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Abstract

A well–known upper estimate for the size of the fundamental solutions of
the diophantine equation u2 − Dv2 = N was proved by Tchebicheff and
rediscovered a century later by Nagell. P. G. Tsangaris has proved a converse
in his PhD thesis and stated the result in [11], that any solution which
satisfies this inequality is indeed a fundamental solution. Surprisingly this is
the only place we have seen the converse stated. We give a proof and also
show that the ambiguous classes correspond to equality in these estimates.
Finally we mention some related results of Frattini and Tsangaris on the
determination of the non–negative solutions and give an efficient algorithm
based on continued fractions, for finding the least non–negative primitive
solutions in each class.
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1. Introduction

We consider the diophantine equation

u2 −Dv2 = N, (1)

where D > 0 is not a perfect square and N is nonzero.
Following Nagell [8], two integer solutions (u, v), (u′, v′) of equation (1)

are called equivalent if

u′ + v′
√
D = (u+ v

√
D)(x+ y

√
D),

where (x, y) satisfies Pell’s equation x2 −Dy2 = 1. The equivalence classes
come in pairs, with (u, v) and (−u, v) in general defining different classes.
If (u, v) and (−u, v) define the same class, this class is called ambiguous.
Among all solutions u+ v

√
D in a class K, we choose a solution u∗+ v∗

√
D,

where v∗ is the least non–negative value of v when u + v
√
D belongs to K.

Equivalently |u∗| is the least value of |u| when u + v
√
D belongs to K. In

the case of an ambiguous class, we choose u∗ ≥ 0. There are finitely many
equivalence classes, each indexed by a fundamental solution (u∗, v∗). In his
book [8] and paper [7], Nagell gave the following necessary conditions for
u+ v

√
D to be a fundamental solution.

Proposition 1. (Nagell–Tchebicheff) Suppose x1+y1

√
D is the least positive

solution of Pell’s equation and let u+ v
√
D be a fundamental solution of the

equation u2 −Dv2 = N . Then u and v satisfy the following inequalities:

(a) If N > 0, then

0 ≤ v ≤ y1

√
N

2(x1+1)
, (2)

√
N ≤ |u| ≤

√
1
2
(x1 + 1)N. (3)

(b) If N < 0, then √
|N |
D
≤ v ≤ y1

√
|N |

2(x1−1)
, (4)

0 ≤ |u| ≤
√

1
2
(x1 − 1)|N |. (5)
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In each set of inequalities, we have equality on the lower (upper) bounds for
u if and only if we have equality on the lower (upper) bounds for v.

Nagell was apparently unaware that he had been anticipated by Tchebich-
eff [10] in 1851. Nagell’s necessary conditions are also sufficient. This was
not stated explicitly by Nagell and Tchebicheff, perhaps because the essential
step in proving sufficiency is simply a matter of reversing Nagell’s proof. The
sufficiency part is stated by P. G. Tsangaris in Theorem 1.1, [11]. G. Frattini
[1], like Tsangaris, was primarily interested in finding all positive integer so-
lutions of (1). Frattini was aware of Tchebicheff’s work and wrote extensively
about (9). For the record, we give proofs of the converse of Nagell’s Theorem
and also describe the ambiguous classes explicitly. We state Frattini’s main
results about non–negative integer solutions of (1) in section 4. Finally we
point out that an efficient way of finding the smallest non–negative solutions
of (1) is given by using continued fractions.

Theorem 1. (Converse of Nagell–Tchebicheff) Suppose x1 + y1

√
D is the

least positive solution of Pell’s equation and let u + v
√
D be a fundamental

solution of the equation u2 − Dv2 = N . Then u and v satisfy the following
inequalities:

(a) If N > 0 and 0 ≤ v ≤ y1

√
N

2(x1+1)
, with u > 0 in the case of equality,

then u+ v
√
D is a fundamental solution.

(b) If N < 0 and 0 < v ≤ y1

√
|N |

2(x1−1)
, with u > 0 in the case of equality,

then u+ v
√
D is a fundamental solution.

Nagell did not state the following result which characterises the ambiguous
classes.

