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Abstract

Abstract. This paper uses continued fractions to give more ex-
plicit versions of results of A. Grytczuk, F. Luca and M. Wéjtowicz
and of K. Hardy and K.S. Williams relating the solvability of the neg-
ative Pell equation to the existence of primitive Pythagorean triples.
These results were also obtained by P. Kaplan and K.S. Williams.

1 Introduction.

This note started on reading a short paper of Grytczuk, Luca and Wéjtowicz
(GLW) [2], which proved that the negative Pell equation 2?>— Dy* = —1, D >
1 and non-square, is solvable in positive integers x and y if and only if
there exist a primitive Pythagorean triple (A, B,C) (ie. A, B, C are positive
integers satisfying A? + B? = C? and ged(A, B) = 1) and positive integers
a, b such that

D =a* +b* and |aA — bB| = 1.

Sufficiency is immediate: If z = |aB + bA| and y = C, then
Dy? = (a* + b*)(A? + B?) = (aB + bA)* + (aA —bB)?* = 2> +1. (1)

It is easy to see that D is not a perfect square.

Then earlier related papers of K. Hardy and K.S. Williams [3] and P.
Kaplan and K.S. Williams [5] came to the attention of the author.

The primitive Pythagorean triples (A, B, C') with A even, are given by

A =2, B=u*>—12v%C =u*+ 1 (2)



where v > v > 0, ged(u,v) = 1 and u and v have different parity.

For example, (u,v) = (2,1) gives (A, B,C) = (4,3,5) and (a,b) = (2,3)
satisfies aA — bB = —1. Then with D = 13, (z,y) = (18,5) = 7, the least
solution of 22 — Dy? = —1.

Contrastingly, u = 71,v = 38 gives (A, B,C) = (5396, 3597, 6485) and
again (a,b) = (2,3) satisfies aA — bB = —1. Then with D = 13, we have
(z,y) =n’.

The condition |aA — bB| = 1 becomes |2auv — b(u* — v*)| = 1. The
solubility of this diophantine equation is equivalent to that of bV —2aVW —
bW? =1 and criteria for solubility of this last equation were discussed in [3]
and [5].

The authors GLW gave two proofs of the necessity part, one of these
proofs being in terms of ged’s in Z[i]. Hardy and Williams also use this
approach in their Theorem 3, page 148.

Kaplan and Williams also give a proof, using continued fractions - see
Lemma 3, [5, p. 174-176]. We give a slightly different proof in Theorem 2.1
and show that if the negative Pell equation 2> — Dy? = —1 has a solution,
then there are relatively prime positive integers a and b such that D = a®+b2,
with b odd and such that a primitive Pythagorean triple (A, B, C') exists with
laA—bB| =1 and A even. In Theorem 4.1, we show that a and b are unique.

2 Producing primitive Pythagorean triples

The continued fraction expansion of v/D is [a, @1, ..., a;), with period-length
I. Let (P,4++/D)/Q; denote the i-th complete convergent and A;/B; the i-th
convergent, where Py =0,Qp =1, A 2=0,A_1=1,B.5=1,B_1=0,a¢ =
|vV/D] and for i > 1,

(a) P, =a;-1Qi—1 — Pi_1,
(b) Qi = (D — P?)/Q;-1,
(¢) a; = [(P,+VD)/Q;].

It is well-known ([8, page 93] that the negative Pell equation is soluble if
and only if the continued fraction expansion of v/D has odd period-length L.
Suppose [ = 2n — 1. Then the positive solutions (z,y) of 2*> — Dy? = —1
are given by (x,y;) = (Aan_2, Ban_2), where N = n +t(2n —1),t > 0. In



fact x, + 5V D = (20 + yov/' D)+, where (20,10) = (Agn_2, Ban_2) is the
smallest (fundamental) positive solution of the negative Pell equation.

THEOREM 2.1 Suppose VD = [ag,@1,...,a), where the period-length
l=2n—11isodd. Let u= B,_; and v = B,,_,. Also let

a=P,b=0Q, A=2uw,B=1u*—1*C =11+

REMARK 2.1 (i) We have A > 0,B > 0. Also
A=0en=1<D=0a?+1,
for some o > 1.
(ii) From (e), we get congruences

bxy = ea (mod D) and axg = —eb (mod D). (3)

This result is also part of Theorem 5 [3, page 154] where it is stated
that the congruence zoe = d (mod D) has precisely four coprime integer
solutions (e, d) satisfying |d| < v/D and |e| < v/D. These are by (3)
+(eb,a) and £(a, —eb).

