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Abstract

This expository article is about nowhere-zero flows and the flow
polynomial, which counts the number of nowhere-zero flows of a
graph. Following the definitions and properties of the flow poly-
nomial, some examples and calculations are used to illustrate and
develope the arithmetic of the flow polynomial. Furthermore, the
flow polynomial of some classes of graphs are computed.

1 Introduction

Much information about the flow polynomial can be found in [4], [7] and
[8]. Given a graph G(V,E) with vertex set V and edge set E, where multiple
edges are allowed, let (D, f) be an ordered pair where D is an orientation
of E(G) and f : E(G) → Z be an integer-valued function called a flow. An
oriented edge of G is called an arc. For a vertex v ∈ V (G), let E+(v) ={all
arcs of D(G) with their tails at v} and E−(v) ={all arcs of D(G) with
their heads at v}.

Definition 1.1 A λ-flow of a graph G is a flow f such that |f(e)| < λ for
every edge e ∈ E(G) and for every vertex v ∈ V (G)∑

e∈E+(v)

f(e) ≡
∑

e∈E−(v)

f(e) (mod λ).

The support of f , supp(f), is the set of all edges of G with f(e) ̸= 0. A
λ-flow is nowhere-zero if supp(f) = E(G).
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Figure 1: A λ-flow at vertex V

Some long-standing conjectures on flows found in [9] are as follows:

Conjecture 1.2 Every bridgeless graph admits a nowhere-zero 5-flow.

Conjecture 1.3 Every bridgeless graph containing no subdivision of the
Petersen graph admits a nowhere-zero 4-flow.

Conjecture 1.4 Every bridgeless graph containing no 3-edge-cut admits a
nowhere-zero 3-flow.

A number Λ(G) of interest is the least integer Λ such that G has a
nowhere-zero Λ-flow. In [2], Jaeger increased the plausibility of conjecture
1.2 by proving that every bridgeless graph has a nowhere-zero 8-flow. Sey-
mour [5], improved this upper bound Λ to 6. In [6], Λ(G) was further
lowered for certain classes of graphs. For a graph G(V,E), the cyclomatic
number of G, ν(G) is defined as ν(G) = |E(G)|−|V (G)|+κ(G) where κ(G)
denotes the number of components. In [8], Tutte defines the flow polyno-
mial, F (G,λ), of a graph G as a graph function and as a polynomial in an
indeterminate λ with integer coefficients by

F (G,λ) = (−1)
|E(G)| ∑

S⊆E(G)

(−1)
|S|

λν(G:S)

where (G : S) denotes the spanning subgraph of G with edge-set S. F (G,λ)
is a polynomial in λ which gives the number of nowhere-zero λ-flows in G
independent of the chosen orientation. Tutte [8] defines the chromatic
polynomial, P (G,λ), of a graph G by

P (G,λ) =
∑

S⊆E(G)

(−1)
|S|

λκ(G:S).

When λ takes a positive integral value n, P (G,n) is the number of
“proper vertex” n-colorings of G. For more information on chromatic poly-
nomials see [3]. It is often more convenient to work with the new variable
ω = 1−λ. Tutte [8] states seven properties of the flow polynomial F (G) of
a graph G, where G can be any graph, possibly with multiple edges and/or
loops, as follows:
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Property 1.5 F (G,ω) is a polynomial of degree ν = ν(G). Coefficient of
ων is (−1)

ν
and all terms in F (G,ω) have the same sign.

Property 1.6 If G has no edges, then F (G,λ) = 1.

Property 1.7 If G has a bridge, then F (G,λ) = 0.

Property 1.8 If G consists of two graphs H and K which are either dis-
joint or have a single vertex in common, then F (G,λ) = F (H,λ) ·F (K,λ).

Property 1.9 If G is a cycle, then F (G,λ) = λ− 1.

Property 1.10 If e is any edge of G, then F (G,λ) = F (G′′, λ)−F (G′, λ),
where G′ and G′′ are obtained from G by deleting and contracting the edge
e, respectively.

Property 1.11 F (G,λ) is a topological invariant and hence any two home-
omorphic graphs will have the same flow polynomial.

By a result of Jaeger [1], if G is planar, then P (G∗, λ) = λ ·F (G,λ), where
G∗ is the planar dual of G.

2 Some Examples and Calculations

To illustrate the properties discussed above, we compute the flow polyno-
mial of some graphs.