Theorem 2. Suppose u+ v
√
D is a fundamental solution of u2 −Dv2 = N

with u ≥ 0 and v ≥ 0. Then u+v
√
D defines an ambiguous class if and only

if one of (a) and (b) holds:

(a) N > 0, u > 0 and v = 0 or v = y1

√
N

2(x1+1)
;

(b) N < 0, v > 0 and u = 0 or v = y1

√
|N |

2(x1−1)
.

Consequently there are at most two ambiguous classes.
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2. Proof of Theorem 1

Proof. The equivalence class K defined by u+v
√
D consists of the numbers

u′+v′
√
D = ±(u+v

√
D)εn, n ∈ Z, where ε = x1 +y1

√
D is the least solution

of Pell’s equation. The fact that u+ v
√
D is a fundamental solution for class

K will follow from the inequality |v′| ≥ v. This is immediate in the following
case:

(u+ v
√
D)εn = rn + sn

√
D, (6)

for n ≥ 0, where sn+1 > sn ≥ v and rn+1 > rn ≥ u. In particular, v′ = rn ≥ v.
We now distinguish two cases: (a) N > 0, (b) N < 0.
Case (a) N > 0. We assume u ≥ 0 and

0 ≤ v ≤ y1

√
N

2(x1+1)
. (7)

Then

0 < u ≤
√

1
2
(x1 + 1)N. (8)

Also u > 0, as u = 0 implies −Dv2 = N . We now prove

(u+ v
√
D)ε−m = um − vm

√
D, (9)

for m ≥ 1, where vm+1 > vm ≥ v and um+1 > um ≥ u. In particular,
v′ = vm ≥ v.

We first deal with the case m = 1.

(u+ v
√
D)ε−1 = (u+ v

√
D)(x1 − y1

√
D)

= ux1 − vy1D − (uy1 − vx1)
√
D

= u1 − v1

√
D.

Reversing Nagell’s argument, from (8) we deduce

u2 ≤ 1

2
(x1 + 1)N =⇒ x1 − 1

x1 + 1
≥ 1− N

u2

=⇒ u2(x1 − 1)2 ≥ (u2 −N)(x2
1 − 1) = D2v2y2

1

=⇒ u(x1 − 1) ≥ Dvy1

=⇒ u1 = ux1 −Dvy1 ≥ u.
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Also (7) implies

v22(x1 + 1) ≤ Ny2
1 =⇒ v2(2x1 + 1) + v2(x2

1 −Dy2
1) ≤ Ny2

1

=⇒ v2(x2
1 + 2x1 + 1 ≤ (Dv2 +N)y2

1 = u2y2
1

=⇒ v(x1 + 1) ≤ uy1

=⇒ v ≤ uy1 − vx1 = v1.

Then by induction on m ≥ 1, using the recurrence relations

um+1 = umx1 +Dvmy1,

vm+1 = vmx1 + umy1,

we have vm+1 > vm ≥ v and um+1 > um ≥ u.
For future reference, taking conjugates, equation (9) gives

(u− v
√
D)εm = um + vm

√
D, (10)

where um+1 > um ≥ u and vm+1 > vn ≥ v for m ≥ 1.
Case (b) N < 0. We assume u ≥ 0 and

0 ≤ v ≤ y1

√
N

2(x1−1)
. (11)

Then

0 ≤ u ≤
√

1
2
(x1 − 1)N. (12)

For m ≥ 1, we now prove

(u+ v
√
D)ε−m = −Um + Vm

√
D, (13)

where Um+1 > Um ≥ u and Vm+1 > Vm ≥ v. In particular, v′ = Vm ≥ v.
We first deal with the case m = 1. We have

(u+ v
√
D)ε−1 = (u+ v

√
D)(x1 − y1

√
D)

= −(vy1D − ux1) + (vx1 − uy1)
√
D

= −U1 + V1

√
D.

Reversing Nagell’s argument, from (12) we deduce

u2 ≤ 1

2
(x1 − 1)|N | =⇒ x1 + 1

x1 − 1
≤ 1− N

u2

=⇒ u2(x1 + 1)2 ≤ (u2 +N)(x2
1 − 1) = D2v2y2

1

=⇒ u(x1 + 1) ≤ Dvy1

=⇒ u ≤ Dvy1 − ux1 = U1.
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Also (11) implies

v22(x1 − 1) ≤ |N |y2
1 =⇒ v2(2x1 − 1)− v2(x2

1 −Dy2
1) ≤ −Ny2

1

=⇒ − v2(x2
1 − 2x1 + 1 ≤ (−Dv2 −N)y2

1 = −u2y2
1

=⇒ v(x1 − 1) ≤ uy1

=⇒ V1 = vx1 − uy1 ≥ v.

