solubility of $x^{2}-D y^{2}=N$.

Theorem 1. Suppose $x^{2}-D y^{2}=N$ is soluble in integers $x \geq 0$ and $y>0$, $\operatorname{gcd}(x, y)=1$ and let $Q_{0}=|N|$. Then $\operatorname{gcd}\left(Q_{0}, y\right)=1$. Define P_{0} by $x \equiv$ $-P_{0} y\left(\bmod Q_{0}\right)$, where $D \equiv P_{0}^{2}\left(\bmod Q_{0}\right)$ and $-Q_{0} / 2<P_{0} \leq Q_{0} / 2$.

Let $\omega=\left(P_{0}+\sqrt{D}\right) / Q_{0}$ and $x=Q_{0} X-P_{0} y$. Then
(i) X / y is a convergent A_{n-1} / B_{n-1} of ω;
(ii) $Q_{n}=(-1)^{n} N /|N|$.

We need a result which is an extension of Theorem 172 [1, pages 140-141].
Lemma. If $\omega=\frac{P \zeta+R}{Q \zeta+S}$, where $\zeta>1$ and P, Q, R, S are integers such that $Q>$ $0, S>0$ and $P S-Q R= \pm 1$, or $S=0$ and $Q=1=R$, then P / Q is a convergent to ω. Moreover if $Q \neq S>0$, then $R / S=\left(p_{n-1}+k p_{n}\right) /\left(q_{n-1}+k q_{n}\right), k \geq 0$. Also $\zeta+k$ is the $(n+1)$-th complete convergent to ω. Here $k=0$ if $Q>S$, while $k \geq 1$ if $Q<S$.

Proof. Hardy and Wright deal only with the case $Q>S>0$. They write

$$
\frac{P}{Q}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}},
$$

and assume $P S-Q R=(-1)^{n-1}$. Then

$$
p_{n} S-q_{n} R=P S-Q R=p_{n} q_{n-1}-p_{n-1} q_{n}
$$

so $p_{n}\left(S-q_{n-1}\right)=q_{n}\left(R-p_{n-1}\right)$.
Hence $q_{n} \mid\left(S-q_{n-1}\right)$. Then from $q_{n}=Q>S>0$ and $q_{n} \geq q_{n-1}>0$, we deduce $\left|S-q_{n-1}\right|<q_{n}$ and hence $S-q_{n-1}=0$. Then $S=q_{n-1}$ and $R=p_{n-1}$.

Also

$$
\omega=\frac{P \zeta+R}{Q \zeta+S}=\frac{p_{n} \zeta+p_{n-1}}{q_{n} \zeta+q_{n-1}}=\left[a_{0}, a_{1}, \ldots, a_{n}, \zeta\right]
$$

If $S=0$ and $Q=R=1$, then $\omega=[P, \zeta]$ and $P / Q=P / 1=p_{0} / q_{0}$.
If $Q=S$, then $Q=S=1$ and $P-R= \pm 1$. If $P=R+1$, then $\omega=[R, 1, \zeta]$, so $P / Q=(R+1) / 1=p_{1} / q_{1}$. If $P=R-1$, then $\omega=[R-1,1+\zeta]$ and $P / Q=$ $(R-1) / 1=p_{0} / q_{0}$.

If $Q<S$, then from $q_{n} \mid\left(S-q_{n-1}\right)$ and

$$
S-q_{n-1}>Q-q_{n-1}=q_{n}-q_{n-1} \geq 0
$$

we have $S-q_{n-1}=k q_{n}$, where $k \geq 1$. Then

$$
\omega=\frac{P \zeta+R}{Q \zeta+S}=\frac{p_{n} \zeta+p_{n-1}+k p_{n}}{q_{n} \zeta+q_{n-1}+k q_{n}}=\frac{p_{n}(\zeta+k)+p_{n-1}}{q_{n}(\zeta+k)+q_{n-1}}
$$

and $\omega=\left[a_{0}, \ldots, a_{n}, \zeta+k\right]$.
Proof of the Theorem. With $Q_{0}=|N|, x=Q_{0} X-P_{0} y$ and $x^{2}-D y^{2}=N$, we have

$$
P_{0} x+D y \equiv-P_{0}^{2} y+D y \equiv\left(-P_{0}^{2}+D\right) y \equiv 0\left(\bmod Q_{0}\right)
$$

