The Diophantine Equation z?> — Dy? = N, D >0

Keith Matthews

Abstract. We describe a neglected algorithm, based on simple continued fractions, due
to Lagrange, for deciding the solubility of z? — Dy* = N, with ged(z, y) = 1, where D > 0
and is not a perfect square. In the case of solubility, the fundamental solutions are also
constructed.

1. Introduction. In a memoir of 1768 (see [6, Oeuvres II, pages 377-535]), La-
grange gave a recursive method for solving 2 — Dy? = N, with ged(x,y) = 1,
where D > 1 and is not a perfect square, thereby reducing the problem to the case
where |N| < v/D, in which case the positive solutions (x,y) will be found amongst
the pairs (pn, ¢n), With p,, /g, a convergent of the simple continued fraction for v/D.

It does not seem to be widely known that Lagrange also gave another algorithm
in a memoir of 1770 (see [6, Oeuvres II, pages 655-726]), which may be regarded as
a generalisation of the well-known method of solving Pell’s equation #2 — Dy? = £1
using the simple continued fraction for v/D.

In this paper, we give a version of Lagrange’s second algorithm which uses only
the language of simple continued fractions. Also Lagrange’s proof of the necessity
condition in Theorem 1 is long and not easy to follow and we have replaced it by
a much simpler proof.

A. Nitaj has also given a related algorithm in his PhD. Thesis [4, pages 57—
88]. His treatment of Theorem 1 requires the cases D = 2 or 3 and N < 0 to be
treated separately. Also unlike our algorithm, his requires the calculation of the
fundamental solution 7 of Pell’s equation.

Lagrange’s algorithm has been rediscovered by R. Mollin [2, pages 333-340]. His
treatment is more complicated than ours, as it uses the language of ideals and
semi-simple continued fractions, in addition to that of simple continued fractions.
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2. Constructing solutions of 22 — Dy? = N.

A necessary condition for the solubility of 2 — Dy? = N, with ged(z,y) = 1, is
that the congruence u?> = D (mod Q) shall be soluble, where Qg = |N]|.

The sufficiency part of Lagrange’s algorithm was given by Perron in his intro-
duction to a paper of Patz [5]. Perron starts with a solution Py of the above
congruence. If z,, = (P, + v/ D)/Q, is the n—th complete convergent of the simple
continued fraction for w = (Py + v/ D)/Qq, A,/B,, is the n—th convergent to w and
Gn-1=QoAn_1 — PyB,_1, then (|2, pages 246-248])

(1) Gifl - DBZA = (_1)nQ0Qn-

Hence if @, = (=1)"N/|N|, it follows that equation (1) gives a solution (z,y) =
(Gp_1,Bn_1) of 2 — Dy? = N. We also have ged(z,y) = 1.
For ged (Gr—1, Bn—1) = ged(QoAn—1, Bn-1) = gcd(Qo, Br—1) and equation (1)
gives
(QoAn—1— Pan,1)2 - DB72171 =N
QA% | —2QyPyA, 1B, 1+ (PP —D)B:_ | =N
(P¢—D)

QoA2_| —2PyA,_1B,_1 +
Qo

B? | = N/|N| = +1.

Hence ged(Qo, Bn—1) = 1.

In part (a) of Theorem 2, we prove that this construction can be reversed, to
provide a simple necessary condition for the solubility of 22 — Dy? = N where
ged(z,y) = 1. (Such solutions are called primitive.)

In section 6, we give three numerical examples.

3. Equivalence of solutions (See Nagell [3, pages 204-205].)
Primitive solutions oy = z1 + yl\/ﬁ and ag = x5 + ygx/ﬁ of 22 — Dy?> = N are
called equivalent if their ratio is a solution u+wvv/D of Pell’s equation u? — Dv? = 1.

A necessary and sufficient condition for «; and as to be equivalent is that

(2) T1Xy — Dylyg =0 (HlOd Qo), T1Y2 — Y12 = 0 (HlOd Qo)

Each primitive solution x + yv/D determines a unique integer Py satisfying = =
—Pyy (mod Qp) and PZ = D (mod Qp), with —Qo/2 < Py < Qo/2. We say that
z 4+ yv/D belongs to P.

x4+ yvD and —x + yv/D determine conjugate classes.

If these classes are equal, the class is called ambiguous.

Ambiguous classes occur precisely when Py = 0 or Qo/2. Also Py = 0 if and
only if Qq|D, while if Qg is even, Py = Qp/2 if and only if either (a) 4|Qq and Qq|D
or (b) Qo|2D and D is odd.