Example 2.1 Given G, H and K in Figure 2, F (G,λ) = F (H,λ) =
F (K,λ).

G H K

Figure 2: Homeomorphic graphs & suppression of degree 2 vertices

Example 2.2 Given G, G∗, H and H∗ in Figure 3, we have

F (G,λ) =
1

λ
P (G∗, λ) =

1

λ

[
λ(λ− 1)(λ− 2)

]
= (λ− 1)(λ− 2)

F (H,λ) =
1

λ
P (H∗, λ) =

1

λ

[
λ(λ− 1)

3

]
= (λ− 1)

3
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G G* H H *

Figure 3: Some planar graphs with their planar duals

Example 2.3 Let X3 denote the 2-connected graph on 2 vertices with 3
edges. As we just saw, F (X3, λ) = λ2 − 3λ + 2 and the number of all
nowhere-zero 4-flows of X3 is F (X3, 4) = 6. In Figure 4 we list all of them
for the arbitrary orientation that we have picked for X3
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Figure 4: The 6 nowhere-zero 4-flows of X3

Example 2.4 Let X5 denote the 2-connected graph on 2 vertices with 5
edges. By Lemma 4.1, F (X5, ω) = ω+ ω2 + ω3 + ω4. Hence the number of
all nowhere-zero 3-flows of X5 is F (X5,−2) = 10. In Figure 5 we list all
of them for the arbitrary orientation that we have picked for X5
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Figure 5: The 10 nowhere-zero 3-flows of X5

Example 2.5 Let K4 be the complete graph on 4 vertices with flows as
shown in Figure 6. Since F (K4, λ) =

1
λP (K∗

4 , λ) =
1
λP (K4, λ) = −6+11λ−

6λ2 + λ3, the the number of nowhere-zero 4-flows of K4 is F (K4, 4) = 6.
In Figure 6 we list all of them for the arbitrary orientation that we have
picked for K4
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Figure 6: The graph K4 and its 6 nowhere-zero 4-flows

3 Sheaf Removal and Duality

Given a graph M consider a bundle of multiplicity n and let K be the graph
obtained by contracting this bundle in G to a vertex andH that obtained by
deleting this bundle. By using Property 1.10 of flow polynomials repeatedly,
Read and Whitehead [4] arrive at the “SRF”, or the Sheaf Removal
Formula:

F (M,ω) = (−1)
n

[
ωn − 1

1− ω
F (K,ω) + F (H,ω)

]
. (3.1)

M K H

uv

v

u

v

u

n

Figure 7: The Deletion and Contraction of a sheaf of edges

The chromatic polynomial and the flow polynomial are in general related
to each other by the following formulas of Read and Whitehead in [4]:

F (M,λ) =
(−1)

µ(E)

λp

∑
U⊂E

P (MU )(1− λ)
µ(U)

(3.2)

P (G,λ) =
(−1)

µ(E)

λq−p

∑
(Y,U)

F (Y )(1− λ)
µ(U)

(3.3)

In Equation 3.2, µ(U) is the sum of the number of edges in the bundles
of U , while in Equation 3.3, µ(U) denotes the sum of lengths of the chains
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in U . Equation 3.2 will be explained later. Here we show how Equation
3.3 works by letting G = K4. We find all the spanning subgraphs Y of K4

and list the number of different ones in each class.

12361

4 12 4 12

3 6 1

Figure 8: Y , Spanning subgraphs K4

Next for each Y , we find its complement U .

12361

4 12 4 12

3 6 1

Figure 9: U , Spanning complements of Y

Using Equation 3.3 and Property 1.7, we obtain

P (K4, ω) =
(−1)

6

λ2

[
1 · (ω6) + 0 + 0 + 0− 4ω(ω3) + 0 + 0 + 0

− 3ω(ω2) + 6(ω + ω2) · (ω1) + (−2ω − 3ω2 − ω3) · (ω0)

]

=
(−1)

6

λ2
(ω6 − 4ω4 + 2ω3 + 3ω2 − 2ω) = ω4 + 2ω3 − ω2 − 2ω

P (K4, ω) = (1− ω)(−ω)(−1− ω)(−2− ω) = λ(λ− 1)(λ− 2)(λ− 3)
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A graph G with loops has no proper vertex coloring, i.e, P (G,λ) = 0.
Likewise, we have already seen that a graph M with bridges can not have
any nowhere-zero λ-flows, i.e., F (M,λ)=0.