Hence the matrix

$$
\left[\begin{array}{cc}
P & R \\
Q & S
\end{array}\right]=\left[\begin{array}{cc}
X & \frac{P_{0} x+D y}{Q_{0}} \\
y & x
\end{array}\right]
$$

has integer entries and determinant $\Delta= \pm 1$. For

$$
\begin{aligned}
\Delta & =X x-\frac{y\left(P_{0} x+D y\right)}{Q_{0}} \\
& =\frac{\left(x+P_{0} y\right) x}{Q_{0}}-\frac{y\left(P_{0} x+D y\right)}{Q_{0}} \\
& =\frac{x^{2}-D y^{2}}{Q_{0}}= \pm 1
\end{aligned}
$$

Also if $\zeta=\sqrt{D}$ and $\omega=\left(P_{0}+\sqrt{D}\right) / Q_{0}$, it is easy to verify that $\omega=\frac{P \zeta+R}{Q \zeta+S}$. Then the lemma implies that X / y is a convergent to ω.

$$
\begin{aligned}
& \text { Finally } x=Q_{0} X-P_{0} y=Q_{0} A_{n-1}-P_{0} B_{n-1}=G_{n-1} \text { and } \\
& \qquad N=x^{2}-D y^{2}=G_{n-1}^{2}-D B_{n-1}^{2}=(-1)^{n} Q_{0} Q_{n}
\end{aligned}
$$

Hence $Q_{n}=(-1)^{n} N /|N|$.
Remark. The solutions u of $u^{2} \equiv D\left(\bmod Q_{0}\right)$ come in pairs $\pm u_{1}, \ldots, \pm u_{r}$, where $0<u_{i} \leq Q_{0} / 2$, together with possibly $u_{r+1}=0$ and $u_{r+2}=Q_{0} / 2$. Hence we can state the following:
Corollary. Suppose $x^{2}-D y^{2}=N$ is soluble, with $x \geq 0$ and $y>0, \operatorname{gcd}(x, y)=1$ and $Q_{0}=|N|$. Let $x \equiv-P_{0} y\left(\bmod Q_{0}\right)$, where $P_{0} \equiv \pm u_{i}\left(\bmod Q_{0}\right)$ and $x=$ $Q_{0} X-P_{0} y$. Then X / y will be a convergent A_{n-1} / B_{n-1} of $\omega_{i}=\left(u_{i}+\sqrt{D}\right) / Q_{0}$ or $\omega_{i}^{\prime}=\left(-u_{i}+\sqrt{D}\right) / Q_{0}$ and $Q_{n}=(-1)^{n} N /|N|$.
5. An algorithm for solving $x^{2}-D y^{2}=N$. In view of the Corollary, we know that the primitive solutions to $x^{2}-D y^{2}=N$ with $y>0$ will be found by considering the continued fraction expansions of both ω_{i} and ω^{\prime} for $1 \leq i \leq r+2$.

One can show that each equivalence class contains solutions (x, y) with $x \geq 0$ and $y>0$, so the necessary condition $Q_{n}=(-1)^{n} N /|N|$ shall occur for some n holds for both ω_{i} and ω_{i}^{\prime}. Hence to check for solubility, we need only consider ω_{i}.

Suppose that $\omega_{i}=\left(u_{i}+\sqrt{D}\right) / Q_{0}=\left[a_{0}, \ldots, a_{t}, \overline{a_{t+1}, \ldots, a_{t+l}}\right]$.
If $x^{2}-D y^{2}=N$ is soluble with $x \geq 0$ and $y>0$, there are infinitely many such solutions and hence $Q_{n}= \pm 1$ holds for ω_{i} for some $n>t+l$ and hence, by periodicity, also in the range $t+1 \leq n \leq t+l$. Any such n must have $Q_{n}=1$, as $\left(P_{n}+\sqrt{D}\right) / Q_{n}$ is reduced for n in this range and so $Q_{n}>0$. Moreover if l is even, the condition $Q_{n}=(-1)^{n} N /|N|$ is also preserved.