Then by induction on m ≥ 1, using the recurrence relations

Um+1 = Umx1 +DVmy1,

Vm+1 = Vmx1 + Umy1,

we have Um ≥ u and Vm ≥ v.
For future reference, taking conjugates, equation (14) gives

(−u+ v
√
D)εm = Um + Vm

√
D, (14)

where Um+1 > Um ≥ u and Vm+1 > Vn ≥ v for m ≥ 1.

3. Proof of Theorem 2

Proof. Suppose u+v
√
D is a fundamental solution of u2−Dv2 = N where

u ≥ 0.
(a) Suppose N > 0. Then u > 0. If v = 0, then u+v

√
D = −(−u+v

√
D)

and u+ v
√
D is an ambiguous solution. If v = y1

√
N

2(x1+1)
, we have

Ny2
1 = v2(2x1 + 2)

−v2 +Ny2
1 = v2(2x1 + 1)

v2(Dy2
1 − x2

1) +Ny2
1 = v2(2x1 + 1)

(Dv2 +N)y2
1 = v2(x2

1 + 2x1 + 1)

u2y2
1 = v2(x1 + 1)2

uy1 = v(x1 + 1). (15)

Also x2
1 − 1 = Dy2

1 and hence from (15),

u(x1 − 1) = Dy1v. (16)
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Then (15) and (16) combine to give

(u+ v
√
D)(−x1 + y1

√
D) = −u+ v

√
D

and u+ v
√
D defines an ambiguous class.

(b) Suppose N < 0 and v > 0. If u = 0, then u + v
√
D = (−u + v

√
D)

and u + v
√
D is an ambiguous solution. If v = y1

√
N

2(x1−1)
, then as in (a),

we deduce uy1 = v(x1 − 1), u(x1 + 1) = Dy1v. Hence

(u+ v
√
D)(x1 − y1

√
D) = −u+ v

√
D

and u+ v
√
D defines an ambiguous class.

Conversely, suppose u+ v
√
D defines an ambiguous class. Then

(u+ v
√
D)(−X1 + Y1

√
D) = −u+ v

√
D, (17)

where X2
1 −DY 2

1 = 1. Then (17) gives

−uX1 + vDY1 = −u, (18)

−vX1 + uY1 = v (19)

and hence X1 = (u2 +Dv2)/N and Y1 = 2uv/N .
(a) Assume N > 0. Then u > 0 and inequalities (3) and (2) imply

uv ≤
√

(x1+1)N
2
· y1

√
N

2(x1+1)
= Ny1/2,

so Y1 = 2uv/N ≤ y1. Hence either Y1 = 0 and so v = 0, or 0 < Y1 ≤ y1

and hence Y1 = y1 and X1 = x1. Then (19) gives uy1 = v(x1 + 1), which on
squaring and then reversing the chain of equalities from (15), leads back to

v = y1

√
N

2(x1+1)
.

(b) Assume N < 0. Then v > 0 and inequalities (4) and (5) imply

uv ≤
√

(x1−1)|N |
2

· y1

√
|N |

2(x1−1)
= |N |y1/2,

so |Y1| = 2uv/|N | ≤ y1. Hence either Y1 = 0 and so u = 0, or 0 <
|Y1| ≤ y1, in which case |Y1| = y1, Y1 = −y1 and X1 = −x1. Then (19) gives
uy1 = v(x1 − 1), which on squaring and then reversing a similar chain of

equalities leading back from (15), gives v = y1

√
|N |

2(x1−1)
.
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Example 1. (Lagrange 1769, [9, 471–485]). The equation u2 − 46v2 = 210.
Here x1 = 24335, y1 = 3588, so the fundamental solutions u+v

√
46 satisfy

0 ≤ v ≤ y1

√
N

2(x1+1)
= 3588

√
210

2·24336
= 235.67 · · ·

We find solutions for v = 1, 11, 43, 79:

±16 +
√

46, ±76 + 11
√

46, ±292 + 43
√

46, ±536 + 79
√

46.