Two graphs are homeomorphic if both can be obtained from the same
graph by inserting new vertices of degree 2 into its edges. Graphs with the
same underlying simple graph were given the name amallamorphs by Read
and Whitehead in [4]. Two graphs G and H are said to be chromatically
equivalent if P (G,λ) = P (H,λ), while two graphs G and H are said to be
flow equivalent if F (G,λ) = F (H,λ).

Figure 10: Amallamorphic graphs and homeomorphic graphs

Since multiple edges have no effect on the colorings of the vertices in-
volved, all amallamorphic graphs have the same chromatic polynomial.
Similarly by Property 1.11, all degree 2 vertices can be suppressed and
that is why all homeomorphic graphs have the same flow polynomial. We
summarize the above in the Table 11. The decomposition property for
colorings holds, if G consists of two graphs H and K which are disjoint.

Property Vertex λ-Colorings Nowhere-Zero λ-Flows

Polynomial chromatic P (G) flow F (G)

Degree |V | |E| − |V |+ κ(G)

Unity no vertices P (G) = 1 no edges F (G) = 1

Reduction P (G) = P (G− e)− P (Ge) F (G) = F (Ge)− F (G− e)

Decomposition P (G) = P (H) · P (K) F (G) = F (H) · F (K)

Annihilation with loops, P (G) = 0 with bridges, F (G) = 0

Equivalence amallamorphism homeomorphism

Main Result 4-Color Theorem Nowhere-Zero 6-Flow

Connection Jaeger: If G is planar, then P (G) = λF (G∗)

Table 11: The comparison of colorings and flows

4 The Fundamental Elements

Let Xn denote the 2-connected graph on 2 vertices with n edges and Ln

denote the graph with n loops and one vertex. One might call these the
fundamental elements from which other flow polynomials are computed.
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. .

X Ln n

Figure 12: The graphs Xn and Ln

Lemma 4.1 F (Ln, ω) = (−ω)
n
, F (Xn, ω) = (−1)

n+1∑n−1
i=1 ωi for n ≥ 2 .

Proof: By Property 1.9 we know that the flow polynomial of the cycle is
−ω. By Property 1.8 F (Ln, ω) = (−ω)(−ω) . . . (−ω)︸ ︷︷ ︸

n

= (−ω)
n
. As for Xn,

use induction on the number of edges in Xn. For n = 2, F (X2, ω) = −ω.

Suppose F (Xn, ω) = (−1)
n+1∑n−1

i=1 ωi. Take Xn+1 and apply Property
1.10 to any edge e. Then

F (Xn+1, ω) = −F (Xn) + F (Ln) = −(−1)
n+1

n−1∑
i=1

ωi + (−ω)
n

= (−1)
n+2

n−1∑
i=1

ωi + (−1)
n+2

(ω)
n
= (−1)

n+2
n∑

i=1

ωi

3

1
2

n

n+1

Contract

Delete

...

...n+1
X

X n

L n
n.. ..

n

Figure 13: Applying the Deletion-Contraction Principle to Xn+1

5 Graphs With Prescribed Multiplicities

a

1

1
a

aa
2

3

a n-1
c

b

a

1

a b

1

a a

aa

a
3

21

n-1

n

Figure 14: M3(a, b, 1), M4(a, b, c, 1), Mn(a1, . . . , an−1, 1) and Mn(a1, . . . , an)
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We now focus our attention on Mn(a1, a2, . . . , an), whose underlying simple
graphs are the circuits, Cn.

Theorem 5.1 Let Cn be the underlying simple graph of the graph Mn with
edge multiplicities a1, a2, . . . , an−1, 1. Then

F (Mn, ω) = (−1)
a1+a2+...+an−1+2−n

ω

n−1∏
j=1

aj−1∑
i=0

ωi.

C: D:

1 1

a 1

a 2

a3a
n-2

a 1

a 2

a n-2

Figure 15: Applying SRF to Mn

Proof: We use induction on n and apply the SRF to the bundle whose
edge multiplicity is an−1. Contraction and deletion of this edge bundle
yields the graphs C and D shown in Figure 15.

F (Mn, ω) = (−1)
an−1

[
ωan−1 − 1

1− ω
F (C) + F (D)

]

= (−1)
an−1

[
− (1 + ω + . . .+ ωan−1−1)F (C) + 0

]
= (−1)

an−1−1

(1 + ω + . . .+ ωan−1−1)(−1)
a1+a2+···+an−2+2−n+1

ω

n−2∏
j=1

aj−1∑
i=0

ωi

= (−1)
a1+a2+...+an−1+2−n

ω
n−1∏
j=1

aj−1∑
i=0

ωi

In the above, D had a bridge. Therefore, by Property 1.7 F (D) = 0.

