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MIDPOINT CRITERIA FOR SOLVING PELL’S EQUATION

USING THE NEAREST SQUARE CONTINUED FRACTION

KEITH MATTHEWS, JOHN ROBERTSON, JIM WHITE

Abstract. We derive midpoint criteria for Pell’s equation x2 − Dy2 = ±1,

using the nearest square continued fraction expansion of
√

D. The period of
the expansion is on average 70% that of the regular continued fraction. We also

derive similar criteria for the diophantine equation x2 − xy − (D−1)
4

y2 = ±1,

where D ≡ 1 (mod 4). We also present some numerical results and conclude
with a comparison of the computational performance of the regular, nearest
square and nearest integer continued fraction algorithms.

1. Introduction

Euler gave two midpoint criteria for solving Pell’s equation x2 −Dy2 = ±1 using
the regular continued fraction (RCF) expansion of

√
D (see [4, p. 358]). Suppose

the simple continued fraction expansion for
√

D is periodic with period k:

√
D =

{

[a0, a1, . . . , ah−1, ah−1, . . . , a1, 2a0] if k = 2h − 1,
[a0, a1, . . . , ah−1, ah, ah−1, . . . , a1, 2a0] if k = 2h.

Then the smallest solution of x2 − Dy2 = ±1 is given by

η = Ak−1 + Bk−1

√
D,

where An/Bn is the n-th convergent to
√

D. Euler observed that if k = 2h − 1,

A2h−2 = Ah−1Bh−1 + Ah−2Bh−2

B2h−2 = B2
h−1 + B2

h−2,

while if k = 2h,

A2h−1 = Ah−1Bh + Ah−2Bh−1

B2h−1 = Bh−1(Bh + Bh−2).

Also if (Pn +
√

D)/Qn denotes the n-th complete quotient of the RCF expan-

sion of
√

D, if Qh = Qh−1 then k = 2h − 1; while if Ph = Ph+1, then k = 2h.
Consequently we can detect the end of the half period.

H.C. Williams and P.A. Buhr [13] gave six midpoint criteria for the nearest

integer continued fraction of B. Minnegerode [7] and A. Hurwitz [5]. In our paper,
we give three midpoint criteria in terms of the nearest square continued fraction.
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2. Nearest square continued fraction

This continued fraction was introduced by A.A.K. Ayyangar in 1940 and 1941
(see [2], [3]) and arose from Bhaskara’s cyclic method (1150) for solving Pell’s

equation (see [1]). Let ξ0 = P+
√

D
Q

be a surd in standard form, i.e., D is a non-

square positive integer and P,Q 6= 0, D−P 2

Q
are integers, having no common factor

other than 1. Then with c = ⌊ξ0⌋, the integer part of ξ0, we can represent ξ0 in one
of two forms

ξ0 = c +
Q′

P ′ +
√

D
or ξ0 = c + 1 − Q

′′

P ′′ +
√

D
,

where P ′+
√

D
Q′

> 1 and P
′′

+
√

D

Q
′′ > 1 are also standard surds. We choose the partial

denominator a0 and numerator ǫ1 of the new continued fraction development as
follows:

(a) a0 = c if |Q′| < |Q′′ |, or |Q′| = |Q′′ | and Q < 0, ǫ1 = 1,

(b) a0 = c + 1 if |Q′| > |Q′′ |, or |Q′| = |Q′′ | and Q > 0, ǫ1 = −1.

The term nearest square arises on restating (a) and (b):

(a′) a0 = c if |P ′2 − D| < |P ′′2 − D|, or |P ′2 − D| = |P ′′2 − D| and Q < 0,

(b′) a0 = c + 1 if |P ′2 − D| > |P ′′2 − D|, or |P ′2 − D| = |P ′′2 − D| and Q > 0.

Then ξ0 = a0 + ǫ1
ξ1

, where |ǫ1| = 1, a0 an integer and ξ1 = P1+
√

D
Q1

> 1. Also

P1 = P ′ or P
′′

and Q1 = Q′ or Q
′′

, according as ǫ1 = 1 or −1. We proceed similarly
with ξ1 and so on. Then

(2.1) ξn = an +
ǫn+1

ξn+1
and ξ0 = a0 +

ǫ1
a1

+
ǫ2
a2

+ · · ·

This development is called the nearest square continued fraction (NSCF).
Analogous relations to those for regular continued fractions, hold for Pn, Qn and

an:

Pn+1 + Pn = anQn(2.2)

P 2
n+1 + ǫn+1QnQn+1 = D.(2.3)

By Theorem I (iii)[3, p. 22], the |Qn| successively diminish as long as |Qn| >
√

D

and so ultimately, we have |Qn| <
√

D. When this stage is reached, the Pm and

Qm thereafter become positive and bounded, 0 < Pm < 2
√

D, 0 < Qm <
√

D
by Theorem I (iv)[3, p. 22]. This implies eventual periodicity of the complete
quotients and thence the partial quotients. In particular, Theorem XII ([3, pp.