Moreover there can be at most one n in the range $t+1 \leq n \leq t+l$ for which $Q n=$ 1. For if $P_{n}+\sqrt{D}$ is reduced, then $P_{n}=\lfloor\sqrt{D}\rfloor$ and hence two such occurrences of $Q_{n}=1$ within a period would give a smaller period.

We also remark that l is odd, if and only if the fundamental solution η_{0} of the Pell equation $x^{2}-D y^{2}= \pm 1$ has norm equal to -1 . Consequently a solution of $x^{2}-D y^{2}=N$ gives rise to a solution of $x^{2}-D y^{2}=-N$; indeed we see that if $t+1 \leq n \leq t+l$ and $k \geq 1$, then $G_{n+k l-1}+B_{n+k l-1} \sqrt{D}=\eta_{0}^{k}\left(G_{n-1}+B_{n-1} \sqrt{D}\right)$. Hence $G_{n+l-1}^{2}-D B_{n+l-1}^{2}=-\left(G_{n-1}^{2}-D B_{n-1}^{2}\right)$ if $\operatorname{Norm}\left(\eta_{0}\right)=-1$.

Putting these observations together, we have the following:
Theorem 2. For $1 \leq i \leq r+2$, let

$$
\omega_{i}=\left(u_{i}+\sqrt{D}\right) / Q_{0}=\left[a_{0}, \ldots, a_{t}, \overline{a_{t+1}, \ldots, a_{t+l}}\right] .
$$

(a) Then a necessary condition for $x^{2}-D y^{2}=N, \operatorname{gcd}(x, y)=1$, to be soluble is that for some i in $i=1, \ldots, r+2$, we have $Q_{n}=1$ for some n in $t+1 \leq n \leq t+l$, where if l is even, then $(-1)^{n} N /|N|=1$.
(b) Conversely, suppose for ω_{i}, we have $Q_{n}=1$ for some n with $t+1 \leq n \leq t+l$. Then
(i) If l is even and $(-1)^{n} N /|N|=1$, then $x^{2}-D y^{2}=N$ is soluble with solution $G_{n-1}+B_{n-1} \sqrt{D}$.
(ii) If l is odd, then $G_{n-1}+B_{n-1} \sqrt{D}$ is a solution of $x^{2}-D y^{2}=(-1)^{n}|N|$, while $G_{n+l-1}+B_{n+l-1} \sqrt{D}$ will be a solution of $x^{2}-D y^{2}=(-1)^{n+1}|N|$.
(iii) At least one of the $G_{m-1}+B_{m-1} \sqrt{D}$ with least B_{m-1} satisfying $Q_{m}=$ $(-1)^{m} N /|N|$, which arise from the continued fraction expansions of ω_{i} and ω_{i}^{\prime}, will be a fundamental solution of $x^{2}-D y^{2}=N$.

Remarks. 1. Unlike the case of Pell's equation, $Q_{n}= \pm 1$ can also occur for $n<t+1$ and can contribute to a fundamental solution. If $\operatorname{Norm}(\eta)=1$, one sees that to find the fundamental solution for $x^{2}-D y^{2}=N$, it suffices to examine only the cases $Q_{n}= \pm 1, n<=t+l$. However if $\operatorname{Norm}(\eta)=-1$, one may have to examine the range $t+l+1 \leq n \leq t+2 l$ as well.
2. It can happen that l is even and that $x^{2}-D y^{2}=N$ is soluble with $x \equiv$ $\pm\left(-u_{i} y\right)\left(\bmod Q_{0}\right)$, while $x^{2}-D y^{2}=-N$ is soluble with $x \equiv \pm\left(-u_{j} y\right)\left(\bmod Q_{0}\right)$, with $i \neq j$. (Of course if $|N|=p$ is prime, this cannot happen, as the congruence $u^{2} \equiv D(\bmod p)$ has two solutions if p does not divide D and one solution if p divides D.)