2

2

2

2

2
2 2

22

2

2

2

2n verticesn-1 verticesn vertices

nM n-1M Pn

Figure 16: Mn, Mn−1 and Pn with all edge multiplicities 2
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Theorem 5.2 Let Cn be the underlying simple graph of the graph Mn with
all edge multiplicities 2. For n ≥ 2, F (Mn, ω) = (−1)

n+1
[ω(1 + ω)

n − ωn].

Proof: We proceed by induction. For n = 2, F (M2, ω) = F (X4, ω) =

−ω − ω2 − ω3 = (−1)
2+1

[ω(1 + ω)
2 − ω2]. Suppose that F (Mn−1, ω) =

(−1)
n
[ω(1 + ω)

n−1 − ωn−1]. We apply the SRF to any bundle of edge
multiplicity 2. Contraction and deletion of this edge bundle yields the
graphs Mn−1 and Pn shown in Figure 16. Hence we have

F (Mn, ω) = (−1)
2

[
ω2 − 1

1− ω
F (Mn−1, ω) + F (Pn, ω)

]

= −(1 + ω)(−1)
n

[
ω(1 + ω)

n−1
+ (−1)

n−1
ωn−1

]
+ (−ω)

n−1

= (−1)
n+1

ω(1 + ω)
n
+ (−1)

n
ωn−1 + (−1)

n
ωn

+ (−1)
n−1

ωn−1 = (−1)
n+1

ω(1 + ω)
n
+ (−1)

n
ωn

Now we try to find the flow polynomial of the general cycle graph
Mn(a1, a2, . . . , an) depicted in Figure 17.

Theorem 5.3 Assume Mn(a1, a2, . . . , an) has Cn as its underlying simple
graph with edge multiplicities a1, a2, . . . , an. Then for n ≥ 3

F (Mn, ω) = (−1)
∑n−2

i=1
(an+1−i) · F (M2, ω)

(1− ω)
n−2 ·

n−2∏
j=1

(ωan+1−j − 1)

+
n−2∑
j=1

(
(−1)

∑n−1−j

i=1
(an+1−i) · F (Pj+2, ω) ·

n−2−j∏
m=1

(
ωan+1−m − 1

(1− ω)
n−2−j

))

a

a

aa1
a2

a
3

n-1

n
a

1

2

n-1a 1

a2
an-1

an-2
an-2

a

Figure 17: Mn(a1, . . . , an), Mn−1(a1, . . . , an−1) and Pn(a1, . . . , an−1)

Proof: Here we let Mi = Mi(a1, . . . , ai), while Pi = Pi(a1, . . . , ai−1) and
M2 = M2(a1, a2) are the graphs shown in Figure 18. Also M2

∼= Xa1+a2 .
We proceed by induction. For n = 3,
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a1
a2

a12iP M

i-2a
ai-1

2a

Figure 18: The graphs Pi and M2

F (M3, ω) = (−1)
a3
F (M2, ω)

1− ω
· (ωa3 − 1) + (−1)

a3F (P3, ω).

However, the above is merely an application of the deletion-contraction
principle for the edge bundle a3 of M3. Now suppose that F (Mk, ω) is
known. We apply the SRF to the bundle of edge multiplicity ak+1 of
Mk+1. Contraction and deletion of this edge bundle yields the graphs Mk

and Pk+1. Hence we have

F (Mk+1, ω) = (−1)ak+1

{
ωak+1 − 1

1− ω
F (Mk, ω) + F (Pk+1, ω)

}
= (−1)ak+1

{
ωak+1 − 1

1− ω

[
(−1)

∑k−2

i=1
(ak+1−i) · F (M2, ω)

(1− ω)k−2
·
k−2∏
j=1

(ωak+1−j − 1)

+

k−2∑
j=1

(
(−1)

∑k−1−j

i=1
(ak+1−i) · F (Pj+2, ω) ·

k−2−j∏
m=1

(
ωak+1−m − 1

(1− ω)k−2−j

))]

+ F (Pk+1, ω)

}
= (−1)

∑k−2

i=0
(ak+1−i) · F (M2, ω)

(1− ω)k−1
·
k−2∏
j=0

(ωak+1−j − 1)

+

k−1∑
j=1

(
(−1)

∑k−1−j

i=0
(ak+1−i) · F (Pj+2, ω) ·

k−1−j∏
m=1

(
ωak+2−m − 1

(1− ω)k−1−j

))

However, at his point a simple shift in all the indices will change the last
statement to the following.

