
Primitive Pythagorean triples and the negative
Pell equation

Keith Matthews

Abstract

Abstract. This paper uses continued fractions to give more ex-
plicit versions of results of A. Grytczuk, F. Luca and M. Wójtowicz
and of K. Hardy and K.S. Williams relating the solvability of the neg-
ative Pell equation to the existence of primitive Pythagorean triples.
These results were also obtained by P. Kaplan and K.S. Williams.

1 Introduction.

This note started on reading a short paper of Grytczuk, Luca and Wójtowicz
(GLW) [2], which proved that the negative Pell equation x2−Dy2 = −1, D >
1 and non-square, is solvable in positive integers x and y if and only if
there exist a primitive Pythagorean triple (A,B,C) (ie. A,B,C are positive
integers satisfying A2 + B2 = C2 and gcd(A,B) = 1) and positive integers
a, b such that

D = a2 + b2 and |aA− bB| = 1.

Sufficiency is immediate: If x = |aB + bA| and y = C, then

Dy2 = (a2 + b2)(A2 +B2) = (aB + bA)2 + (aA− bB)2 = x2 + 1. (1)

It is easy to see that D is not a perfect square.
Then earlier related papers of K. Hardy and K.S. Williams [3] and P.

Kaplan and K.S. Williams [5] came to the attention of the author.
The primitive Pythagorean triples (A,B,C) with A even, are given by

A = 2uv,B = u2 − v2, C = u2 + v2, (2)
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where u > v > 0, gcd(u, v) = 1 and u and v have different parity.
For example, (u, v) = (2, 1) gives (A,B,C) = (4, 3, 5) and (a, b) = (2, 3)

satisfies aA − bB = −1. Then with D = 13, (x, y) = (18, 5) = η, the least
solution of x2 −Dy2 = −1.

Contrastingly, u = 71, v = 38 gives (A,B,C) = (5396, 3597, 6485) and
again (a, b) = (2, 3) satisfies aA − bB = −1. Then with D = 13, we have
(x, y) = η3.

The condition |aA − bB| = 1 becomes |2auv − b(u2 − v2)| = 1. The
solubility of this diophantine equation is equivalent to that of bV 2−2aVW −
bW 2 = 1 and criteria for solubility of this last equation were discussed in [3]
and [5].

The authors GLW gave two proofs of the necessity part, one of these
proofs being in terms of gcd’s in Z[i]. Hardy and Williams also use this
approach in their Theorem 3, page 148.

Kaplan and Williams also give a proof, using continued fractions - see
Lemma 3, [5, p. 174-176]. We give a slightly different proof in Theorem 2.1
and show that if the negative Pell equation x2 − Dy2 = −1 has a solution,
then there are relatively prime positive integers a and b such that D = a2+b2,
with b odd and such that a primitive Pythagorean triple (A,B,C) exists with
|aA−bB| = 1 and A even. In Theorem 4.1, we show that a and b are unique.

2 Producing primitive Pythagorean triples

The continued fraction expansion of
√
D is [a0, a1, . . . , al], with period-length

l. Let (Pi+
√
D)/Qi denote the i–th complete convergent and Ai/Bi the i-th

convergent, where P0 = 0, Q0 = 1, A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0, a0 =
b
√
Dc and for i ≥ 1,

(a) Pi = ai−1Qi−1 − Pi−1,

(b) Qi = (D − P 2
i )/Qi−1,

(c) ai = b(Pi +
√
D)/Qic.

It is well-known ([8, page 93] that the negative Pell equation is soluble if
and only if the continued fraction expansion of

√
D has odd period-length l.

Suppose l = 2n− 1. Then the positive solutions (x, y) of x2 −Dy2 = −1
are given by (xt, yt) = (A2N−2, B2N−2), where N = n + t(2n − 1), t ≥ 0. In
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fact xt + yt
√
D = (x0 + y0

√
D)2t+1, where (x0, y0) = (A2n−2, B2n−2) is the

smallest (fundamental) positive solution of the negative Pell equation.

THEOREM 2.1 Suppose
√
D = [a0, a1, . . . , al], where the period-length

l = 2n− 1 is odd. Let u = Bn−1 and v = Bn−2. Also let

a = Pn, b = Qn, A = 2uv,B = u2 − v2, C = u2 + v2.

Then

(a) D = a2 + b2, b odd.

(b) aA− bB = (−1)n.

(c) gcd(u, v) = 1, u > v and one of u and v is even.

(d) x0 = aB + bA, y0 = C.

(e) A = (bx0 − εa)/D,B = (ax0 + εb)/D, where ε = (−1)n−1.

REMARK 2.1 (i) We have A ≥ 0, B > 0. Also

A = 0⇔ n = 1⇔ D = α2 + 1,

for some α ≥ 1.

(ii) From (e), we get congruences

bx0 ≡ εa (modD) and ax0 ≡ −εb (modD). (3)

This result is also part of Theorem 5 [3, page 154] where it is stated
that the congruence x0e ≡ d (modD) has precisely four coprime integer
solutions (e, d) satisfying |d| <

√
D and |e| <

√
D. These are by (3)

±(εb, a) and ±(a,−εb).