An example of this is $D=221, N=217$ (see Example 2 later). Then $u_{1}=$ $2, u_{2}=33$. Also $l=6$ and $(2+\sqrt{221}) / 217$ produces the solution $-2+\sqrt{221}$ of $x^{2}-221 y^{2}=-217$, whereas $(33-\sqrt{221}) / 217$ produces the solution $-179+12 \sqrt{221}$ of $x^{2}-221 y^{2}=217$.
6. Example 1 (Lagrange [6, pages 719-723]). $x^{2}-13 y^{2}= \pm 101$.

We find the solutions of $P_{0}^{2} \equiv 13(\bmod 101)$ are ± 35.
(a) $\frac{35+\sqrt{13}}{101}=[0,2,1,1, \overline{1,1,1,1,6}]$.

i	0	1	2	3	4	5	6	7	8
P_{i}	35	-35	11	-2	3	1	2	1	3
Q_{i}	101	-12	9	$\mathbf{1}$	4	3	3	4	$\mathbf{1}$
A_{i}	0	1	1	2	3	5	8	13	86
B_{i}	1	2	3	5	8	13	21	34	225

We observe that $Q_{3}=Q_{8}=1$. The period length is odd, so both the equations $x^{2}-13 y^{2}= \pm 101$ are soluble. With $G_{n}=Q_{0} A_{n}-P_{0} B_{n}$, we have
$G_{2}=101 \cdot 1-35 \cdot 3=-4 . x+y \sqrt{13}=-4+3 \sqrt{13}, x^{2}-13 y^{2}=-101 ;$
$G_{7}=101 \cdot 13-35 \cdot 34=123 . x+y \sqrt{13}=123+34 \sqrt{13}, x^{2}-13 y^{2}=101$.
(b) $\frac{-35+\sqrt{13}}{101}=[-1,1,2,4, \overline{1,1,1,1,6}]$.

i	0	1	2	3	4	5	6	7	8
P_{i}	-35	-66	23	1	3	1	2	1	3
Q_{i}	101	-43	12	$\mathbf{1}$	4	3	3	4	$\mathbf{1}$
A_{i}	-1	0	-1	-4	-5	-9	-14	-23	-152
B_{i}	1	1	3	13	16	29	45	74	489

We observe that $Q_{3}=Q_{8}=1$. Hence
$G_{2}=101 \cdot(-1)-(-35) \cdot 3=4 . x+y \sqrt{13}=4+3 \sqrt{13}, x^{2}-13 y^{2}=-101$;
$G_{7}=101 \cdot(-23)-(-35) \cdot 74=267 . x+y \sqrt{13}=267+74 \sqrt{13}, x^{2}-13 y^{2}=101$.
Hence $-4+3 \sqrt{13}$ and $123+34 \sqrt{13}$ are fundamental solutions for the equations $x^{2}-13 y^{2}=-101$ and $x^{2}-13 y^{2}=101$ respectively.

We have $\eta=649+180 \sqrt{13}$, so the complete solution of $x^{2}-13 y^{2}=-101$ is given by $x+y \sqrt{13}= \pm \eta^{n}(\pm 4+3 \sqrt{13}), n \in \mathbb{Z}$, while the complete solution of $x^{2}-13 y^{2}=101$ is given by $x+y \sqrt{13}= \pm \eta^{n}(\pm 123+34 \sqrt{13}), n \in \mathbb{Z}$.
Example 2. $x^{2}-221 y^{2}= \pm 217$.
We find the solutions of $P_{0}^{2} \equiv 221(\bmod 217)$ are ± 2 and ± 33.
(a) $\frac{2+\sqrt{221}}{217}=[0,12, \overline{1,6,2,6,1,28}]$.

i	0	1	2	3	4	5	6	7
P_{i}	2	-2	14	11	13	13	11	14
Q_{i}	217	$\mathbf{1}$	25	4	13	4	25	$\mathbf{1}$
A_{i}	0	1	1	7	15	97	112	3233
B_{i}	1	12	13	90	193	1248	1441	41596

We observe that $Q_{1}=Q_{7}=1$. The period length is even and $(-1)^{7}=-1$. Hence the equation $x^{2}-221 y^{2}=-217$ is soluble.

$$
G_{0}=217 \cdot 0-2 \cdot 1=-2 . x+y \sqrt{221}=-2+\sqrt{221}, x^{2}-221 y^{2}=-217 .
$$

