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A NOTE ON THE MARKOFF NUMBERS CONJECTURE

K.R. Matthews, J.P. Robertson

Abstract. We show that the Markoff numbers conjecture is equiva-

lent to a conjecture about the number of equivalence classes of a generalized

Pell equation. The note originated in an attempt to understand papers by

A. Baragar and J.O. Button, via the authors’ background in the work of

T. Nagell and B. Stolt. We give another proof of the unicity conjecture

using the LMM algorithm, in the case z = pa or 2pa, where p is a prime

of the form 4n + 1.

1. Introduction

The diophantine equation

(1.1) x2 + y2 + z2 = 3xyz

was first studied by A. A. Markoff [6] in 1879. The positive solutions

(x, y, z), x ≤ y ≤ z, of the diophantine equation form a tree rooted at

(1, 1, 1), using the branching operations

(x, y, z) → (x, z, 3xz − y),

(x, y, z) → (y, z, 3yz − x).
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See Cassells’ book [4, p. 27–29]. Also see Zagier [12, p. 711–712] for

the segment of the tree with y ≤ 100000. The initial segment is given

in Figure 1.

We refer to any positive solution (x, y, z) of (1.1) (not necessarily

with x ≤ y ≤ z) as a Markoff triple. The numbers z in an ordered

Markoff triple x ≤ y ≤ z are called Markoff numbers.

(1,1,1) - (1,1,2) - (1,2,5)
´́3

QQs

(1,5,13)

(2,5,29)

´́3
QQs

´́3
QQs

(1,13,34)

(5,13,194)
(2,29,169)

(5,29,433)

Figure 1. Initial portion of the Markoff tree.

It is a long–standing conjecture, first stated by Frobenius [5] in 1913,

that if (x, y, z) and (x′, y′, z) are ordered Markoff triples, then y = y′

and x = x′. This is called the Markoff numbers unicity conjecture. The

conjecture has been proved when z is an odd prime power, or twice an

odd prime power, or when one of 3z−2 and 3z+2 is a prime power. See

[9] for a list of references. The conjecture has been verified for z ≤ 10105

by Borosh [2]. We also have noticed that each Markoff number z > 2

appears exactly twice as the second component of an ordered Markoff

triple. For example, 5 occurs only in the two ordered Markoff triples

1 < 5 < 13 and 2 < 5 < 29.

If (x, y, z) is a Markoff triple, we can rewrite (1.1) in the form

(3xz − 2y)2 − (9z2 − 4)x2 = −4z2
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and we have an equation introduced by Baragar [1] and Button [3]:

(1.2) X2 − Dx2 = −4z2,

where X = 3xz − 2y, D = 9z2 − 4. For future reference, we note that

X > 0 if y ≤ z. Conversely if (X, x) satisfies (1.2) with z > 0, x > 0,

then y = (3xz − X)/2 is a positive integer and (x, y, z) is a Markoff

triple. For X2 ≡ x2z2 (mod 4) and hence y = (3xz − X)/2 is an

integer. Moreover X2 < 9x2z2, so |X| < 3xz and hence y > 0.

In this note, we relate the unicity conjecture to a conjecture about

the number of equivalence classes of solutions of equation (1.2). Fol-

lowing Stolt [10], two solutions (X, x), (X ′, x′) of an equation

(1.3) X2 − Dx2 = 4N

such as (1.2) are called equivalent if

X ′ + x′
√

D = (X + x
√

D)(u + v
√

D)/2,

where (u, v) satisfies the Pell equation u2 − Dv2 = 4. Classes come in

pairs, with (X, x) and (−X, x) in general defining different classes. If

(X, x) and (−X, x) define the same class, this class is called ambiguous.

There are finitely many equivalence classes, each indexed by a funda-

mental solution (X0, x0) which has least positive x0. In the case of an

ambiguous class, we choose X0 ≥ 0. Stolt’s definition of equivalence

is related to that of Nagell [7], which is defined in terms of the Pell

equation u2 − Dv2 = 1.