102-103]) shows that the NSCF development of
√

D has the form

(2.4)
√

D = a0 +
ǫ1
a1
∗

+ · · · + ǫk

2a0
∗

,

where the asterisks denote that the period-length is k and ξp = ξp+k, ǫp = ǫp+k

and ap = ap+k for p ≥ 1. (It’s an easy exercise to show that a0 = [
√

D], the nearest

integer to
√

D.) In [3, pp. 112-114], the finer structure of (2.4) is revealed. There
are two types:

Type I: No complete quotient of a cycle has the form
p+q+

√
p2+q2

p
, where

p > 2q > 0, gcd(p, q) = 1. This type possesses the classical symmetries of
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the regular continued fraction if k > 1:

av = ak−v, 1 ≤ v ≤ k − 1,
Qv = Qk−v, 1 ≤ v ≤ k − 1,
ǫv = ǫk+1−v, 1 ≤ v ≤ k,
Pv = Pk+1−v, 1 ≤ v ≤ k.

For example,
√

19 = 4 +
1
3
∗
− 1

5
− 1

3
+

1
8
∗
.

Type II: One complete quotient ξv in a cycle has the form
p+q+

√
p2+q2

p
,

where p > 2q > 0. In this case k ≥ 4 is even and v = k/2. This type also
possesses the symmetries of Type I, apart from

a k

2

= 2, ǫ k

2

= −1, ǫ k

2
+1 = 1, a k

2
−1 = a k

2
+1 + 1, P k

2

6= P k

2
+1

and we have

(2.5)
√

D = a0 +
ǫ1
a1
∗

+ · · · +
ǫ k

2
−1

a k

2
−1

− 1
2

+
1

a k

2
−1 − 1

+ · · · + ǫk

2a0
∗

.

For example,
√

29 = 5 +
1
3
∗
− 1

2
+

1
2

+
1
10
∗

. Other examples are D =

53, 58, 85, 97.

For both types of D, we have Qk = 1. For P1 = a0, P1 = Pk (symmetry),
P1 = Pk+1, (periodicity), so

2a0 = 2P1 = Pk + Pk+1 = akQk by (2.2),

= 2a0Qk.

Hence Qk = 1 and ξk = a0 +
√

D. This is needed later in the proof of Lemma 1.
Similarly, the quadratic surd ξ0 = (1 +

√
D)/2, D = 4n + 1, has a0 = [ξ0]. Also

ak = 2a0 − 1 = P1 and

2P1 = Pk + Pk+1 = akQk = P1Qk.

Hence Qk = 2 and ξk = (2a0 − 1 +
√

D)/2.

3. Reduced NSCF quadratic surds

Ayyangar [3, p. 27] gives a definition of reduced quadratic surd that is not as
explicit as for regular continued fractions (see e.g. [8, p. 73]). He defines a special

surd ξv by the inequalities

(3.1) Q2
v−1 + 1

4
Q2

v ≤ D, Q2
v + 1

4
Q2

v−1 ≤ D

then defines a semi-reduced surd to be the successor of a special surd. Finally a
reduced surd to defined to be the successor of a semi-reduced surd. He proves ([3, p.
28]) that a reduced surd is a special surd and in ([3, p. 101-102]) that a quadratic
surd has a purely periodic NSCF if and only if it is reduced. Examples of reduced

surds that figure prominently in [3] are (i)
p+q+

√
p2+q2

p
, where p > 2q > 0 and (ii)

the successor of
√

D.
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4. Midpoint properties of Types I and II NSCF expansions of
√

D

(a) Type I: If k = 2h, then Ph = Ph+1.
(b) Type I: If k = 2h + 1, then Qh = Qh+1.
(c) Type II: Here k = 2h, Qh−1 is even, ǫh = −1 and Ph = Qh + 1

2
Qh−1. Also

Pv 6= Pv+1 and Qv 6= Qv+1 for 1 ≤ v < 2h.

(See [3, pp. 110-114].) There are converses: Assume k > 1 and 1 ≤ v < k. Then

(d) Pv = Pv+1 =⇒ k = 2h, v = h and a Type I NSCF expansion.
(e) Qv = Qv+1 =⇒ k = 2h + 1, v = h and a Type I NSCF expansion.
(f) Qv−1 even, ǫv = −1 and Pv = Qv + 1

2
Qv−1 =⇒ k = 2h, v = h and a Type

II NSCF expansion.