EXAMPLE 2.1 D =13. V13 = [3,,1,1,1,6], I =5,n =3. a = P; =
2,b=0Q3=3,n=(18,5). Then (u,v) = (B2, B;) = (2,1) and (A, B,C) =
(2uv,u? — v* u? +v?) = (4,3,5).



3 Some lemmas

LEMMA 3.1 Let v/D have period-length 1. Then

DBy = apAj;—1+ A (4)
A1 = aoBi-1 + Bi_s. (5)

Proof. See equations (16) and (17) [8, p. 70].
LEMMA 3.2 Let /D have period-length | = 2n — 1. Then

DBy, p= A2 |+ A2, (6)
Agpo=A, 1By 1+ Ap_2B, (7)
Bons=Bi_ |+ Bi._,. (8)

Proof of Lemma 3.2. We start from the matrix identity
ap 1 | Gen—2 1 _ Agp—o Aons (9)
1 O 1 0 BQn—Q BQn—3

and partition the above matrix product as

ol ol

But a,; = a1 for i =0,...,n— 2, so (9) becomes
Qg 1 . Qp—1 1 an—1 1 . ay 1 . Agn,Q A2n73
10 1 0 10 1 0| | Bapoa Bons |’
Multiplying both sides of this equation on the right by { 6110 é ] then gives

B,1 B, B,_1 B, apBap—o + Bop—3 DBa,_o
— |: D82n72 A2n72 :|

{ A1 Ano ] { A1 Ano y _ [ apAop—o + Agp—g  Asyo ]

10
A2n—2 BQn—2 ( )

by Lemma 3.1. Hence

An—l An—2 An—l Bn—l _ DBQn—Q AQn—2:| (11>
Bn—l Bn—2 An—2 Bn—2 A2n—2 BZn—Q .

Finally, equation (11) implies equations (6), (7) and (8).
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LEMMA 3.3
Ai1 = QiBi_y + B;_1P; for i > 0, (12)
An—2 = Qan—l - Pan—Qa (13)

Proof. For (12) see [8, p. 70].
For (13), we note that @, = Q,_1. Then

Qanfl - PanfZ = Qn(an718n72 + Bn73>
- (a'n—lQn—l - Pn—1>Bn—2
- Qan—S + Pn—an—2
= ananfii + Pnlenf2 = AN*?)
by equation (12), with i =n — 1.
Proof of Theorem 2.1. (a) Part (a) is proved in [8, p. 95] and also in [11],
where it is pointed out that b is odd.

(b)
aA —bB = P,(2B,,_1B,_3) — Q.(B>_, — B2_,)
= Pu(2B,-1Bn2) — Qu(B._, — B2 ,)
= By 1(P,By_y — Bu_1Q)+
+ By—2(QnBp—2 + By1 Py)
= B 1(—An_y) + By A, (14)
= (="

(¢) u = B,_1 > v = B,_» always holds. However equality would imply

2auv = (—1)". Also ged(By,_1, B,_2) = 1 follows from equation (14) above.
(d) Next,
aB +bA = Py(B?_, — B2_,) + Qu(2By_1B,_»)
= Bn—l(Pan—l + Qan—2) + Bn—Q(Qan—l - Pan—Q)
=B 1An 1+ By 2An 2= Ay 2 = 10 by (7).

(e)
b2y2 — b2B2 + b2A2
=V"B* + (v — aB)®
— 2% — 2aBx + DB?.



Hence DB? — 2azB + 2% — b*y* = 0.
But 22 = Dy? — 1, so DB? — 2axB + a*y?> — 1 = 0. Hence

azr + +/a2x? — D(a2y? — 1)

B:
D
_ax£+/a?(Dy* — 1) — D(a?y® — 1)
B D
2
B axi\/b_: ax—l—eb’E::H‘
D D
Next
A_x—a(%#b) _ Vr—eab br—ea
B b - D D
Finally
a(bx —ea)  b(ax + €b)
A—DbB = —
¢ D D
—e(a® + b?)
)

Hence ¢ = (—1)"1.

4 Uniqueness of ¢ and b

We give a version of the "only if” part of Theorem 3 of [3, p. 148] and Lemma
2 [5, pp. 171-174], which characterise a and b in terms of continued fractions.

