
PSEUDO–CODE FOR THE MLLL

ALGORITHM ∗ †

Keith Matthews

The following pseudo–code is extracted from
the CALC source file lll.c (available at
http://www.numbertheory.org/calc/krm_calc.html) for
the function BASIS_REDUCTION(), which
performs the MLLL algorithm of M. Pohst, J.
Symbolic Computation (1987) 4, 123–127.
We work in integers in the style of pages
329–332 of Benne de Weger’s paper Solving
exponential Diophantine equations using
lattice basis reduction algorithms, J. Number
Theory 26 (1987) 325–367.

∗6th October 1997
†Revised and corrected 15th September 2011

1

In Pohst’s MLLL algorithm, an integer matrix
A whose rows are not necessarily LI over Q is
reduced to a matrix A′, whose first ρ rows
constitute a LLL reduced matrix B and whose
remaining σ rows are zero. A transformation
matrix P , where PA = A′, is also returned.
The last σ rows of P form a basis for the
lattice of row vectors X such that XA = 0.

2

The Gram–Schmidt process plays an
additional role to its usual one in the LLL
algorithm (where its role is restricted to
vectors which are LI) and is used to detect
when row β is a LC of the preceding LI rows.
The termination of the algorithm is
guaranteed by an ingenious trick whereby the
possibility that a dependency bk = 0 and
µk,k−1 $= 0 can occur only finitely many times
during the course of the algorithm.

3

INPUT:m× n integer matrix A;
m1 := 1; n1 := 1;D0 := 1; B := A; P := In;
rowsB := m;K1 := 0;τ := 2;σ := 0;
found:
if (K1 = 0)

i := 1;
else

i := K1;
while (i ≤ rowsB)

ci := bi; // ci = Di−1b∗i
for j = 1, . . . , i− 1

λij := bi · cj; // λij = Djµij

ci := (Djci − λijcj)/Dj−1;
flag := 1;
if (ci $= 0)

flag := 0;
if (flag = 1)

break;
else

Di := (ci · ci)/Di−1; // ||b∗i ||2 = Di/Di−1
i := i + 1;

if (flag = 1)
β := i;

else
β := i− 1;

ρ := K1 = i− 1;

4

k := τ ;
while k ≤ β

Flag := Reduce (k, k − 1);
if (Flag = 1) // Step 9 of Pohst

σ := σ + 1; // relation vector # σ found
τ := k;
k := k + 1;
goto found;

if (n1(Dk−2Dk + λ2
k k−1) < m1D2

k−1) {
flagg := 0;
if (Dk = 0 & λk,k−1 = 0)

Dk−1 := 0;
Swap1(k); // This changes the last two rows of B
if(k − 1 < K1)

K1 := k − 1;
ck−1 := 0;
β := β − 1;
if (k > 2)

k := k − 1;
continue;

if (flagg = 0)
Swap2 (k);

Swap1 (k);
if (k − 2 < K1)

K1 := k − 2;
if (k > 2)

k := k − 1;
}

5

else
for i = k − 2, . . . ,1

Flag := Reduce (k, i);
if (Flag = 1)

σ := σ + 1; /∗ relation vector # σ found ∗/
τ := k;
k := k + 1;
goto found;

OUTPUT: ρ× n LLL reduced matrix B whose rows
form a lattice basis for row lattice of A.
σ = m− ρ, hρ+1, . . . ,hn form a lattice basis for the
lattice XA = 0.

6

Reduce (k, i)
Flag := 1;
if 2|λki| > Di

q := 'λki/Di(;
else q := 0;

if (q $= 0)
bk := bk − qbi;
pk := pk − qpi;
λki := λki − qDi;
for j = 1, . . . , i− 1

λkj := λkj − qλij;
if (bk $= 0)

Flag := 0;
if (Flag = 1)

B := DeleteRow (k, B);
rowsB := rowsB − 1
for j = k, . . . , m− 1

P := SwapRows (j, j + 1, P);
return (Flag);

7

Swap1 (k)
bk ↔ bk−1;
pk ↔ pk−1;
for j = 1, . . . , k − 2

λkj ↔ λk−1 j;

Swap2 (k, β)
for i = k + 1, . . . , β {

t := λi k−1Dk − λikλk k−1;
λi k−1 := (λi k−1λk k−1 + λikDk−2)/Dk−1;
λik := t/Dk−1;

}
Dk−1 := (Dk−2Dk + λ2

k k−1)/Dk−1;

8

Remarks.

1. K1 is the number of LI rows of B found
after G–S process.

2. flag = 0 means the ρ = β rows of B are
LI.

3. flag = 1 means the first ρ = β − 1 rows of
B are LI, but row β is a LC of the
preceding rows.

4. β is the number of rows of B currently
being examined.

9