Example 2. (Frattini 1891, [1, p. 179]). The equation u2 − 13v2 = −12.
Here x1 = 649, y1 = 180, so the fundamental solutions u+ v

√
13 satisfy

0 ≤ v ≤ y1

√
N

2(x1−1)
= 180

√
12

1296
= 17.32 · · ·

We find solutions for v = 1, 4, 7:

±1 +
√

13, ±14 + 4
√

13, ±25 + 7
√

13.

Example 3. The equation u2 − 96v2 = 4. We have x1 = 49, y1 = 5 and

the Nagell upper bound is 5
√

4
2·50

= 1. The fundamental solutions u+ v
√

96

satisfy 0 ≤ v ≤ 1 and we find ambiguous fundamental solutions 2 + 0
√

96
and 10 +

√
96.

Example 4. The equation u2 − 96v2 = −96. We have x1 = 49, y1 = 5 and

the Nagell upper bound is 5
√

96
2·50

= 5. The fundamental solutions u+ v
√

96

satisfy 0 ≤ v ≤ 5 and we find ambiguous fundamental solutions 0 +
√

96 and
48 + 5

√
96.

4. The non–negative solutions

Frattini studied the non–negative integer solutions of x2 − Dy2 = N
in a series of papers which are listed in the Jahrbuch Database [4]. Using
Frattini’s notation, let α + β

√
D be the least positive solution of the Pell

equation α2 −Dβ2 = 1. In [1], Frattini gave a descent proof of the following
results.

Theorem 3. (a) The non–negative solutions of x2 −Dy2 = N,N > 0 are
given by

x+ y
√
D = (k + h

√
D)(α + β

√
D)m,m ≥ 0, (20)

where (k, h) runs through the non–negative solutions of k2 −Dh2 = N
with h < β

√
N .
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(b) The non–negative solutions of x2 −Dy2 = −N,N > 0 are given by

x+ y
√
D =

{
(k + h

√
D)(α + β

√
D)m, m ≥ 0,

(−k + h
√
D)(α + β

√
D)m, m ≥ 1,

(21)

where (k, h) runs through the non–negative solutions of k2−Dh2 = −N
with h ≤

√
N(α+1)

2D
= β

√
N

2(α−1)
.

Plainly, criterion (b) is much faster to implement computationally than (a).
Also (b) is also stated as Theorem 2.3 in [11].

In [3] and the footnote on [2, p. 91], Frattini acknowledges Tchebicheff’s
upper estimates and remarks that the non–negative solutions of x2 −Dy2 =
N , where N > 0, are also given by

x+ y
√
D =

{
(k + h

√
D)(α + β

√
D)m, m ≥ 0,

(k − h
√
D)(α + β

√
D)m, m ≥ 1,

(22)

where (k, h) runs through the non–negative solutions of k2 −Dh2 = N with

0 ≤ h ≤
√

N(α−1)
2D

. This is also stated as Theorem 2.4 in [11].

Both (21) and (22) were also stated as Proposition 1.2 in [11].
Frattini does not seem to explicitly state that the non–negative solutions

of x2 −Dy2 = −N,N > 0 are also given by

x+ y
√
D = (k + h

√
D)(α + β

√
D)m,m ≥ 0, (23)

where (k, h) runs through the non–negative solutions of k2−Dh2 = −N with
h < β

√
N .

Example 5. For formula (21), Frattini gives the example x2 − 13y2 = −12

in [1, p. 179], where ε = 649 + 180
√

13. Here
√

N(α+1)
2D

=
√

12·650
2·13

= 17.32 · · ·
and the positive solutions are given in terms of the fundamental solutions by

(1 +
√

13)εm, (14 + 4
√

13)εm, (25 + 7
√

13)εm, m ≥ 0,

(−1 +
√

13)εm, (−14 + 4
√

13)εm, (−25 + 7
√

13)εm, m ≥ 1,

Alternatively, using formula (23), we have β
√
N = 180

√
12 = 623.53 · · ·

Then the positive solutions (k, h) where 0 ≤ h ≤ 623 are given by:

(1, 1), (14, 4), (25, 7), (155, 43), (274, 76), (1691, 469).

9



We get the last three solutions from the first three:

(−1 +
√

13)ε = 1691 + 469
√

13,

(−14 + 4
√

13)ε = 274 + 76
√

13,

(−25 + 7
√

13)ε = 155 + 43
√

13.