Proof. (d) is proved in [3, p. 111]: Suppose Pv = Pv+1. Then we know we are
dealing with a Type I NSCF expansion and hence Qk−v = Qv. Then

ξk−v =
Pk−v +

√
D

Qk−v

=
Pv+1 +

√
D

Qv

=
Pv +

√
D

Qv

= ξv,

so k − v = v and k = 2v.
(e) is similar.
(f) Assume Qv−1 even, ǫv = −1 and Pv = Qv + 1

2
Qv−1. Then

D = P 2
v + ǫvQvQv−1 = P 2

v − QvQv−1

= (Qv + 1

2
Qv−1)

2 − QvQv−1

= Q2
v + 1

4
Q2

v−1

= p2 + q2,

where p = Qv, q = 1

2
Qv−1. Also gcd (p, q) = 1. Next, because ξv is reduced, it is a

special surd ([3, p. 27]), so Q2
v−1 + 1

4
Q2

v ≤ D. Hence

Q2
v−1 + 1

4
Q2

v ≤ Q2
v + 1

4
Q2

v−1,

3

4
Q2

v−1 ≤ 3

4
Q2

v,

Qv−1 ≤ Qv.

But Qv = Qv−1 implies p = 2q, so p = 2, q = 1,D = 5 and ξv = 3+
√

5
2 . However this

implies k = 1, so we deduce p > 2q and ξv has the form p+q+
√

D
p

, where p > 2q > 0.

Hence we are dealing with a Type II NSCF expansion with k = 2h and v = h. ¤

5. The convergents and Pell’s equation

As in [12, p. 406], we define the convergents An/Bn by A−2 = 0, A−1 = 1, B−2 =
1, B−1 = 0 and for i ≥ −1,

Ai+1 = ai+1Ai + ǫi+1Ai−1

Bi+1 = ai+1Bi + ǫi+1Bi−1.

An important property of the convergents to ξ0 = P0+
√

D
Q0

is

(5.1) (Q0An − P0Bn)2 − DB2
n = (−1)n+1ǫ1ǫ2 · · · ǫn+1Qn+1.

(see [12, (3.3) p. 406 and (3.5) p. 407].) For ξ0 =
√

D, this reduces to

(5.2) A2
n − DB2

n = (−1)n+1ǫ1ǫ2 · · · ǫn+1Qn+1.
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Hence, as Qk = 1, we have

(5.3) A2
k−1 − DB2

k−1 = (−1)kǫ1ǫ2 · · · ǫk.

Remark. Similarly, from (5.1), the convergents to (1 +
√

D)/2,D ≡ 1 (mod 4)
satisfy

(5.4) A2
n − AnBn − (D − 1)

4
B2

n = (−1)n+1ǫ1ǫ2 · · · ǫn+1Qn+1/2.

Hence, as Qk = 2, we have

(5.5) A2
k−1 − Ak−1Bk−1 −

(D − 1)

4
B2

k−1 = (−1)kǫ1ǫ2 · · · ǫk.

Lemma 1. In the NSCF expansion of
√

D, with period-length k, Qn = 1 if and

only if k divides n.

Proof. We have seen that Qk = 1. So suppose Qn = 1, n ≥ 1. Then from (2.3),
P 2

n + ǫnQn−1 = D.

Case 1. Pn >
√

D. Then ǫn = −1. Hence

P 2
n − D = Qn−1 <

√
D (ξn is reduced)

0 < Pn −
√

D <

√
D

Pn +
√

D
<

√
D

2
√

D
=

1

2
.

Hence Pn = [
√

D].

Case 2. Pn <
√

D. Then ǫn = 1. Hence

Q2
n−1 + 1

4
Q2

n ≤ D = P 2
n + Qn−1 (ξn is reduced)

(Qn−1 − 1

2
)2 ≤ P 2

n

Qn−1 − 1

2
≤ Pn

Qn−1 ≤ Pn + 1

2

D − P 2
n = Qn−1 ≤ Pn.

Hence 0 <
√

D − Pn ≤ Pn√
D+Pn

< Pn

2Pn

= 1
2 and again Pn = [

√
D].

Thus in both cases, ξn = a0 +
√

D = ξk and k divides n. ¤

In the next section we prove that there is no smaller positive integer solution
(x, y) of the equation x2 − Dy2 = ±1 than (Ak−1, Bk−1) by showing that x/y is a

convergent in the NSCF expansion of
√

D.

Remark. Similarly, in the NSCF expansion of (1 +
√

D)/2,D ≡ 1 (mod 4), with
period-length k, Qn = 2 if and only if k divides n.

6. Relations between the NSCF and RCF

In [8, pp. 147-155], Perron introduces a transformation t1 of the following NSCF
(with trivial modification when λ = 0):

(6.1) ξ0 = a0 +
ǫ1
a1

+ · · · + ǫλ

aλ
− 1

aλ+1
+

ǫλ+2

aλ+2
+ · · ·

expanding it to
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(6.2) ξ0 = a0 +
ǫ1
a1

+ · · · + ǫλ

aλ − 1
+

1
1

+
1

aλ+1 − 1
+

ǫλ+2

aλ+2
+ · · ·

The overall result of applying t1 at all occurrences of ǫλ = −1 is a transformation

T1, given by the rule: Before a negative partial numerator the term +1|
|1 is inserted.