There are finitely many equivalence classes and these are represented by funda-
mental solutions x + yv/ D, where y is positive and has least value for the class. If
the class is ambiguous, we can assume that = > 0.

The equivalence class containing the fundamental solution x¢ + yov/D consists
of the numbers +(zo + yovD)n™, n € Z, where n = u + vv/D is the fundamental
solution of Pell’s equation u2 — Dv? = 1.



4. A necessary condition for solubility of 2 — Dy? = N.

Theorem 1. Suppose 2> — Dy? = N is soluble in integers z > 0 and y > 0,
ged(z,y) = 1 and let Qo = |N|. Then ged(Qo,y) = 1. Define Py by = =
—Pyy (mod Qp), where D = P2 (mod Q) and —Qo/2 < Py < Qo/2.

Let w = (P + \/5)/@0 and r = Qo X — Pyy. Then

(i) X/y is a convergent A, _1/B,—1 of w;

(i) Qu = (~1)"N/|N.

We need a result which is an extension of Theorem 172 [1, pages 140—141].

Lemma. If w = ggig, where ¢ > 1 and P,Q, R, S are integers such that @ >
0,S>0and PS—QR==1,0or S=0and Q =1 = R, then P/Q is a convergent
to w. Moreover if @ # S > 0, then R/S = (pn—1 + kpn)/(¢n-1 + kqn), k > 0. Also
¢+ k is the (n 4+ 1)—th complete convergent to w. Here k = 0 if Q > S, while k > 1

itfQ < S.
Proof. Hardy and Wright deal only with the case @ > S > 0. They write

P Dn
- = [G'Oaalv"'»an] =

and assume PS — QR = (16)2"1. Then "
PnS — @R = PS — QR = ppGn_1 — Pn—14n,
80 Pn(S = Gn-1) = gn(R — pn_1).
Hence ¢,|(S — ¢n—1). Then from ¢, = Q > S > 0 and ¢, > gn—1 > 0, we deduce
|S — gn-1] < gn and hence S — g,—1 = 0. Then S = ¢,—1 and R = p,,_1.

Also
_ PC+R _pnC"'_pnfl

w = =
QC+S 4nC + gn—1
If S=0and Q =R =1, then w=[P,(] and P/Q = P/1 = py/qo.
fQ=5then@Q=S=1and P-R==1. If P=R+1, then w = [R, 1,],
so P/IQ=(R+1)/1=p1/q1. f P=R—1,thenw =[R—1,1+(] and P/Q =
(R—1)/1 = po/qo-
If Q < S, then from g,|(S — ¢n—1) and
S_Qn71>Q_Qn71:Qn_qn71207
we have S — ¢,_1 = kqn, where k > 1. Then
oo PCH R paCtpas +kpn _ pu(CHE) + o
Q+S gl Fan-1+ktn  an(C+EK)+ gno
and w = [ag, ..., an,C + K.

Proof of the Theorem. With Qg = |[N|, * = Qo X — Pyy and 22 — Dy? = N, we
have

= [a07a17~--»an»d-

Pyx + Dy = —P?y + Dy = (—P? + D)y = 0 (mod Qo).

Hence the matrix
P R x Pozt+Dy
fr— QO
Q S Y x
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has integer entries and determinant A = +1. For

A = xp_ Yoz +Dy)
Qo
_ [+ hyz  y(Pxr+ Dy)
Qo Qo
2 _ 12
_ o by
Qo
Also if ¢ = v/D and w = (Py + VD) /Qy, it is easy to verify that w = ggig Then

the lemma implies that X/y is a convergent to w.
Finally x = Qo X — Poy = QoAn_1 — PoB,,—1 = G,,_1 and
N=2>-Dy*=G2_, - DB?_| = (-1)"QoQn.
Hence Q,, = (—1)"N/|N]|.

Remark. The solutions u of u? = D (mod Q) come in pairs uy, ..., +u,, where
0 < u; < Qo/2, together with possibly u,+1 = 0 and u,42 = Qp/2. Hence we can
state the following:

Corollary. Suppose 2 — Dy? = N is soluble, with z > 0 and y > 0, ged(z,y) = 1
and Qo = |N|. Let & = —PFPyy (mod Qp), where Py = 4wu; (mod Qg) and = =
QoX — Pyy. Then X/y will be a convergent A,,_1/B,_1 of w; = (u; + vVD)/Qq or
wj = (—u; +vD)/Qo and Q,, = (=1)"N/|N]|.