Our main result is:
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Fundamental solution (X, x) Markoff triple (x,
3xz−X

2
, z)

(1,1) (1,1,1)

(4,1) (1,1,2)

(11,1) (1,2,5)

(29,1) (1,5,13)

(164,2) (2,5,29)

(76,1) (1,13,34)

(199,1) (1,34,89)

(956,2) (2,29,169)

(2884,5) (5,13,194)

(521,1) (1,89,233)

(6437,5) (5,29,433)

(1364,1) (1,233,610)

(5572,2) (2,169,985)

(51607,13) (13,34,1325)

(3571,1) (1,610,1597)

(43067,5) (5,194,2897)

(9349,1) (1,1597,4181)

(32476,2) (2,985,5741)

(96124,5) (5,433,6466)

(294491,13) (13,194,7561)

(925676,34) (34,89,9077)

Table 1. Markoff triples and corresponding fundamental so-

lutions for z ≤ 10000.

Theorem 1.1. Let z ≥ 5. Then there is a 1–1 correspondence be-

tween the ordered Markoff triples (x, y, z) and the positive fundamental

solutions of (1.2).

This is a reformulation of A. Baragar’s Theorem 1.1 of [1], which

follows more directly by considering the orbits of an automorphism

group which acts on the solutions of (1.1).

Table 1 lists the Markoff triples (x, 3xz−X
2 , z) that arise from the

positive fundamental solutions (X, x) of (1.2) over the range 1 ≤ z ≤
10000.

The paper depends on upper estimates of Stolt for the size of fun-

damental solutions. These estimates are similar to those of Nagell’s
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who dealt with a definition of equivalence based on the Pell equation

u2 − Dv2 = 1. In view of section 3 below, the unicity conjecture is

equivalent to the statement that for z ≥ 5, equation (1.2) has at most

one solution (X, x) in positive integers, where x ≤ z/
√

3z − 2. This

gives the unicity conjecture a similarity to the following two conjec-

tures.

(i) The equation x2 − (k2 + 1)y2 = k2, k > 1 of Andrej Dujella

[7] always has the solution (x, y) = (k2 − k + 1, k − 1) and is

believed to have at most one other positive (exceptional) solution

(x, y) with 1 ≤ y < k − 1. We get exceptional solutions if

k = 8, 12, 18, 21, 30, 32, 50, 55, . . .

(ii) The equation x2 − (n2 − 1)y2 = 2 − n2 of Kenji Kashihara [7]

always has the solution (x, y) = (1, 1) and appears to have at

most one other positive solution (x, y) with y ≤
√

n2−2
2n−2 un-

less n = 33539, when it has two, namely x = 669941, y = 20

and x = 4326401, y = 129. We get such solutions if n =

11, 23, 39, 41, 59, 64, 83, 111, . . . This sequence is listed on the OEIS

site at http://oeis.org/A130282.

Interestingly, equation (1.2) and those of Dujella and Kashihara have

a common form on rewriting:

9X2 + 16 = (9z2 − 4)(9y2 − 4) (Markoff)

x2 + 1 = (k2 + 1)(y2 + 1) (Dujella)

x2 − 1 = (n2 − 1)(y2 − 1) (Kashihara).

These are all special cases of a general equation studied by Kashihara

in [8].
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2. Inequalities

Lemma 2.1. Suppose x ≤ y ≤ z is a Markoff triple. Then

(i) z > 2 implies x < y < z;

(ii) z ≥ 5 implies x <
√

z/3.

Proof. (i) See [4, p. 27].

(ii) We use induction on the tree. The inequality of (iii) is true for

tree member (1, 2, 5), so we assume its truth for tree member

(x, y, z), where z ≥ 5. We have to prove (a) x <
√

(3xz − y)/3

and (b) y <
√

(3yz − x)/3. For (a) we have

x <
√

(3xz − y)/3 ⇐⇒ 3x2 < 3xz − y,

⇐⇒ 3x2y < 3xyz − y2 = x2 + z2,

⇐⇒ x2(3y − 1) < z2.

However the last inequality follows from Lemma 2.1 (iii):

x2(3y − 1) < (z/3)3y < (z/3)3z = z2.

