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Abstract

Hurwitz gave a definition of reduced quadratic surd for his near-
est integer continued fraction expansion which characterises purely
periodic surds. We give a more accessible proof of this equivalence.

Introduction. In Perron’s book [1, pp.168-169], a nearest integer continued
fraction (Kettenbriiche néchsten Ganzen) expansion of &, is defined recur-

sively:
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where a,41 = %1, b, is an integer (the nearest integer to §,) and sign(a,,1) =
sign (&, — by).
Thus
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and we have
by > 2, by + a,y1 > 2 for v > 1.
(Satz 10, [1, p.169]).

On [1, p.173], Perron defines a singular continued fraction (singuldre Ket-
tenbriiche) as one satisfying

b, > 2, b,+a,>2forv>1.



If expansion (2) is purely periodic with period & (ie. axy1 = a1, br = bo
and &, = &, then with 7, = &,, we have (see [1, p. 82]) the periodic singular
continued fraction expansion
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Now in Satz 14, [1, p.174], it is proved that the value of a singular con-
tinued fraction lies between —%5 and % Hence (3) gives
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In fact the left-hand inequality is strict, for equality implies £ = 1+2‘/5, whose

nearest integer continued fraction expansion
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is not purely periodic. Moreover equality in the right-hand inequality occurs
when &, = 3+2\/5, which does have a purely periodic nearest integer continued
fraction expansion
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Hence we have proved

Theorem 1. If the NICF expansion (2) is purely periodic, then either &, =
%‘?’ or § > 2 and

! _2\/5 < < 5 _2\/5. (5)

We prove the converse of Theorem 1 by imitating the argument in [2,
pp.384-385].

We assume we have a nearest integer continued fraction expansion (1) of
& where & > 2 and inequalities (5) hold. We use induction and assume the
corresponding inequalities hold for 7,:

1—+5 3—5

<my <
2 g 2

(6)



B

1 —
2

Ay+1 < 3 _2\/5 (7)

< b, +
v+1

Case 1. ay.1 = 1. Then b, > 2 and (7) give
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Case 2. ay.1 = —1. Then &, < b,, so b, > 3. Then (7) gives
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s0 &1 > 0. Also
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Hence the induction goes through.

By applying the pigeon-hole principle to the pairs (§,, a,), it follows that
there are non-negative integers ¢ < j such that & = §; and a; = a; and hence
—ai/& = —a;/&;.

But from (7) that with r = %5,

by = |1 — |, (8)
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so we have §_; = §;_1. Continuing this argument gives § = §;_; and so
the nearest integer expansion for & is purely periodic.
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