There is no need to expand $\frac{-2+\sqrt{221}}{217}$, as $-2+\sqrt{221}$ is a fundamental solution.
(b) $\frac{33+\sqrt{221}}{217}=[0,4,1,1, \overline{6,1,28,1,6,2}]$.

i	0	1	2	3	4	5	6	7	8	9
P_{i}	33	-33	17	0	13	11	14	14	11	13
Q_{i}	217	-4	17	13	4	25	$\mathbf{1}$	25	4	13
A_{i}	0	1	1	2	13	15	433	448	3121	6690
B_{i}	1	4	5	9	59	68	1963	2031	14149	30329

We observe that $Q_{6}=1$. The period length is even and $(-1)^{6}=1$. Hence the equation $x^{2}-221 y^{2}=217$ is soluble.
$G_{5}=217 \cdot 15-33 \cdot 68=1011 . x+y \sqrt{221}=1011+68 \sqrt{221}, x^{2}-221 y^{2}=217$.
(c) $\frac{-33+\sqrt{221}}{217}=[-1,1,10, \overline{1,28,1,6,2,6}]$.

i	0	1	2	3	4	5	6	7	8
P_{i}	-33	-184	29	11	14	14	11	13	13
Q_{i}	217	-155	4	25	$\mathbf{1}$	25	4	13	4
A_{i}	-1	0	-1	-1	-29	-30	-209	-448	-2897
B_{i}	1	1	11	12	347	359	2501	5361	34667

We observe that $Q_{4}=1$. The period length is even and $(-1)^{4}=1$. Hence the equation $x^{2}-221 y^{2}=217$ is soluble. We have
$G_{3}=217 \cdot(-1)-(-33) \cdot 12=179 . x+y \sqrt{221}=179+12 \sqrt{221}, x^{2}-221 y^{2}=217$.
It follows from (b) and (c) that $179+12 \sqrt{221}$ is a fundamental solution.

We have $\eta=1665+112 \sqrt{221}$, so the complete solution of $x^{2}-221 y^{2}=-217$ is given by $x+y \sqrt{221}= \pm \eta^{n}(\pm 2+\sqrt{221}), n \in \mathbb{Z}$, while the complete solution of $x^{2}-221 y^{2}=217$ is given by $x+y \sqrt{221}= \pm \eta^{n}(\pm 179+12 \sqrt{221}), n \in \mathbb{Z}$.
Example 3. (Lagrange [6, pages 723-725]) $x^{2}-79 y^{2}= \pm 101$. We find the solutions of $P_{0}^{2} \equiv 79(\bmod 101)$ are ± 33. However $(33+\sqrt{79}) / 101=[0,2,2, \overline{2,3,5,1,1,1}]$ and from the table

i	0	1	2	3	4	5	6	7	8
P_{i}	33	-33	13	5	7	8	7	3	4
Q_{i}	101	-10	9	6	5	3	10	7	9

we see that the condition $Q_{n}=1$ does not hold for $3 \leq n \leq 8$.
Hence the equations $x^{2}-79 y^{2}= \pm 101$ are not soluble.
The calculations were carried out with the author's number theory program CALC and bc program surd.

References

[1] G.H. Hardy and E.M. Wright, An Introduction to Theory of Numbers, Oxford University Press 1962.
[2] R.A. Mollin, Fundamental Number Theory with Applications, CRC Press, NY 1998.
[3] T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, NY 1981.
[4] A. Nitaj, Conséquences et aspects expérimentaux des conjectures abc et de Szpiro, Thèse, Caen 1994.
[5] W. Patz, Über die Gleichung $X^{2}-D Y^{2}= \pm c \cdot\left(2^{31}-1\right)$, Bayer. Akad. Wiss. Math-Natur. Kl. S.-B (1948) 21-30.
[6] J.-A. Serret (Ed), Oeuvres de Lagrange, I-XIV, Gauthiers-Villars, Paris 1877.

Keith Matthews
Department of Mathematics
University of Queensland
Brisbane
Australia 4072
e-mail: krm@maths.uq.edu.au