For (b) we have

y <
√

(3yz − x)/3 ⇐⇒ 3y2 < 3yz − x,

⇐⇒ x < 3y(z − y)

and the last inequality follows from x < y < z.
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3. Fundamental solutions

Lemma 3.1. Let u1 + v1

√
D be the smallest positive solution of the

Pell equation u2
1 −Dv2

1 = 4. Then a fundamental solution x + y
√

D of

the equation x2 − Dy2 = −4N, N > 0 must satisfy the inequalities:

0 < y ≤ v1√
u1 − 2

√
N,(3.1)

0 ≤ |x| ≤
√

(u1 − 2)N.(3.2)

The converse is easy to prove:

Lemma 3.2. Suppose x2 − Dy2 = −4N , where N > 0 and

(3.3) 0 < y ≤ v1
√

(u1 − 2)

√
N,

where x ≥ 0 in the case of equality. Then x + y
√

D is a fundamental

solution.

Remark 3.3. It is straightforward to prove that fundamental solu-

tion x + y
√

D defines an ambiguous class, if and only if equality holds

in (3.3) or x = 0. In the case of equation (1.2), we have u1 = 3z, v1 = 1.

Then v1√
(u1−2)

√
N = z/

√
3z − 2 and this is an integer only when z = 1

and 2. Hence the only possibility for an ambiguous solution is z = 1

or 2. We find equation (1.2) has ambiguous solutions (1, 1) or (4, 1) if

z = 1 or z = 2, respectively.

4. A one–to– one correspondence

In what follows, z ≥ 5, D = 9z2 − 4 and ǫ = (3z +
√

D)/2.

Lemma 4.1. A positive solution (X, x) of (1.2) is a fundamental

solution if and only if x ≤ z/
√

3z − 2.
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Proof. This follows from Lemmas 3.1 and 3.2, as x1 = 3z and

y1 = 1.

Lemma 4.2. If x < y < z is a Markoff triple and X = 3xz − 2y,

then (X, x) is a positive fundamental solution of (1.2).

Proof. We know (X, x) is a positive solution of (1.2). Also from

Lemma 2.1, we have x <
√

z/3 < z/
√

3z − 2. Then Lemma 4.1 applies.

Lemma 4.3. If (X, x) is a positive fundamental solution of (1.2)

and y = (3xz − X)/2, then x < y < z and (x, y, z) is a Markoff triple.

Proof. (i) We have x < y. For

x < y ⇐⇒ X < x(3z − 2)

⇐⇒ X2 = (9z2 − 4)x2 − 4z2 < x2(3z − 2)2

⇐⇒ x2(3z − 2) < z2.

However the last inequality holds, as by Lemma 4.1,

x2(3z − 2) < (z/
√

3z − 2)2(3z − 2) = z2.

(ii) We have y < z. For

y < z ⇐⇒ z(3x − 2) < X

⇐⇒ z2(3x − 2)2 < (9z2 − 4)x2 − 4z2

⇐⇒ 2z2 − 3xz2 + x2 < 0.

However 1 ≤ x < z/
√

3z − 2 < z and this implies 2z2 − 3xz2 + x2 < 0.
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Then Lemmas 4.2 and 4.3 imply that the ordered Markoff triples x <

y < z with z fixed, are in 1–1 correspondence with the positive funda-

mental solutions of generalized Pell equation (1.2).

5. Proof of the unicity conjecture when z is an odd prime

power or twice an odd prime power

Lemma 5.1. Suppose (X, x) is a solution of (1.2). Then

(5.1) gcd(X, x) =











1 if z is even, or z is odd and x is odd,

2 if z is odd and x is even.

Proof. Let d = gcd(X, x), where X2 − (9z2 − 4)x2 = −4z2. Then

d2 divides 4z2 and so d divides 2z; also d divides x. But gcd(x, z) = 1,

for as was observed in the introduction, y = (3xz − X)/2 is an integer

and x, y, z is a Markoff triple. Hence d divides 2. Hence if x is odd,

d = 1; whereas if x is even, so is X and hence d = 2.