Also each aν is replaced by

(a) aν if ǫν= +1, ǫν+1= +1,
(b) aν − 1 if ǫν= +1, ǫν+1= -1, or ǫν= -1, ǫν+1= +1,
(c) aν − 2 if ǫν= -1, ǫν+1= -1.

Here ǫ0 = +1.
The partial quotients corresponding to a NSCF reduced quadratic surd are

greater than 1 ([3, p. 29]). So in view of Lemma 2 below and (b) and (c) above,

T1 will convert the NSCF expansion of
√

D into a RCF expansion.

Lemma 2. Suppose ξv and ξv−1 are NSCF reduced quadratic surds. Then if ǫv =
−1 and ǫv+1 = −1, we have av ≥ 3.

Proof. Assume ξv and ξv−1 are reduced. Then from [3, p. 27], we have

Pv+1 ≥ Qv + 1

2
Qv+1(6.3)

Pv ≥ Qv + 1

2
Qv−1.(6.4)

Then (6.3) and (6.4) give

avQv = Pv+1 + Pv ≥ 2Qv + 1

2
Qv+1 + 1

2
Qv−1.

Hence avQv > 2Qv, as Qv+1 > 0 and Qv−1 > 0. Hence av > 2. ¤

Lemma 3. The period length of the RCF expansion of
√

D is k + r, where r is

the number of ǫν = −1 occurring in the period partial numerators ǫ1, . . . , ǫk of the

NSCF expansion of
√

D.

Proof. If r = 0, there is nothing to prove. So we assume r > 0. According to [8,
Satz 5.9, p. 152], under T1,

(i) ǫν+1 = −1 gives rise to RCF convergents

A′
m−1/B′

m−1 = (Aν − Aν−1)/(Bν − Bν−1), A′
m/B′

m = Aν/Bν

and RCF complete quotients

P ′
m +

√
D

Q′
m

= ξν+1/(ξν+1 − 1),
P ′

m+1 +
√

D

Q′
m+1

= ξν+1 − 1.

(ii) ǫν+1 = 1 gives rise to RCF convergent Aν/Bν and RCF complete quotient
ξν+1.

Consequently the NSCF complete quotients ξ1, . . . , ξk will give rise to a RCF
period ξ′1, . . . , ξ

′
k+r of complete quotients. We prove that this is a least period.

This will follow by showing that ξi/(ξi −1) = a+
√

D is impossible. For a+
√

D

is RCF-reduced and hence a = ⌊
√

D⌋. We can assume D > 3. Then a > 1 and
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ξi =
a +

√
D

a − 1 +
√

D
= 1 +

1

a − 1 +
√

D
= 2 − a − 2 +

√
D

a − 1 +
√

D
(6.5)

= 2 − D − (a − 2)2

D − (a − 1)(a − 2) +
√

D
.(6.6)

Then Q
′′

i+1 = D − (a − 2)2 = D − a2 + 4(a − 1) > 1 = Q′
i+1.

Hence (6.5) is the NSCF expansion of ξi. But partial denominators of such a
reduced surd are at least 2 (see [3, Corollary 4, p. 29]), so we have a contradiction.

So under T1, the NSCF complete quotients ξ1, . . . , ξk will produce a period

of RCF complete quotients ξ′m =
P ′

m
+
√

D

Q′

m

, 1 ≤ m ≤ k + r, where Q′
m > 1 if

1 ≤ m < k + r and Q′
k+r = 1. Consequently this is a least period of the RCF

expansion of
√

D. ¤

Lemma 4. If x2 − Dy2 = ±1, x, y > 0, then x/y is a NSCF convergent to
√

D.

Proof. For x/y is a RCF convergent A′
m−1/B′

m−1 to
√

D, so

A′2
m−1 − DB′2

m−1 = (−1)mQ′
m = (−1)m.

If x/y is not a NSCF convergent of
√

D, it has the form (An −An−1)/(Bn −Bn−1),

where ǫn+1 = −1. However this would imply ξn+1/(ξn+1 − 1) =
P ′

m
+
√

D

Q′

m

and we

have seen that this is impossible. Hence x/y is a NSCF convergent to
√

D. ¤

Remark. The diophantine equation x2−xy− (D−1)
4 y2 = ±1,D ≡ 1 (mod 4) is also

of interest. We can similarly show that if D ≥ 13 and x > 0, y > 0, then x/y is a

NSCF convergent to (1 +
√

D)/2.