EXAMPLE 2.1 D = 13.
√

13 = [3, 1, 1, 1, 1, 6], l = 5, n = 3. a = P3 =
2, b = Q3 = 3, η = (18, 5). Then (u, v) = (B2, B1) = (2, 1) and (A,B,C) =
(2uv, u2 − v2, u2 + v2) = (4, 3, 5).
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3 Some lemmas

LEMMA 3.1 Let
√
D have period–length l. Then

DBl−1 = a0Al−1 + Al−2 (4)

Al−1 = a0Bl−1 +Bl−2. (5)

Proof. See equations (16) and (17) [8, p. 70].

LEMMA 3.2 Let
√
D have period–length l = 2n− 1. Then

DB2n−2 = A2
n−1 + A2

n−2 (6)

A2n−2 = An−1Bn−1 + An−2Bn−2 (7)

B2n−2 = B2
n−1 +B2

n−2. (8)

Proof of Lemma 3.2. We start from the matrix identity[
a0 1
1 0

]
· · ·
[
a2n−2 1

1 0

]
=

[
A2n−2 A2n−3
B2n−2 B2n−3

]
(9)

and partition the above matrix product as[
a0 1
1 0

]
· · ·
[
an−1 1

1 0

] [
an 1
1 0

]
· · ·
[
a2n−2 1

1 0

]
.

But an+i = an−i−1 for i = 0, . . . , n− 2, so (9) becomes[
a0 1
1 0

]
· · ·
[
an−1 1

1 0

] [
an−1 1

1 0

]
· · ·
[
a1 1
1 0

]
=

[
A2n−2 A2n−3
B2n−2 B2n−3

]
.

Multiplying both sides of this equation on the right by

[
a0 1
1 0

]
then gives

[
An−1 An−2
Bn−1 Bn−2

] [
An−1 An−2
Bn−1 Bn−2

]t
=

[
a0A2n−2 + A2n−3 A2n−2
a0B2n−2 +B2n−3 B2n−2

]
=

[
DB2n−2 A2n−2
A2n−2 B2n−2

]
, (10)

by Lemma 3.1. Hence[
An−1 An−2
Bn−1 Bn−2

] [
An−1 Bn−1
An−2 Bn−2

]
=

[
DB2n−2 A2n−2
A2n−2 B2n−2

]
. (11)

Finally, equation (11) implies equations (6), (7) and (8).
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LEMMA 3.3

Ai−1 = QiBi−2 +Bi−1Pi for i ≥ 0, (12)

An−2 = QnBn−1 − PnBn−2, (13)

Proof. For (12) see [8, p. 70].
For (13), we note that Qn = Qn−1. Then

QnBn−1 − PnBn−2 = Qn(an−1Bn−2 +Bn−3)

− (an−1Qn−1 − Pn−1)Bn−2

= QnBn−3 + Pn−1Bn−2

= Qn−1Bn−3 + Pn−1Bn−2 = AN−2,

by equation (12), with i = n− 1.
Proof of Theorem 2.1. (a) Part (a) is proved in [8, p. 95] and also in [11],
where it is pointed out that b is odd.

(b)

aA− bB = Pn(2Bn−1Bn−2)−Qn(B2
n−1 −B2

n−2)

= Pn(2Bn−1Bn−2)−Qn(B2
n−1 −B2

n−2)

= Bn−1(PnBn−2 −Bn−1Qn)+

+Bn−2(QnBn−2 +Bn−1Pn)

= Bn−1(−An−2) +Bn−2An−1 (14)

= (−1)n.

(c) u = Bn−1 ≥ v = Bn−2 always holds. However equality would imply
2auv = (−1)n. Also gcd(Bn−1, Bn−2) = 1 follows from equation (14) above.

(d) Next,

aB + bA = Pn(B2
n−1 −B2

n−2) +Qn(2Bn−1Bn−2)

= Bn−1(PnBn−1 +QnBn−2) +Bn−2(QnBn−1 − PnBn−2)

= Bn−1An−1 +Bn−2An−2 = A2n−2 = x0 by (7).

(e)

b2y2 = b2B2 + b2A2

= b2B2 + (x− aB)2

= x2 − 2aBx+DB2.

5



Hence DB2 − 2axB + x2 − b2y2 = 0.
But x2 = Dy2 − 1, so DB2 − 2axB + a2y2 − 1 = 0. Hence

B =
ax±

√
a2x2 −D(a2y2 − 1)

D

=
ax±

√
a2(Dy2 − 1)−D(a2y2 − 1)

D

=
ax±

√
b2

D
=
ax+ εb

D
, ε = ±1.

Next

A =
x− a

(
ax+εb
D

)
b

=
b2x− εab

bD
=
bx− εa
D

.

Finally

aA− bB =
a(bx− εa)

D
− b(ax+ εb)

D

=
−ε(a2 + b2)

D
= (−1)n.

Hence ε = (−1)n−1.