We now prove the unicity conjecture holds when (a) z = pa or (b)

z = 2pa, where p is an odd prime of the form 4n + 1, Let x < y < z be

a Markoff triple. Then with X1 = 3xz − 2y, the equation X2
1 −Dx2 =

−4z2 is solvable in positive integers, where gcd(X1, x) = 1 or 2. We

assume the reader is familiar with the LMM algorithm, which finds

primitive fundamental solutions.

Case (a). If z is odd, we also have solutions (X2, y) = (3yz − 2x, y)

and (X3, u) = (3uz − 2x, u), where u = 3xz − y. We see that exactly

two of x, y, u are odd and one is even; without loss of generality take x

and y odd, u even. It follows from Lemma 5.1 that (X1, x) and (X2, y)

are primitive solutions of X2 −Dx2 = −4z2, and can be verified are in

distinct classes; whereas (X3, u) is a primitive solution of X2 −Dx2 =
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−z2. But the congruence P 2 ≡ D (mod 4z2) has 2 solutions in the

range 0 < P < 2z2, while the congruence P 2 ≡ D (mod z2) has one

solution in the range 0 < P < z2. Hence we know that there are

respectively 4 and 2 primitive equivalence classes in the sense of Nagell

equivalence. But with ǫ = (3z +
√

D)/2, we have relations

X2 + y
√

D = (−X1 + x
√

D)ǫ, X3 + u
√

D = (X1 + x
√

D)ǫ,

−X2 + y
√

D = (X1 + x
√

D)ǫ−1, −X3 + u
√

D = (−X1 + x
√

D)ǫ−1.

Hence the solutions of X2−(9z2−4)x2 = −4z2 form two equivalence

classes (±X1, x) in the sense of Stolt.

Case (b). Assume z = 2pa. Then we prove that there are two equiva-

lence classes in the sense of Stolt. We have to solve X2−(36p2a−4)x2 =

−16p2a, so X ′2 − dx2 = p2a, where X = 4X ′ and d = (9p2a − 1)/4.

But the congruence P 2 ≡ d (mod p2a) has but one solution in the

range 0 < P < p2a/2, so we get just two primitive equivalence classes

of solutions in the Nagell sense, with fundamental unit 3pa + 2
√

d =

(3z +
√

D)/2 = ǫ. This results in two (primitive) equivalence classes of

solutions of X2 − Dx2 = −4z2 in the Stolt sense.

6. Examples

1. z = 5. Here D = 221, 4z2 = 100 and the LMM algorithm gives

Nagell primitive fundamental solutions (±11, 1) and (±193, 13)

for X2 − 221x2 = −100, and gives Nagell primitive fundamental

solutions (±14, 1) for X2−221x2 = −25. Hence we get two Stolt

equivalence classes with fundamental solutions (±11, 1).
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2. z = 34. Here z = 2p, p = 17, D = 10400, d = 650 and the

LMM algorithm gives the Nagell primitive fundamental solu-

tions (±19, 1) for X ′2 − 650x2 = −289. Hence we get two

Stolt equivalence classes with fundamental solutions (±76, 1) for

X2 − 10400x2 = −4624.

7. Consequences of the unicity conjecture

We give a proof of a result of J. Button which describes the tree

structure of the ordered Markoff triples which contain Markoff number

z as a maximum element.

Lemma 7.1. Suppose a < b < z is a Markoff triple for which the

Markoff conjecture holds. Let X0 = 3az−2b. Then the integer solutions

(X, x) of X2 − Dy2 = −4z2 are given by

(7.1) X + x
√

D = ±(±X0 + a
√

D)ǫn, n ∈ Z.

Proof. This follows from the fact that the members of the equiv-

alence class containing a solution (X0, a) of (1.2) are given by

X + x
√

D = ±(±X0 + a
√

D)ǫn, n ∈ Z.