THEOREM 4.1 . Suppose (4, B, C) is a primitive Pythagorean triple with
A even and a and b are positive integers satisfying

laA — bB| = 1. (15)
Then with D = a? + b?, we have
(a) D is not a perfect square.

(b) @ =P, and b = @, where 2n — 1 is the period-length of the continued
fraction expansion of v/D.

REMARK 4.1 Hardy and Williams characterise a and b instead in terms
of ged’s in Z[i] in Theorem 3 [3, p. 148].

6



Proof. (a) Let z = aB + bA,y = C. Then

2% — dy? = (aB + bA)* — (a® + V*)(A* + B?)
= (aA - bB)* = —1.
However D = d* would imply (z+dy)(z—dy) = —1, giving the contradiction

x+dy = 1. To prove (b) we need the following result, which is Theorem 172
of [4, pp. 140-141] in slightly more general form:

LEMMA 4.1 . Letw = ggf;, where ( > 1 and P, @, R, S are integers such

that @ > 0,5 > 0 and PS — QR = +1. Then P/Q is a convergent Ay /B,
to w. Moreover, if Q > S, then R/S = A;_1/Br_1,k > 0. Also ( is the
(k + 1)-th complete convergent to w.

In Lemma 4.1 take P = (au + bv), R = bu — av,Q) = u,S = v,{ =
(a ++/D)/b. Then
VD = (P¢+Q)/(R¢+ S),
where PS — QR =+1. Also( >1and @ > S > 0.
For

(au + bv)M + (bu — av)

(PC+Q)/(RC+S) = BT,

(au 4 bv)(a + VD) + b(bu — av)
u(a + /D) + bv
(a?u + b*u + (au + bv)V/D)
ua + bv + u/D
(Du + (au + bv)v/D)
ua + bv + uv/D
- VD.

Also
PS—QR = (au+bv)v—u(bu— av)

= (auv + bv?®) — (bu® — auv)
= 2auv — b(u® —v?) = %1,

from equation (15).



It follows from Lemma 4.1 that

P/Q = (au+bv)/u=Ayx_1/Bn_1, (16)
R/S = (bu—av)/v :AN_Q/BN_Q, (17)
(a+VD)/b = (Py+VD)/Qn, (18)

for some N > 1.
Hence as ged(au + bv,u) = 1 = ged(bu — av), we have from (16) and (18)

au+bv=An_1, u=By_1, (19)
bu —av = AN_27 v = BN_Q. (20)

Also from (18) we have

Py =aand Qy = b. (21)
Then we also have
b=0n-1. (22)
For
(-1)N!' = Ay 9Byx_1— An_1Bn o
= (bu— av)u — (au + bv)v
= —2auv + b(u® — v?).
Hence

(=D"'Qno1 = Ay, — DBy,
(bu — av)® — (a® + b*)v°
= —2abuv + b*(u? —v?) = (=1)V b
Finally, let 2n — 1 be the period-length of v/D. Then as Qy_1 = Qu,

it follows from Satz 3.11 [8, p. 82] that N = n(mod2n — 1). Then by
periodicity, a = Py = P, and b = Qn = Q..

5 Examples

EXAMPLE 5.1 The case a = 1 and b > 1 cannot occur. ie. the equation
| — bu? + 2uv + bv?| = 1 has no integer solutions if b > 1.
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Proof. Assume a =1 and b > 1. Then (15) becomes
| — bu® + 2uv + bo?| = 1.

Counsider the matrix

o [u u+bv]
v bu—wv

Then det H = —e¢ and all entries are positive.
Also if D =b* + 1,

1+VD  u/Dtu+bv
b vWD+bu—v
Hence by Lemma 4.1, u/v is a convergent Ay_1/By_1 to w.

Now w = [1,b— 1,1].
Also by Theorem 5.3.4 [6, p. 246],

DAY — 24, 1By — B = (-1)*Qy,
where (P, +v/D)/Qy, is the k-th complete convergent to w. Hence
+1 = bu? — 2uv — bv? = (—=1)*Qy, (23)
But we readily verify that for ¢ > 0,
1. (a) (P +VD)/Qsi = (1+VD)/b,
2. (b) (Poy1 +VD)/Qsis1 = (b= 1+VD)/2,
3. (¢) (Pyipa +VD)/Qsiva = (b—1++D)/b.

Hence equation (23) gives a contradiction.
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