7. Midpoint criteria for determining Ak−1 and Bk−1

Exactly one of the following will apply for any D > 0, not a square:

P -test: : For some h, 1 ≤ h < k, Ph = Ph+1, in which case k = 2h and

Ak−1 = AhBh−1 + ǫhAh−1Bh−2(7.1)

Bk−1 = Bh−1(Bh + ǫhBh−2).(7.2)

In this case A2
k−1 − DB2

k−1 = 1.
Q-test: : For some h, 0 ≤ h < k, Qh = Qh+1, in which case k = 2h + 1 and

Ak−1 = AhBh + ǫh+1Ah−1Bh−1(7.3)

Bk−1 = B2
h + ǫh+1B

2
h−1.(7.4)

In this case A2
k−1 − DB2

k−1 = −ǫh+1.
PQ-test: : For some h, 1 ≤ h < k, Qh−1 is even, Ph = Qh + 1

2
Qh−1 and

ǫh = −1, in which case k = 2h and

Ak−1 = AhBh−1 − Bh−2(Ah−1 − Ah−2)(7.5)

Bk−1 = 2B2
h−1 − BhBh−2.(7.6)

In this case A2
k−1 − DB2

k−1 = −1.
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Before we prove these statements, we restate the symmetry properties of the
partial numerators and denominators of the NSCF expansion of

√
D in the following

form, for use in Lemma 5 below:

(1) If k = 2h + 1 and 1 ≤ t ≤ h, then

ǫh+1+t = ǫh+1−t(7.7)

ah+t = ah+1−t,(7.8)

(2) If k = 2h and Type I with 1 ≤ t ≤ h or Type II with 3 ≤ t ≤ h, then

ǫh+t = ǫh−t+1(7.9)

ah+t−1 = ah−t+1,(7.10)

Lemma 5. (i) Let k = 2h+1, h ≥ 1. Then for Type I and 0 ≤ t ≤ h, we have

A2h = Ah+tBh−t + ǫh+1+tAh+t−1Bh−t−1(7.11)

B2h = Bh+tBh−t + ǫh+1+tBh+t−1Bh−t−1(7.12)

(ii) Let k = 2h, h ≥ 1. Then for Type I and 0 ≤ t ≤ h, or Type II with h ≥ 2
and 2 ≤ t ≤ h, we have

A2h−1 = Ah+t−1Bh−t + ǫh+tAh+t−2Bh−t−1(7.13)

B2h−1 = Bh+t−1Bh−t + ǫh+tBh+t−2Bh−t−1(7.14)

Proof. We prove (7.11) by induction on t, h ≥ t ≥ 0. Let

f(t) = Ah+tBh−t + ǫh+1+tAh+t−1Bh−t−1.

We show f(h) = A2h and f(t) = f(t − 1) if h ≥ t ≥ 1.
First note that (7.11) holds when t = h. For then

f(h) = A2hB0 + ǫ2h+1A2h−1B−1 = A2h.

Next

f(t) = Ah+tBh−t + ǫh+1+tAh+t−1Bh−t−1

= (ah+tAh+t−1 + ǫh+tAh+t−2) + ǫh+1+tAh+t−1Bh−t−1

= Ah+t−1(ah+tBh−t + ǫh+1+tBh−t−1) + ǫh+tAh+t−2Bh−t

= Ah+t−1(ah+1−tBh−t + ǫh+1−tBh−t−1) + ǫh+tAh+t−2Bh−t

= Ah+t−1Bh+1−t + ǫh+tAh+t−2Bh−t = f(t − 1).

Similarly for equation (7.12).
Equations (7.13) and (7.14) are proved similarly using equations (7.9) and (7.10),

noting that for Type II, we can assume h ≥ 3, for if h = 2, equations (7.13) and
(7.14) are trivially true. ¤

The P -test: Substituting t = 0 in (7.13) gives

A2h−1 = Ah−1Bh + ǫhAh−2Bh−1

= Ah−1(ahBh−1 + ǫhBh−2) + (Ah − ahAh−1)Bh−1

= AhBh−1 + ǫhAh−1Bh−2,

which is the first equation of the P -test. Substituting t = 0 in (7.14) gives

B2h−1 = Bh−1Bh + ǫhBh−2Bh−1,

which is the second equation of the P -test.
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The Q-test: If k = 1, then equations (7.3) and (7.4) are trivially true. So we
can assume k > 1. Then substituting t = 0 in (7.11) gives

A2h = AhBh + ǫh+1Ah−1Bh−1,

which is the first equation in the Q-test. Substituting t = 0 in (7.12) gives

B2h = BhBh + ǫh+1Bh−1Bh−1,

which is the second equation of the Q-test.
The PQ-test: We take t = 2 in equations (7.13) and (7.14) to get

A2h−1 = Ah+1Bh−2 + ǫh+2AhBh−3(7.15)

B2h−1 = Bh+1Bh−2 + ǫh+2BhBh−3.(7.16)

We also have

(7.17) ǫh = −1, ǫh+1 = 1, ah+1 = ah−1 − 1, ah = 2, ǫh+2 = ǫh−1.

