AN APPLICATION OF PERRON'S THEOREM 2.13

JOHN P. ROBERTSON

This note proves the theorem below, which was recently conjectured by Keith Matthews.

For the regular continued fraction (RCF) of a number ω, we write the partial fractions as a_{i} for $i \geq 0$, and we write the RCF of ω as $\left.\omega=<a_{0}, a_{1}, \ldots\right\rangle$. For $i \geq 1, a_{i}>0$. We write the convergents to the RCF as A_{i} / B_{i} for $i \geq 0$. Following standard conventions, we set $A_{-1}=1, A_{0}=a_{0}, B_{-1}=0$, and $B_{0}=1[1, \S 5,(3)$ and (3a), p. 10].

Theorem 1. Let P, Q, R, S be integers so that $P S-Q R= \pm 1$, $Q<0$, and $S>-Q$. Also let $\varphi=(1+\sqrt{5}) / 2$ and

$$
\omega=\frac{R \varphi+P}{S \varphi+Q} .
$$

Then
(i) $\omega=<a_{0}, a_{1}, \ldots, a_{r}, \overline{1}>$, where $r>0$ and $a_{r}>1$.
(ii) $R=A_{r}-A_{r-1}, P=2 A_{r-1}-A_{r}, S=B_{r}-B_{r-1}$, and $Q=$ $2 B_{r-1}-B_{r}$.

Proof. Perron's Theorem 2.13 [1, §13, Thm 2.13, p. 40] is (translated from the original German):

Theorem 2.13. If

$$
\xi_{0}=\frac{P \omega+R}{Q \omega+S}
$$

where $\omega>1$, and P, Q, R, S are integers satisfying the conditions

$$
P S-Q R= \pm 1, \quad Q>S>0
$$

then $R / S, P / Q$ are two successive convergents to ξ_{0}, and ω is the associated complete quotient.

Date: July 22, 2021.

Henceforth we use the notation of Theorem 1, as opposed to that of the Perron's Theorem 2.13, unless otherwise specified.

Using $\varphi^{2}=1+\varphi$ and $\varphi^{3}=1+2 \varphi$,

$$
\begin{aligned}
& \omega=\frac{R \varphi+P}{S \varphi+Q}=\frac{R \varphi^{3}+P \varphi^{2}}{S \varphi^{3}+Q \varphi^{2}}=\frac{R(1+2 \varphi)+P(1+\varphi)}{S(1+2 \varphi)+Q(1+\varphi)} \\
& \omega=\frac{(2 R+P) \varphi+R+P}{(2 S+Q) \varphi+S+Q}
\end{aligned}
$$

Now, $(2 R+P)(S+Q)-(2 S+Q)(R+P)=-(P S-Q R)= \pm 1$, and $S>-Q>0$, so $2 S+Q>S+Q>0$.

In (1), $2 R+P, 2 S+Q, R+P, S+Q$, and φ meet the conditions for Perron's P, Q, R, S, and ω in his Theorem 2.13. We conclude that in the RCF of ω, for an appropriate index $r, 2 R+P=A_{r}$, $R+P=A_{r-1}, 2 S+Q=B_{r}$, and $S+Q=B_{r-1}$. In turn, $R=A_{r}-A_{r-1}$, $P=2 A_{r-1}-A_{r}, S=B_{r}-B_{r-1}$, and $Q=2 B_{r-1}-B_{r}$.

We have $r \geq 1$ because $B_{r-1}=S+Q>0$ and $B_{-1}=0$.
Now we show that $a_{r} \geq 2$. First, $2 S+Q>2(S+Q)>0$, so $B_{r} / B_{r-1}=(2 S+Q) /(S+Q)>2$ and $\left\lfloor B_{r} / B_{r-1}\right\rfloor \geq 2$. Also $B_{i}=$ $a_{i} B_{i-1}+B_{i-2}$ for $i \geq 1\left[1, \S 5, \mathrm{p}\right.$. 11], so $B_{i} / B_{i-1}=a_{i}+B_{i-2} / B_{i-1}$. Now, $B_{i-2}<B_{i-1}$ unless $i=2$ and $a_{1}=1$. If $r \neq 2$ or $a_{1}>1$, then $\left\lfloor B_{r} / B_{r-1}\right\rfloor=a_{r}$, so $a_{r} \geq 2$. If $r=2$ and $a_{1}=1$, then $B_{1}=a_{1}=1=$ $S+Q$, so $B_{2}=2 S+Q=S+1$. Now, $S \geq 2$ (because $S>-Q>0$), so $B_{2} \geq 3$. As $B_{2}=a_{2}+1$, it follows that $a_{2} \geq 2$.

As ϕ is the associated complete quotient in $\omega=\left\langle a_{0}, \ldots, a_{r}, \varphi\right\rangle$, and $\varphi=\langle\overline{1}\rangle$, by $\left[1, \S 8\right.$, Thm. 1.4, pp. 18-19] we have $\omega=\left\langle a_{0}, \ldots, a_{r}, \overline{1}\right\rangle$.

References

[1] O. Perron, Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, Third Edition, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954.