5. An algorithm for solving z? — Dy?> = N. In view of the Corollary, we
know that the primitive solutions to 22 — Dy? = N with y > 0 will be found by
considering the continued fraction expansions of both w; and w’ for 1 < i <7+ 2.
One can show that each equivalence class contains solutions (z,y) with > 0
and y > 0, so the necessary condition @, = (—1)"N/|N| shall occur for some n
holds for both w; and w]. Hence to check for solubility, we need only consider w;.

Suppose that w; = (u; +vD)/Qo = [ao, .. ., Tir1, 5 Giri)-

If 2 — Dy? = N is soluble with > 0 and y > 0, there are infinitely many
such solutions and hence @),, = 1 holds for w; for some n > t 41 and hence, by
periodicity, also in the range t + 1 < n <t + 1. Any such n must have @, = 1, as
(P, ++v/D)/Q, is reduced for n in this range and so Q,, > 0. Moreover if [ is even,
the condition Q,, = (—1)"N/|N]| is also preserved.

Moreover there can be at most one n in the range t+1 < n < t+4I{ for which Qn =
1. For if P, 4+ /D is reduced, then P, = [v/D] and hence two such occurrences of
@, = 1 within a period would give a smaller period.

We also remark that [ is odd, if and only if the fundamental solution 7y of the
Pell equation 22 — Dy? = 41 has norm equal to —1. Consequently a solution of
22 — Dy? = N gives rise to a solution of 22 — Dy? = —N; indeed we see that if
t+1<n<t+4+land k>1, then Gpyx—1 + Bn-i—kl—l\/ﬁ = U]S(Gn—l + Bn_l\/ﬁ).
Hence G2, —DB2,, = —(G}_, — DB _,) if Norm(ny) = —1.

n—1 n—1

Putting these observations together, we have the following;:
Theorem 2. For 1 <i<r+2, let

w; = (ui + @)/Qo = [ao,...,at,at+1,...,at+l].
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(a) Then a necessary condition for 2 — Dy? = N, ged(x,y) = 1, to be soluble is
that for some iini=1,...,7r+ 2, we have },, =1 forsomenint+1<n<t+1,
where if [ is even, then (—1)"N/|N| = 1.

(b) Conversely, suppose for w;, we have @, = 1 for some n with t +1 <n <t +1.
Then
(i) Iflis even and (—1)"N/|N| = 1, then 22 — Dy? = N is soluble with solution
Gn-1+ Bn_1VD.
(ii) If [ is odd, then G,,_1 + B,_1VD is a solution of 2? — Dy* = (—1)"|N]|,
while G411 + Bnyi—1VD will be a solution of 22 — Dy? = (—1)"*!|N|.
(iii) At least one of the Gp,—1 + Bp—1VD with least B,,_; satisfying Q,, =
(=1)™N/|N|, which arise from the continued fraction expansions of w; and
w!, will be a fundamental solution of 22 — Dy? = N.

Remarks. 1. Unlike the case of Pell’s equation, ),, = 41 can also occur for
n < t+ 1 and can contribute to a fundamental solution. If Norm (1) = 1, one sees
that to find the fundamental solution for 22 — Dy? = N, it suffices to examine
only the cases @), = £1,n <=t + [. However if Norm (1) = —1, one may have to
examine the range t + 1+ 1 < n <t + 2] as well.

2. It can happen that [ is even and that 22 — Dy? = N is soluble with = =
+(—wu;y) (mod Qp), while 22 — Dy? = —N is soluble with = +(—u;y) (mod Qy),
with @ # j. (Of course if |N| = p is prime, this cannot happen, as the congruence
u? = D (mod p) has two solutions if p does not divide D and one solution if p divides
D.)

An example of this is D = 221, N = 217 (see Example 2 later). Then u; =
2,us = 33. Also [ = 6 and (2 + v/221)/217 produces the solution —2 + /221 of
12 —221y% = —217, whereas (33 —+/221)/217 produces the solution —179412+/221
of x? — 221y% = 217.

6. Example 1 (Lagrange [6, pages 719-723]). 22 — 13y = £101.
We find the solutions of P = 13 (mod 101) are £35.

(a) 3513 — [0 2 1,1,1,1,1,1, 6.

101
1 0 112 31415116 | 7] 8
Pl 3 |-3]11|-2|3|1]2]|1 3
Q;|101 | -12| 9 11413 |3]4 1
A; | O 111 213|518 13| 8
B;| 1 213 5181321341225

We observe that Q3 = Qs = 1. The period length is odd, so both the equations
2% — 13y? = £101 are soluble. With G,, = QoA,, — PyB,,, we have

Gy=101-1-35-3 = —4. x +y/13 = -4+ 3V/13, 2 — 13y% = —101;

G7=101-13 - 35-34 = 123. = +yv/13 = 123 + 341/13, 2% — 13y* = 101.