Also Bh−1 = ah−1Bh−2 + ǫh−1Bh−3. Hence (7.15) gives

A2h−1 = (ah+1Ah + ǫh+1Ah−1)Bh−2 + ǫh−1AhBh−3

= (ah+1Ah + ǫh+1Ah−1)Bh−2 + (Bh−1 − ah−1)Ah

= (ah+1 − ah)AhBh−2 + Ah−1Bh−2 + Bh−1Ah

= −AhBh−2 + Ah−1Bh−2 + Bh−1Ah

= Bh−1Ah − (Ah − Ah−1)Bh−2.(7.18)

But Ah = ahAh−1 + ǫhAh−2 = 2Ah−1 − Ah−2. Hence

Ah − Ah−1 = Ah−1 − Ah−2

and (7.18) gives

A2h−1 = AhBh−1 − (Ah−1 − Ah−2)Bh−2,

which is the first equation of the PQ-test. Finally, (7.16) gives

B2h−1 = (ah+1Bh + ǫh+1Bh−1)Bh−2 + ǫh−1BhBh−3

= (ah+1Bh + ǫh+1Bh−1)Bh−2 + Bh(Bh−1 − ah−1Bh−2)

= (ah+1 − ah−1)BhBh−2 + Bh−1(ǫh+1Bh−2 + Bh)

= −BhBh−2 + Bh−1(Bh−2 + Bh−2).(7.19)

But Bh = ahBh−1 + ǫhBh−2 = 2Bh−1 − Bh−2 by (7.17). Hence

(7.20) Bh−2 + Bh = 2Bh−1.

Then (7.19) and (7.20) give

B2h−1 = −BhBh−2 + 2B2
h−1,

which is the second equation of the PQ-test.
We now verify the third equation of each of the three tests. Recall equation

(5.3):

(7.21) A2
k−1 − DB2

k−1 = (−1)kǫ1 · · · ǫk.
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Hence if k = 2h and D is of Type I, then (7.21) and the symmetries (7.9) and
(7.10) give

A2
k−1 − DB2

k−1 = 1,

which corresponds to the third equation of the P -test.
Assume k = 2h + 1. If k = 1, then (a) D = t2 + 1, t ≥ 1 or (b) D = t2 − 1, t > 1.

In both cases A0 = t, B0 = 1, while in case (a), ǫ1 = 1 and case (b), ǫ1 = −1 and
we see that the third equation of the Q-test is satisfied.

If k > 1, equation (7.21) and the symmetries (7.7) and (7.8) give

A2
k−1 − DB2

k−1 = −ǫh+1,

which again is the third equation of the Q-test.
Finally if k = 2h and the continued fraction is of Type II, then (7.21) and

ǫh = −1, ǫh+1 = 1 and symmetries (7.9) and (7.10) otherwise, give

A2
k−1 − DB2

k−1 = −1,

which corresponds to the third equation of the PQ-test.

Remark. If ξ0 = (1+
√

D)/2,D ≡ 1 (mod 4), we also have P, Q and PQ tests, with
the Pell equations replaced, as follows: If k is the period-length, then

P : A2
k−1 − Ak−1Bk−1 − (D−1)

4 B2
k−1 = 1;

Q : A2
k−1 − Ak−1Bk−1 − (D−1)

4 B2
k−1 = −ǫh+1, k = 2h + 1;

PQ : A2
k−1 − Ak−1Bk−1 − (D−1)

4 B2
k−1 = −1.

The above proofs go through; except if k = 1, then (a) D = t2 + 4, t ≥ 3, t odd or
(b) D = t2 − 4, t ≥ 3, t odd. In both cases A0 = (t + 1)/2, B0 = 1, while in case
(a), ǫ1 = 1 and case (b), ǫ1 = −1.

Remark. The reduced period π of Williams and Buhr ([13, p. 373]) can be shown

to be equal to k, the NSCF period-length of
√

D. From [13, p. 374], the following
hold:

(a) Conditions 1 and 2 satisfy the P -test for
√

D;

(b) Conditions 3, 4 and 5 satisfy the Q-test for
√

D;

(c) Condition 6 satisfies the PQ-test for
√

D.

8. Numerical results

In Table 1, we give the frequency of occurrence of each of three criteria for the
NSCF expansion of

√
D for non-square D ≤ M .

Table 1. Frequency of P , Q and PQ criteria for
√

D,D ≤ M .

M P -test Q-test PQ-test Total
100 60 25 5 90

1000 762 165 42 969
10000 8252 1266 382 9900

100000 85856 10465 3363 99684
1000000 878243 90533 30224 999000

10000000 8915623 805295 275920 9996838
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Table 2. RCF and NSCF continued fraction expansions of
√

97.