F (Mk+1, ω) = (−1)
∑k−1

i=1
(ak+2−i) · F (M2, ω)

(1− ω)
k−1

·
k−1∏
j=1

(ωak+2−j − 1)

+

k−1∑
j=1

(
(−1)

∑k−j

i=1
(ak+2−i) · F (Pj+2, ω) ·

k−1−j∏
m=1

(
ωak+2−m − 1

(1− ω)
k−1−j

))

And this is exactly what we wanted to show.
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We now express the flow polynomial of M3 not as a rational function.
Table 20 provided some insight as to what the formula should be.

a b

c

Figure 19: The graph M3(a, b, c)

a b c ν coefficients of F (M3, ω) in ascending powers of ω

2 3 8 11 -1,-3,-4,-4,-4,-4,-4,-4,-3,-2,-1
6 6 6 16 1,3,5,7,9,11,10,9,8,7,6,5,4,3,2,1
3 8 8 17 -1,-3,-5,-6,-7,-8,-9,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1
4 7 9 18 1,3,5,7,8,9,10,10,10,9,8,7,6,5,4,3,2,1

Table 20: Flow polynomial of M3(a, b, c) for selected edge multiplicities

Notice that the coefficients, in absolute value, start at 1 and increase
through the odd numbers, then go up by consecutive integers, reach a
plateau and stay there for a while and then decrease back to 1.

Theorem 5.4 Let K3 be the underlying simple graph of the graph M3 with
edge multiplicities a, b, c where 0 < a ≤ b ≤ c, and a, b, c ∈ N. Then

F (M3, ω) = (−1)
a+b+c

[
a∑

i=1

(2i− 1)ωi +

b∑
i=a+1

(a− 1 + i)ωi

+

c∑
i=b+1

(a+ b− 1)ωi +

a+b+c−2∑
i=c+1

(a+ b+ c− 1− i)ωi

]
.

a b

c Contract

Delete

b+c

c

b

Figure 21: SRF applied to the bundle a

Proof: We apply the SRF to the bundle whose edge multiplicity is a.
Contraction and deletion of edge bundle a is depicted in Figure 21.

F (M3, ω) = (−1)
a

[
ωa − 1

1− ω
F (Xb+c, ω) + F (Xb, ω) · F (Xc, ω)

]

12



= (−1)
a

[
ωa − 1

1− ω
(−1)

b+c−1
(ω + ω2 + . . .+ ωb+c−1)

+ (−1)
b−1

(ω + . . .+ ωb−1)(−1)
c−1

(ω + . . .+ ωc−1)

]

= (−1)
a+b+c

[
(ω + . . .+ ωa−1)(ω + . . .+ ωb+c−1)︸ ︷︷ ︸

P

+ (ω + ω2 + . . .+ ωb−1)(ω + ω2 + . . .+ ωc−1)︸ ︷︷ ︸
Q

]

Powers
of ω

1 2 a b c b+c-2 b+c-1 a+b+c-2

Coeff
of P

1 2 ↗ a → a → a→ a → a ↘ 1

Coeff
of Q

0 1 ↗ a-1 ↗ b-1 → b-1 ↘ 1 0 0

Sum of
coeff

1 3 ↗ 2a-1 ↗ a+b-1 → a+b-1 ↘ a+1 a ↘ 1

Table 22: Collection of coefficients of ωi

Upon multiplying out and collecting the terms in the products P and Q, we
see a number of breaks in the ascending powers of ω where these powers can
be linearly ordered. We gather the similar terms and add the coefficients
of ωi in Table 22. Upon adding all the terms, the result follows.

. . ..

1a
a2a3

a
k-1

ak

a4

Figure 23: The sector graph

In [7], it was shown that the flow polynomial of the sector graph Sk =
Sk(a1, a2, . . . , an), shown in Figure 23, is

F (Sk, ω) = (−1)
(k−1+

∑k

i=1
ai) (ω

a1 − 1)(ωak − 1)

(1− ω)
2

(
k−1∏
i=2

ω1+ai − 1

1− ω

)
.