(b) =35I8 — [_1,1,2,4,T,1,1, 1, 6].

1 0 1 2 3 4 5 6 7 8
P; | =35 | —66 | 23 1 3 1 2 1 3
Q;| 101 | —43 | 12 1 4 3 3 4 1
Al -1 0|—-1|—-4|-5|-9|—-14| —-23| —152
B; 1 1 31 13| 16| 29 45 74 489




We observe that Q3 = Qs = 1. Hence
Gy =101-(=1) — (=35) -3 =4. 2+ y/13 = 4 + 3V/13, 2® — 13y? = —101;
G7 =101-(—23) — (—35) - 74 = 267. x+yv/13 = 267 4 74y/13, 2% — 13y> = 101.

Hence —4 + 34/13 and 123 + 34+/13 are fundamental solutions for the equations
22 — 13y? = —101 and 22 — 13y? = 101 respectively.

We have 1 = 649 + 1801/13, so the complete solution of z? — 13y> = —101
is given by x + yv13 = £n"(+4 + 3v/13),n € 7Z, while the complete solution of
22 — 13y% = 101 is given by x 4+ yv/13 = +n"(+123 + 34V/13),n € Z.

Example 2. 22 — 221y% = £217.
We find the solutions of P? = 221 (mod 217) are +2 and +33.

(a) 2422 =0,12,1,6,2,6,1,28].

1 0 112 3| 4 ) 6 7
Pl 2 | -2|14|11] 13 13 11 14
Qi 217 1|25 4| 13 4 25 1
A; | O 111|715 | 97 112 | 3233
B, | 1 12113 | 90 | 193 | 1248 | 1441 | 41596

We observe that Q1 = Q7 = 1. The period length is even and (—1)7 = —1.
Hence the equation x? — 221y% = —217 is soluble.
Go=217-0—2-1= -2, z+yV221 = -2 + /221, 22 — 221y? = —217.

There is no need to expand _2% V7221, as —2 + /221 is a fundamental solution.

(b) 334¥221 — [0,4,1,1,6,1, 28, 1,6,2].

1 0 1121345 6 7 8 9
P33 | -33|17| 0 |13 ]11| 14 14 11 13
Qi | 217 —4|17|13| 4 |25 1 25 4 13
A; ] O 1] 1] 2 |13|15] 433 | 448 | 3121 | 6690
Bi| 1 41519 (5968|1963 | 2031 | 14149 | 30329

We observe that Q¢ = 1. The period length is even and (—1)% = 1. Hence the
equation x2 — 221y% = 217 is soluble.
G5 =217-15—33-68 = 1011. = + yv/221 = 1011 + 68/221, 22 — 22132 = 217.

(c) %\!ﬁ =[-1,1,10,1,28,1,6,2,6].

1 0 1 2 3 4 ) 6 7 8
P | =33 | —-184| 29| 11 14 14 11 13 13
Q; | 217 | —155 41 25 1 25 4 13 4
A | -1 0}—-1]—-1|-29|-30| —209 | —448 | —2897
B; 1 1] 11| 12| 347 | 359 | 2501 | 5361 | 34667

We observe that Q4 = 1. The period length is even and (—1)* = 1. Hence the
equation 22 — 221y? = 217 is soluble. We have
Gy =217-(—1)—(—33)-12 = 179. z+y/221 = 179+12/221, 22 — 221y = 217.

It follows from (b) and (c) that 179 4+ 12v/221 is a fundamental solution.
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We have 1 = 1665 + 1124/221, so the complete solution of z? — 221y? = —217

is given by = + yv/221 = £n™(£2 + v/221),n € Z, while the complete solution of
22 — 221y? = 217 is given by & + yv/221 = £ (£179 + 12¢/221),n € Z.

Example 3. (Lagrange [6, pages 723-725]) 22—79y? = £101. We find the solutions
of P? =79 (mod 101) are £33. However (33++/79)/101 = [0,2,2,2,3,5,1,1,1] and
from the table

we see that the condition @,, = 1 does not hold for 3 < n <

Hence the equations 2 — 79y? = £101 are not soluble.

1 0 1 2134|5678
Pi|l 33 |-33|13|5|7|8| 7|34
Qi ||101]-10]9 |6|5|3|10]|7|9

8.

The calculations were carried out with the author’s number theory program CALC
and bc program surd.

(1]
(2]
(3]
(4]
(5]

[6]
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