j i ξi ξ′j ǫi ai a′
j Ai/Bi A′

j/B′
j

0 0 0+
√

97
1

0+
√

97
1 1 10 9 10/1 9/1

1 9+
√

97
16 1 10/1

2 1 10+
√

97
3

7+
√

97
3 −1 7 5 69/7 59/6

3 8+
√

97
11 1 69/7

4 2 11+
√

97
8

3+
√

97
8 −1 3 1 197/20 128/13

5 5+
√

97
9 1 197/20

6 3 13+
√

97
9

4+
√

97
9 −1 2 1 325/33 325/33

7 4 5+
√

97
8

5+
√

97
8 1 2 1 847/86 522/53

8 3+
√

97
11 1 847/86

9 5 11+
√

97
3

8+
√

97
3 −1 7 5 5604/569 4757/483

10 7+
√

97
16 1 5604/569

11 6 10+
√

97
1

9+
√

97
1 −1 20 18 111233/11294 105629/10725

12 9+
√

97
16 1 111233/11294

13 7 10+
√

97
3

7+
√

97
3 −1 7 5 773027/78489 661794/67195

Table 3. Comparison of NSCF and RCF periods for
√

D.

n Π(n) P (n) Π(n)/P (n)
1000000 152198657 219245100 .6941941
2000000 417839927 601858071 .6942499
3000000 755029499 1087529823 .6942609
4000000 1149044240 1655081352 .6942524
5000000 1592110649 2293328944 .6942356
6000000 2078609220 2994112273 .6942322
7000000 2604125007 3751067951 .6942356
8000000 3165696279 4559939520 .6942408
9000000 3760639205 5416886128 .6942437

10000000 4387213325 6319390242 .6942463

In Table 2, D = 97 and the NSCF expansion of
√

97 is of type II, with period
length 6. There are 5 negative ǫi’s in the period range 1 ≤ i ≤ 6 and the period
length of the RCF expansion of

√
97 is 11.

In Table 3, we compare π(D) and p(D), the respective periods of the NSCF and

RCF expansions of
√

D, where D is not a perfect square. We let

Π(n) =
∑

D≤n

π(D), P (n) =
∑

D≤n

p(D).

Then it appears that Π(n)/P (n) → τ = log2 ( 1+
√

5
2 ) = .6942419 · · ·

The limiting behaviour in Table 3 was also observed for the nearest integer
continued fraction by Williams and Buhr ([13, p. 377]) and Riesel ([10, p. 260]). In
fact one can show that the period-lengths of the nearest square and nearest integer



12 KEITH MATTHEWS, JOHN ROBERTSON, JIM WHITE

continued fraction expansions of a quadratic irrationality are equal (see [6]). Also
if X/Y is the smallest solution of Pell’s equation x2 − Dy2 = ±1, then X/Y has
regular continued fraction expansion

(8.1) X/Y = a0 +
1
a1

+ · · · + 1
ap(D)−1

and nearest integer continued fraction expansion

(8.2) X/Y = b0 +
ǫ1
b1

+ · · · + ǫk

bπ(D)−1
.

By theorems of Heilbronn and Rieger (see [9, p. 159]), for D with a long RCF
period, we expect the ratio π(D)/p(D) of the lengths of these finite continued
fractions to approximate τ . For example, with D = 26437680473689 (an example
of Daniel Shanks [11] with a long RCF period) we have p(D) = 18331889, π(D) =
12726394, π(D)/p(D) = .6942216 · · · .

9. Computational tests

We conclude with a comparison of the computational performance of continued
fraction algorithms and consider the question of which of the three CF algorithms
(RCF, NICF, NSCF) is the more computationally efficient for solving the Pell
equation for any given value of D. All tests were performed on a Sun Sparcv9
processor (750MHz). The programs were written in C and used the GMP (Version
4.2.4) multiple precision arithmetic library for convergent calculations.

Two versions of each algorithm were tested, a ”standard” version and a ”quotient-
optimised” version. In both versions, we employ some fairly obvious optimisations
such as developing only one convergent sequence Bn, then solving directly for the
corresponding An once only at the conclusion of the main loop. This typically
halves the amount of processing that would be required if we had developed both
sequences.

In the ”standard” programs, the calculation of each Bn = anBn−1 ± Bn−2

is performed in two steps, a multiplication giving anBn−1 followed by the addi-
tion/subtraction of Bn−2. The quotient-optimised versions use two distinct time-
saving optimisations to this process. The first improvement is to introduce special
handling of partial quotient values 1, 2 and 4. These can benefit from special
handling, and also occur with sufficient frequency to make this well worthwhile.

In the RCF, for example, a partial quotient value of 1 occurs with average fre-
quency 41.5%. Computing the new convergent thus requires only the addition of
the previous two values, avoiding an unnecessary multiplication. In all three algo-
rithms, partial quotient values of 2 and 4 can benefit from using the special GMP
function for multiplication by powers of 2. This function uses shift instructions to
perform the operation, and these are usually faster than normal multiplication.

For all other quotient values, improvement over the standard version is also
obtained, by using a GMP function that gives a combined multiply-and-add (or
subtract) operation, allowing the convergent calculation to be performed as a single
step.