Theorem 5.5 Given k ≥ 2 and Wk(a1, a2, . . . , ak) whose underlying sim-
ple graph is Wk, the wheel with k spokes, we have

F (Wk, ω) = (−1)
k+
∑k

i=1
ai · ω ·

[
k−1∑
i=1

(−1)
i+1

13



(ωak+1−i − 1)
∏k−i

j=1

(
ω1+ak+1−i−j − 1

)
(1− ω)

k+1−i
+ (−1)

k+1ω
a1 − ω

1− ω

]
.

a

a

a

1

2

3

a

a

a

1 1

1

1

11

1

1

k-2

k-1

k

Figure 24: The wheel Wk(a1, a2, . . . , ak)

Proof: We proceed by induction. For k = 2, the formula gives

F (W2, ω) = (−1)
2+a1+a2 · ω

[
(−1)

2 (ω
a2 − 1)(ω1+a1 − 1)

(1− ω)
2 − ωa1 − ω

1− ω

]

= a
a1 a2

1 a2

2

Figure 25: The wheel W2 with a redrawing of it

To verify this, we start with W2 and apply SRF to some edge bundle,
say a2. Then we obtain F (W2, ω)=

= (−1)
a2

[
ωa2 − 1

1− ω
F (X2+a1 , ω) + F (Xa1 , ω)F (X2, ω)

]

= (−1)
a2

[
ωa2 − 1

1− ω
· (−1)

1+a1
ω2+a1 − ω

1− ω
+ (−1)

1+a1ω
ωa1 − ω

1− ω
· (−ω)

]

= (−1)
1+a1+a2

ωa2 − 1

1− ω
· −ω(ω1+a1 − 1)

1− ω
+ (−1)

1+a1+a2ω
ωa1 − ω

1− ω

= (−1)
2+a1+a2 · ω

[
(−1)

2 (ω
a2 − 1)(ω1+a1 − 1)

(1− ω)
2 − ωa1 − ω

1− ω

]

Now suppose the result is true for k = n. Start with Wn+1 and apply
SRF to the bundle whose edge multiplicity is an+1. The result is shown in
Figure 26.
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1
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2
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Contract a

Delete a

n+1

n+1

Figure 26: Decomposition results in sector and wheel graphs

F (Wn+1, ω) = (−1)
an+1

[
ωan+1 − 1

1− ω
F (G,ω) + F (H,ω)

]

In Figure 26, the graph obtained from Wn+1 by deletion of bundle an+1

is homeomorphic to H by Property 1.11 where H ∼= Wn, while the one
obtained from contracting an+1 is Sn, a sector graph whose flow polynomial
is known. Hence we now have

F (Wn+1, ω) = (−1)
an+1

[
ωan+1 − 1

1− ω
· (−1)

n−1+
∑n

i=1
ai+2 ·

ω
ω1+a1 − 1

1− ω
· ω

1+an − 1

1− ω
·
n−1∏
i=2

(
ω1+ai − 1

1− ω

)
+ F (Wn−1, ω)

]

= (−1)
n+1+

∑n+1

i=1
ai · ωωan+1 − 1

1− ω
·

n∏
i=1

(
ω1+ai − 1

1− ω

)
+ (−1)

an+1F (Wn, ω) = (−1)
n+1+

∑n+1

i=1
ai · ωωan+1 − 1

1− ω
·

n∏
i=1

(
ω1+ai − 1

1− ω

)
+ (−1)

an+1

(
(−1)

n+
∑n

i=1
ai · ω

[ n−1∑
i=1

(−1)
i+1

(ωan+1−i − 1)
∏n−i

j=1

(
ω1+an+1−i−j − 1

)
(1− ω)

n+1−i
+ (−1)

n+1ω
a1 − ω

1− ω

])

= (−1)
n+1+

∑n+1

i=1
ai · ω ·

{
ωan+1 − 1

1− ω
·

n∏
i=1

(
ω1+ai − 1

1− ω

)
+

[ n−1∑
i=1

15



(−1)
i+1 (ω

an+1−i − 1)
∏n−i

j=1

(
ω1+an+1−i−j − 1

)
(1− ω)

n+1−i
+ (−1)

n+1ω
a1 − ω

1− ω

]}

= (−1)
n+1+

∑n+1

i=1
ai · ω ·

{
ωan+1 − 1

1− ω
·

n∏
i=1

(
ω1+ai − 1

1− ω

)
+

[ n−1∑
i=1

(−1)
i (ω

an+1−i − 1)
∏n−i

j=1

(
ω1+an+1−i−j − 1

)
(1− ω)

n+1−i
+ (−1)

n+1ω
a1 − ω

1− ω

]}

By closely studying

{
. . . +

[
. . .

