AN APPLICATION OF PERRON'S THEOREM 2.13

JOHN P. ROBERTSON

This note proves the theorem below, which was recently conjectured by Keith Matthews.

For the regular continued fraction (RCF) of a number ω , we write the partial fractions as a_i for $i \ge 0$, and we write the RCF of ω as $\omega = \langle a_0, a_1, \ldots \rangle$. For $i \ge 1$, $a_i > 0$. We write the convergents to the RCF as A_i/B_i for $i \ge 0$. Following standard conventions, we set $A_{-1} = 1$, $A_0 = a_0$, $B_{-1} = 0$, and $B_0 = 1$ [1, §5, (3) and (3a), p. 10].

Theorem 1. Let P, Q, R, S be integers so that $PS - QR = \pm 1$, Q < 0, and S > -Q. Also let $\varphi = (1 + \sqrt{5})/2$ and

$$\omega = \frac{R\varphi + P}{S\varphi + Q}.$$

Then

- (i) $\omega = \langle a_0, a_1, ..., a_r, \overline{1} \rangle$, where r > 0 and $a_r > 1$.
- (ii) $R = A_r A_{r-1}$, $P = 2A_{r-1} A_r$, $S = B_r B_{r-1}$, and $Q = 2B_{r-1} B_r$.

Proof. Perron's Theorem 2.13 [1, §13, Thm 2.13, p. 40] is (translated from the original German):

Theorem 2.13. *If*

$$\xi_0 = \frac{P\omega + R}{Q\omega + S}$$

where $\omega > 1$, and P, Q, R, S are integers satisfying the conditions

$$PS - QR = \pm 1, \quad Q > S > 0,$$

then R/S, P/Q are two successive convergents to ξ_0 , and ω is the associated complete quotient.

Date: July 22, 2021.

Henceforth we use the notation of Theorem 1, as opposed to that of the Perron's Theorem 2.13, unless otherwise specified.

Using $\varphi^2 = 1 + \varphi$ and $\varphi^3 = 1 + 2\varphi$,

(1)
$$\omega = \frac{R\varphi + P}{S\varphi + Q} = \frac{R\varphi^3 + P\varphi^2}{S\varphi^3 + Q\varphi^2} = \frac{R(1 + 2\varphi) + P(1 + \varphi)}{S(1 + 2\varphi) + Q(1 + \varphi)},$$
$$\omega = \frac{(2R + P)\varphi + R + P}{(2S + Q)\varphi + S + Q}.$$

Now, $(2R+P)(S+Q) - (2S+Q)(R+P) = -(PS-QR) = \pm 1$, and S > -Q > 0, so 2S+Q > S+Q > 0.

In (1), 2R + P, 2S + Q, R + P, S + Q, and φ meet the conditions for Perron's P, Q, R, S, and ω in his Theorem 2.13. We conclude that in the RCF of ω , for an appropriate index r, $2R + P = A_r$, $R+P = A_{r-1}$, $2S+Q = B_r$, and $S+Q = B_{r-1}$. In turn, $R = A_r - A_{r-1}$, $P = 2A_{r-1} - A_r$, $S = B_r - B_{r-1}$, and $Q = 2B_{r-1} - B_r$.

We have $r \ge 1$ because $B_{r-1} = S + Q > 0$ and $B_{-1} = 0$.

Now we show that $a_r \ge 2$. First, 2S + Q > 2(S + Q) > 0, so $B_r/B_{r-1} = (2S + Q)/(S + Q) > 2$ and $\lfloor B_r/B_{r-1} \rfloor \ge 2$. Also $B_i = a_i B_{i-1} + B_{i-2}$ for $i \ge 1$ [1, §5, p. 11], so $B_i/B_{i-1} = a_i + B_{i-2}/B_{i-1}$. Now, $B_{i-2} < B_{i-1}$ unless i = 2 and $a_1 = 1$. If $r \ne 2$ or $a_1 > 1$, then $\lfloor B_r/B_{r-1} \rfloor = a_r$, so $a_r \ge 2$. If r = 2 and $a_1 = 1$, then $B_1 = a_1 = 1 = S + Q$, so $B_2 = 2S + Q = S + 1$. Now, $S \ge 2$ (because S > -Q > 0), so $B_2 \ge 3$. As $B_2 = a_2 + 1$, it follows that $a_2 \ge 2$.

As ϕ is the associated complete quotient in $\omega = \langle a_0, \ldots, a_r, \varphi \rangle$, and $\varphi = \langle \overline{1} \rangle$, by [1, §8, Thm. 1.4, pp. 18–19] we have $\omega = \langle a_0, \ldots, a_r, \overline{1} \rangle$.

References

 O. Perron, Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, Third Edition, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954.

 $\mathbf{2}$