The first set of test results involve ”short-period” tests. We processed all values
of D in the range [106(n−1), 106n] for n = 1 to 6. Table 4 lists the results obtained
using the standard convergent method. Times are given in seconds, and for NICF
and NSCF, the times relative to RCF are also given.
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We also ran a set of ”long-period” tests. Here we processed specific values Dn

of D with substantially long period lengths. The specific values and corresponding
period lengths are listed in Table 5. Note that the period length ratios in each case
are all very close to the expected average of .694.

Table 6 lists the solution times for each Dn in seconds, using the standard con-
vergent method, with the ratios of times for NICF and NSCF relative to the corre-
sponding RCF times.

With the standard method of convergent calculation, our main observations are
these:

(a) there is no significant difference between NICF and NSCF;
(b) as period lengths increase, the relative performance of NSCF and NICF

against RCF is increasingly close to the corresponding ratio of period
lengths.

These results generally conform with expectations - as period lengths increase,
the computational cost is increasingly dominated by the cost of calculating the
convergents, with both NSCF and NICF performing exactly the same number of
convergent calculation steps.

A different trend becomes evident, however, when the same tests are performed
using the quotient-optimisation method. Tables 7 and 8 show the corresponding
results using this method.

Table 4. Short-period times for [106(n − 1), 106n] (standard method).

n RCF NICF ratio NSCF ratio
1 81 64 .790 64 .790
2 147 118 .803 120 .816
3 200 160 .800 162 .810
4 248 196 .790 199 .802
5 291 230 .790 232 .797
6 334 258 .772 255 .763

Table 5. Long-period Dn examples.

n Dn RCF period-length NSCF-NICF period-length
1 1014 + 3 625024 433550
2 1014 + 7 869844 604092
3 1012 + 24 1005170 697848
4 1012 + 189 2064689 1433367
5 1012 + 294 2963566 2057350

Table 6. Long-period times for Dn (standard method).

n RCF NICF ratio NSCF ratio
1 63 43 .683 43 .683
2 133 93 .699 93 .699
3 181 126 .696 126 .696
4 850 592 .696 589 .693
5 1797 1251 .696 1246 .693
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Table 7. Short-period times for [106(n − 1), 106n] (Quotient-optimised).

n RCF NICF ratio NSCF ratio
1 56 54 .964 54 .964
2 102 101 .990 102 1.000
3 136 135 .993 135 .993
4 165 165 1.000 165 1.000
5 193 195 1.010 196 1.016
6 218 221 1.014 224 1.028

Table 8. Long-period times for Dn (Quotient-optimised).

n RCF NICF ratio NSCF ratio
1 31 35 1.129 35 .964
2 65 72 1.108 73 1.123
3 90 100 1.111 100 1.111
4 398 468 1.176 467 1.173
5 880 986 1.120 987 1.122

All three CF algorithms benefit substantially from quotient optimisation, but it
is RCF that benefits the most. At short period lengths it now performs just as
well as NICF or NSCF, and as period lengths increase it becomes noticably faster.
This can be explained by examining the average relative frequencies of quotient
occurrences for the values in question.

Quotient values of 2 or 4 occur around 23% of the time for RCF, and 33% for
NICF and NSCF. What tips the balance in favour of RCF is the 41.5% frequency of
quotient value 1, which never occurs at all with NICF or NSCF. The optimisation for
this particular case is also the one that is most beneficial, as it avoids multiplication
altogether.
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9. G.J. Rieger, Über die mittlere Schrittanzahl bei Divisionsalgorithmen, Math. Nachr., 82, 1978,
pp. 157-180. MR0480366 (58 #533)

10. H. Riesel, On the metric theory of nearest integer continued fractions, BIT, 27, 1987, pp.
248-263. MR0894126 (88k:11048)

11. D. Shanks, Review of UMT File: Two related quadratic surds having continued fractions with

exceptionally long periods, Math. Comp. 28, 1974, pp. 333-334.
12. H.C. Williams, Solving the Pell equation, Proc. Millennial Conference on Number Theory,

A.K. Peters, 2002, 397-435. MR1956288 (2003m:11051)

13. H.C. Williams & P.A Buhr, Calculation of the regulator of Q(
√

d) by use of the nearest integer

continued fraction algorithm, Math. Comp. 33, 1979, pp. 369-381. MR0514833 (80e:12003)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QUEENSLAND, BRISBANE,

AUSTRALIA, 4072 AND CENTRE FOR MATHEMATICS AND ITS APPLICATIONS, AUS-

TRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT 0200, AUSTRALIA

E-mail address: keithmatt@gmail.com

ACTUARIAL AND ECONOMIC SERVICES DIVISION, NATIONAL COUNCIL ON COM-

PENSATION INSURANCE, BOCA RATON, FL 33487

E-mail address: jpr2718@gmail.com

CENTRE FOR MATHEMATICS AND ITS APPLICATIONS, AUSTRALIAN NATIONAL

UNIVERSITY, CANBERRA, ACT 0200, AUSTRALIA

E-mail address: mathimagics@yahoo.co.uk


