A nearest integer formula

If y € R, we define [y], the nearest integer to y by —1/2 <y — [y] < 1/2.
In particular, if y = 24+ 1/2, 2z € Z, then [y] = z + 1.
It is well-known that [y] = |y + 1/2], where |¢] is the integer part of ¢.

Theorem. If x € R, 2x ¢ Z and m € Z, m # 0, then
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where

0 ifx—|z] <1/2.

Remark. In view of the above, the formula for 7T, on page 373 on page
373 of Calculation of the Regulator of @\/ﬁ), by Use of the Nearest Integer
Continued Fraction Algorithm, H.C. Williams and P.A. Buhr, Math. Comp.
33 (1979) 369-381, should be changed if @), < 0 to
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Moreover John Robertson has subsequently pointed out that the definition
of R, at the bottom of page 373 should be amended when @)}, < 0 and
Qi1 Pes1 + Tipa: we have to define Ry, = —Q, 4.

Lemma. If x € R and m € 7Z, then
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Proof of Theorem. First note that |2x] = 2|z| + F.
Case 1. Assume m > 0. Then
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Case 2. Assume m < 0 and 2z ¢ Z. Then
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