Then the positive solutions of x2 − 13y2 = −12 are given by

(1 +
√

13)εm, (14 + 4
√

13)εm, (25 + 7
√

13)εm,

(155 + 43
√

13)εm, (274 + 76
√

13)εm, (1691 + 469
√

13)εm, m ≥ 0.

Example 6. For formula (22), Frattini gives the example x2− 12y2 = 52 in

[1, p. 179], where ε = 7+2
√

12. Here
√

N(α−1)
2D

=
√

52·6
2·12

=
√

13, whose integer

part is 3 and the positive solutions are given in terms of the fundamental
solutions by

(8 +
√

13)εm, (10 + 2
√

12)εm, m ≥ 0,

(8−
√

13)εm, (10− 2
√

12)εm, m ≥ 1.

Alternatively, the positive solutions (k, h), h < β
√
N = 2

√
52 = 14.42 · · · are

given by formula (20):

(8, 1), (10, 2), (22, 6), (32, 9).

We get the last two solutions from the first two:

(8−
√

12)(7 + 2
√

12) = 32 + 9
√

12,

(10− 2
√

12)(7 + 2
√

12) = 22 + 6
√

12.

Then the positive solutions of x2 − 12y2 = 52 are given by

(8 +
√

12)εm, (10 + 2
√

12)εm, (22 + 6
√

12)εm, (32 + 9
√

12)εm,m ≥ 0.

5. Using continued fractions

A much more efficient method for finding the fundamental solutions uses
continued fractions. This goes back to a neglected algorithm of Lagrange and
was rediscovered by Matthews and Mollin . See reference [5]. We point out
that the least non–negative solutions in each equivalence class can similarly
be found. Clearly it suffices to consider primitive solutions of x2− dy2 = M ,
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where M = N/f 2, i.e., suppose (x, y) is a solution with gcd(x, y) = 1 and
x > 0, y > 0. Let x ≡ yP (mod |M |). Then

P 2 ≡ d (mod |M |). (24)

Write x = Py + |M |X. Then substituting for x in x2 − dy2 = M gives

|M |X2 + 2PXy + (P 2 − d)y2/|M | = M/|M |.

It can be proved that X/y is a convergent An−1/Bn−1 of ω = (−P+
√
d)/|M |.

See Theorem 1, [5, p. 325]. Then x = |M |An−1 +PBn−1 = Gn−1, where (see
Theorem 5.3.4 [6, p. 246])

M = x2 − dy2 = G2
n−1 − dB2

n−1 = (−1)n|M |Qn.

Hence Qn = (−1)nM/|M |.
The algorithm: For each solution P,−|M |/2 < P ≤ |M |/2 of congruence

(24), let (Pn+
√
d)/Qn denote the nth complete quotient for ω. We search the

continued fraction expansion of ω for the least n such that Qn = (−1)nM/|M |
and Gn−1 ≥ 0. Then (Gn−1, Bn−1) will be the least positive primitive solution
of x2 − dy2 = M for the class determined by P .

Example 7. Consider the equation x2 − 13y2 = −12 of Example 5. Here
we have cases (a) f = 1,M = −12 and (b) f = 2,M = −3. We have
to find the least positive primitive solutions of (a) x2 − 13y2 = −12 and (b)
x2−13y2 = −3. For (a) the solutions P of P 2 ≡ 13 (mod 12) are 1,−1, 5,−5.

P (−P +
√
d)/|M | n An−1/Bn−1 (Gn−1, Bn−1)

5 (−5 +
√

13)/12 7 −5/43 (155, 43)

−5 (5 +
√

13)/12 5 5/7 (25, 7)

1 (−1 +
√

13)/12 1 0/1 (1, 1)

−1 (1 +
√

13)/12 11 180/469 (1691, 469)

giving least positive solutions (155, 43), (25, 7), (1, 1), (1691, 469).
For (b) the solutions P of P 2 ≡ 13 (mod 3) are 1,−1.

P (−P +
√
d)/|M | n An−1/Bn−1 (Gn−1, Bn−1)

1 (−1 +
√

13)/3 7 33/38 (137, 38)

−1 (1 +
√

13)/3 3 3/2 (7, 2)

giving least positive solutions (274, 76) and (14, 4).
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