4 Uniqueness of a and b

We give a version of the ”only if” part of Theorem 3 of [3, p. 148] and Lemma
2 [5, pp. 171-174], which characterise a and b in terms of continued fractions.

THEOREM 4.1 . Suppose (A,B,C) is a primitive Pythagorean triple with
A even and a and b are positive integers satisfying

|aA− bB| = 1. (15)

Then with D = a2 + b2, we have

(a) D is not a perfect square.

(b) a = Pn and b = Qn, where 2n− 1 is the period-length of the continued
fraction expansion of

√
D.

REMARK 4.1 Hardy and Williams characterise a and b instead in terms
of gcd’s in Z[i] in Theorem 3 [3, p. 148].
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Proof. (a) Let x = aB + bA, y = C. Then

x2 − dy2 = (aB + bA)2 − (a2 + b2)(A2 +B@)

= (aA− bB)2 = −1.

However D = d2 would imply (x+dy)(x−dy) = −1, giving the contradiction
x+ dy = 1. To prove (b) we need the following result, which is Theorem 172
of [4, pp. 140-141] in slightly more general form:

LEMMA 4.1 . Let ω = Pζ+R
Qζ+S

, where ζ > 1 and P,Q,R, S are integers such

that Q > 0, S > 0 and PS − QR = ±1. Then P/Q is a convergent Ak/Bk

to ω. Moreover, if Q > S, then R/S = Ak−1/Bk−1, k ≥ 0. Also ζ is the
(k + 1)-th complete convergent to ω.

In Lemma 4.1 take P = (au + bv), R = bu − av,Q = u, S = v, ζ =
(a+

√
D)/b. Then √

D = (Pζ +Q)/(Rζ + S),

where PS −QR = ±1. Also ζ > 1 and Q > S > 0.
For

(Pζ +Q)/(Rζ + S) =
(au+ bv) (a+

√
D)

b
+ (bu− av)

u (a+
√
D)

b
+ v

=
(au+ bv)(a+

√
D) + b(bu− av)

u(a+
√
D) + bv

=
(a2u+ b2u+ (au+ bv)

√
D)

ua+ bv + u
√
D

=
(Du+ (au+ bv)

√
D)

ua+ bv + u
√
D

=
√
D.

Also

PS −QR = (au+ bv)v − u(bu− av)

= (auv + bv2)− (bu2 − auv)

= 2auv − b(u2 − v2) = ±1,

from equation (15).

7



It follows from Lemma 4.1 that

P/Q = (au+ bv)/u = AN−1/BN−1, (16)

R/S = (bu− av)/v = AN−2/BN−2, (17)

(a+
√
D)/b = (PN +

√
D)/QN , (18)

for some N ≥ 1.
Hence as gcd(au+ bv, u) = 1 = gcd(bu− av), we have from (16) and (18)

au+ bv = AN−1, u = BN−1, (19)

bu− av = AN−2, v = BN−2. (20)

Also from (18) we have

PN = a and QN = b. (21)

Then we also have
b = QN−1. (22)

For

(−1)N−1 = AN−2BN−1 − AN−1BN−2

= (bu− av)u− (au+ bv)v

= −2auv + b(u2 − v2).

Hence

(−1)N−1QN−1 = A2
N−2 −DB2

N−2

= (bu− av)2 − (a2 + b2)v2

= −2abuv + b2(u2 − v2) = (−1)N−1b.

Finally, let 2n − 1 be the period-length of
√
D. Then as QN−1 = QN ,

it follows from Satz 3.11 [8, p. 82] that N ≡ n (mod 2n − 1). Then by
periodicity, a = PN = Pn and b = QN = Qn.

5 Examples

EXAMPLE 5.1 The case a = 1 and b > 1 cannot occur. ie. the equation
| − bu2 + 2uv + bv2| = 1 has no integer solutions if b > 1.
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Proof. Assume a = 1 and b > 1. Then (15) becomes

| − bu2 + 2uv + bv2| = 1.

Consider the matrix

H =

[
u u+ bv
v bu− v

]
Then detH = −ε and all entries are positive.

Also if D = b2 + 1,

ω =
1 +
√
D

b
=
u
√
D + u+ bv

v
√
D + bu− v

.

Hence by Lemma 4.1, u/v is a convergent Ak−1/Bk−1 to ω.
Now ω = [1, b− 1, 1].
Also by Theorem 5.3.4 [6, p. 246],

bA2
k−1 − 2Ak−1Bk−1 − bB2

k−1 = (−1)kQk,

where (Pk +
√
D)/Qk is the k-th complete convergent to ω. Hence

±1 = bu2 − 2uv − bv2 = (−1)kQk, (23)

But we readily verify that for i ≥ 0,

1. (a) (P3i +
√
D)/Q3i = (1 +

√
D)/b,

2. (b) (P3i+1 +
√
D)/Q3i+1 = (b− 1 +

√
D)/2,

3. (c) (P3i+2 +
√
D)/Q3i+2 = (b− 1 +

√
D)/b.

Hence equation (23) gives a contradiction.
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