Lemma 7.2. Suppose a < b < z is an ordered Markoff triple and

X0 = 3az − 2b. Then for n ∈ Z,

(−X0 + a
√

D)ǫn = un + vn

√
D,(7.2)

(X0 + a
√

D)ǫ−n = −un + vn

√
D,(7.3)

where vn > 0 for n ∈ Z, whereas un > 0 if n ≥ 1 and un < 0 if n ≤ 0.
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Also for n ∈ Z, we have recurrence relations

un+1 =
3zun + vnD

2
, un =

3zun+1 − vn+1D

2
,(7.4)

vn+1 =
3zyn + un

2
, yn =

3zyn+1 − un+1

2
.(7.5)

Finally, for n ∈ Z, we have

(7.6) vn+1 = 3zvn − vn−1,

where v0 = a and v1 = b.

Proof. Equation (7.3) follows from (7.2) by conjugation. The

recurrence relations follow from the equations

un+1 + vn+1

√
D = (un + vn

√
D)(3z +

√
D)/2,

un + vn

√
D = (un+1 + vn+1

√
D)(3z −

√
D)/2.

The other statements follow by induction on n ≥ 1 using recurrence

relations (7.4) and (7.5), noting that u1 = 3zb− 2a > 0 and v1 = b > 0

and by induction on n ≤ 0, noting that u0 = −X < 0 and v0 = a > 0.

Corollary 7.3. Suppose a < b < z is a Markoff triple for which

the Markoff conjecture holds. Then all positive solutions (x, y, z) of the

Markoff equation (1.1) are given by

(vn, vn+1, z), (vn+1, vn, z), n ∈ Z,

where vn are given by recurrence relation (7.6)
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Proof. The triples satisfy (1.1). For

v2
n + v2

n+1 + z2 = v2
n + (

3zvn + un

2
)2 + z2

=
4v2

n + (9z2v2
n + 6zunvn + u2

n) + 4z2

4

=
18z2v2

n + 6zunvn

4

= 3vn(
3zvn + un

2
)z

= 3vnvn+1z.

Conversely, suppose (x, y, z) is a Markoff triple. Then with X =

3xz − 2y, we have X2 − Dx2 = −4z2. Hence from Lemma 7.1,

(7.7) X + x
√

D = ±(±X0 + a
√

D)ǫn, n ∈ Z.

where X0 = 3az − 2b. It follows from Lemma 7.2 that the only possi-

bilities in (7.7) for which the coefficient of
√

D is positive are:

(i) X + x
√

D = (−X0 + a
√

D)ǫn = un + vn

√
D,

(ii) X + x
√

D = (X0 + a
√

D)ǫ−n = −un + vn

√
D.

There are two cases.

(i) (X, x) = (−un, vn). Then 3xz − 2y = −un, x = vn and

y =
3vnz + un

2
= vn+1.

Hence (x, y, z) = (vn, vn+1, z).

(ii) (X, x) = (un, vn). Then 3xz − 2y = un, x = vn and from (7.5),

y =
3vnz − un

2
= vn−1.

Hence (x, y, z) = (vn, vn−1, z).
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list (7.8) list (7.9)

(1,2,5) (1,5,13)

(2,5,29) (5,13,194)

(5,29,433) (5,194,2897)

(5,433,6466) (5,2897,43261)

(5,6466,96557) (5,43261,646018)

(5,96557,1441889) (5,646018,9647009)

(5,1441889,21531778) (5,9647009,144059117)

Figure 2. Initial tree segment of triples containing z = 5.

We then get the following result, which was pointed out in [3, p. 10–

12], where there is a misprint on page 12, line −9, namely z
−1zc

0 should

be cz
z
−1

0 .

Corollary 7.4. Suppose a < b < z is a Markoff triple for which

the Markoff conjecture holds. Define the sequence {vn} for n ∈ Z, by

v0 = a, v1 = b and vn+2 = 3zvn+1 − vn for n ∈ Z. Then the ordered

Markoff triples containing z are given by

(v0, v1, z), (v1, z, v2) and (z, vn, vn+1) for n ≥ 2;(7.8)

(v0, z, v−1) and (z, v−n+1, v−n) for n ≥ 2.(7.9)

Example 7.5. Taking (a, b, z) = (1, 2, 5), Figure 2 lists the first

seven ordered Markoff triples given by (7.8) and (7.9) which contain

z = 5.
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