]}
in the last Equation, we can see

that the first term can be absorbed by the second by lowering the index in
the sum from 1 to 0.

= (−1)
n+1+

∑n+1

i=1
ai · ω ·

{
n∑

i=1

(−1)
i

(ωan+1−i − 1)
∏n−i

j=1

(
ω1+an+1−i−j − 1

)
(1− ω)

n+1−i
+ (−1)

n+1ω
a1 − ω

1− ω

}

However now by a readjustment of the index of summation, we obtain

= (−1)
n+1+

∑n+1

i=1
ai · ω ·

{
n−1∑
i=0

(−1)
i

(ωan+1−i − 1)
∏n−i

j=1

(
ω1+an+1−i−j − 1

)
(1− ω)

n+1−i
+ (−1)

n+1ω
a1 − ω

1− ω

}

which is the desired result and completes the inductive proof.

a 1

Xa1

1W L 1

Figure 27: The wheel W1

As the reader might have noticed by now, the above induction has an
initial starting point at n = 2. The first wheel W1 is a degenerate case and
must be dealt with separately. This is however a very trivial case and as
Figure 27 shows, W1 can be factored as the disjoint union of the Xa1 and
L1 by Property 1.8. So
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F (W1, ω) = F (Xa1 , ω) · F (X2, ω)

= (−1)
1+a1

wa1−1 − 1

ω − 1
· (−ω) = (−1)

a1
wa1 − ω

ω − 1

6 Expansion On Certain Subgraphs

As we explained in Section 3, the flow polynomial of a graph M can be
expressed as a polynomial in ω = 1 − λ, where the coefficients of ωi are
chromatic polynomials of certain subgraphs of M . See Equation 3.2.

Lemma 6.1 Let C3 be the underlying simple graph of the graph M3 with
edge multiplicities a, b, c. Then

F (M3, ω) =
(−1)

a+b+c

(1− ω)
3

[
(ω−ω3)+(ω2−ω)(ωa+ωb+ωc)+(1−ω)ωa+b+c

]
.

Lemma 6.2 Let C4 be the underlying simple graph of the graph M4 with
edge multiplicities a, b, c, d. Then F (M4, ω) =

(−1)
a+b+c+d

(1− ω)
4

[
(ω4 − ω) + (ω − ω3)(ωa + ωb + ωc + ωd) + (ω2 − ω) ·

(ωa+c + ωb+d + ωa+b + ωa+d + ωb+c + ωc+d) + (1− ω)ωa+b+c+d

]

Proof: We look at all different classes of subgraphs of M3 here and use
3.2. In the < U > column of Table 28, we list representative subgraphs. In
the GU column, the complement of each representative subgraph, with all
the edges in U contracted to point, are listed.
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< U > GU P (GU, λ) P (GU, ω) Powers of ω

(λ − 1)4 + (λ − 1) −ω + ω4 0

λ(λ − 1)(λ − 2) ω − ω3

a
b
c
d

λ(λ − 1) −ω + ω2 a + b
c + d

λ(λ − 1) −ω + ω2

a + c
a + d
b + d
b + c

0 0

a + c + d
a + b + d
b + c + d
a + b + c

c d

a

b

λ 1 − ω a + b + c + d

Table 28: Subgraph expansion of M4

The desired result follows.
We offer 2 different ways of obtaining a formula for the flow polynomial

of the general cycle graph Mn.
Our first method is recursion: SRF applied to Mn(a1, a2, . . . , an) results

in Mn−1(a1, a2, . . . , an−1) and a Pn(a1, a2, . . . , an−1), both of which can be
assumed to have previously computed flow polynomials. In this manner,
after applying SRF, we arrive at a formula for the flow polynomial of Mn

which is in terms of Mn−1 and Xi for i ≤ n− 1. Based on this argument,
we state the following theorem:

Theorem 6.3 Let Cn, the cycle of length n, be the underlying simple graph
of the graph Mn whose edge multiplicities are a1, a2, . . . , an. Then

F (Mn, ω) = (−1)
an

[
ωan − 1

1− ω
F (Mn−1, ω) + F (Pn, ω)

]
= (−1)

an

[
ωan − 1

1− ω
F (Mn−1, ω) +

n−1∏
i=1

F (Xai , ω)

]
.

The second way is to get more inspiration from Lemmas 6.1 and 6.2 by
studying the columns for the powers of ω in detail. To make this task
easier we make the following definition:
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Definition 6.4 Let the n-element set A = {ai}ni=1 be given. Take the
collection of all (j−1)-subsets of A, denoted by Ωj−1. Consider any member
of Ωj−1, say

{
ai1 , ai2 , . . . , aij−1

}
. Let the sum of the elements of this subset

be exponent of ω, i.e., ωai1+ai2+...+aij−1 . We do this for all members of
Ωj−1 and sum the resulting powers of ω. We call this sum Ψ(n, j − 1, ω).

Let the cycle of length n be the underlying simple graph of the graph
Mn = Mn(a1, a2, . . . , an) whose edge multiplicities are a1, a2, . . . , an. Then

F (Mn, ω) =
(−1)

∑n

i=1
ai

(1− ω)
n

[
n−1∑
i=1

(
(−1)

i+1
(ω − ωn+1−i)Ψ(n, j − 1, ω)

)

+ (1− ω)ω
∑n

i=1
ai

]
(6.4)

Example 6.5 Let us find the flow polynomial of M6. Using Equation 6.4,
first we determine all of the

(
6
0

)
=1 0-subsets,

(
6
1

)
=6 1-subsets,

(
6
2

)
=15 2-

subsets,
(
6
3

)
=20 3-subsets,

(
6
4

)
=15 4-subsets. Next we find Ψ(6, j−1, ω) for

j = 1, 2, 3, 4.

Ψ(6, 0, ω) = ω0 = 1

Ψ(6, 1, ω) = ωa + ωb + ωc + ωd + ωe + ωf

Ψ(6, 2, ω) = ωa+b + ωb+c + ωc+d + ωd+e + ωe+f + ωf+a + ωa+c + ωb+d

+ ωc+e + ωd+f + ωe+a + ωf+b + ωa+d + ωb+e + ωc+f

Ψ(6, 3, ω) = ωa+b+c + ωb+c+d + ωc+d+e + ωd+e+f + ωe+f+a

+ ωa+b+d + ωb+c+e + ωc+d+f + ωd+e+a + ωe+f+b

+ ωa+b+e + ωb+c+f + ωc+d+a + ωd+e+b + ωe+f+c

+ ωa+c+e + ωb+d+f + ωf+a+b + ωf+a+c + ωf+a+d

Ψ(6, 4, ω) = ωa+b+c+d + ωb+c+d+e + ωc+d+e+f + ωd+e+f+a

+ ωf+a+b+c + ωa+b+c+e + ωb+c+d+f + ωc+d+e+a

+ ωe+f+a+c + ωf+a+b+d + ωa+b+d+e + ωb+c+e+f

+ ωe+f+a+b + ωd+e+f+b + ωc+d+f+a

We can now use the above Ψ values with n = 6 in Equation 6.4 to obtain

F (M6, ω) =
(−1)

a+b+c+d+e+f

(1− ω)
6

[
(ω − ω6)Ψ(6, 0, ω)

− (ω − ω5)Ψ(6, 1, ω) + (ω − ω4)Ψ(6, 2, ω)− (ω − ω3)Ψ(6, 3, ω)

+ (ω − ω2)Ψ(6, 4, ω) + (1− ω)ωa+b+c+d+e+f

]
.
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Finally, The proof of the following two results can be found in [7].

Theorem 6.6 Let Wn, the wheel on n+1 vertices, be the underlying simple
graph of the graph G, where the rim edges of G have multiplicity 1 and
the spokes of G have edge multiplicities a⃗ = (a1, a2, . . . , an). Pick any
σ ∈ Sn and apply σ to the spokes of G and call the new graph Gσ whose
edge multiplicities now are σ(⃗a) = (aσ(1), aσ(2), . . . , aσ(n)). Then the flow
polynomial of G is permutation invariant, i.e.,

F (G,λ) = F (Gσ, λ).

Theorem 6.7 Let Cn be the underlying simple graph of the graph G whose
edge multiplicities are a⃗ = (a1, a2, . . . , an). Pick any σ ∈ Sn and apply σ to
the edge bundles of G and call the new graph Gσ, whose edge multiplicities
now are σ(⃗a) = (aσ(1), aσ(2), . . . , aσ(n)). Then the flow polynomial of G is
permutation invariant, i.e.,

F (G,ω) = F (Gσ, ω).
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