CONJECTURES ASSOCIATED WITH COMPUTING THE
CONTINUED FRACTION OF log,a

KEITH MATTHEWS

1. SHANKS’ ALGORITHM

Let ap = a > a; = b > 1 be positive integers. In his article [1],
Shanks gave an algorithm for computing the partial quotients of log, a.
Construct two sequences ag, a1, as, ... and ng, ny, ne, . .., where the a;
are positive rationals and the n; are positive integers, by the following
rule: If a;_1 > a; > 1, then

(1.1) alt < ay <alitt!
(12) Ai+1 = ai_l/a;”’l.
Clearly (1.1)) and (1.2) imply a; > a;+1 > 1 and
(13) ((7as] S a}/mn’

Then there are two possibilities:

(i) ar41 = 1 for some r > 1. This implies a relation af = af for
positive integers p and ¢ and so log,, ag = p/q.

(ii) a;41 > 1 for all i. In this case the decreasing sequence {a;} tends
toa > 1. Also implies @ = 1 unless perhaps n; = 1 for all
sufficiently large 7; but then becomes a;41 = a;_1/a; and
hence a = a/a = 1.

If a;_1 > a; > 1, then from (|1.1)) we have

(1.4) i1 = rog ““J.

log a;

Let z; = logaiJrl a; if a;41 > 1. Then we have

Lemma 1.1 If ;.5 > 1, then

(1.5) T =n; +

Li+1
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Proof. From (1.2)), we have

log ;19 — log a; — n; 10g i1
) loga; loga;iy log a;iq
logair1 logaiys  logaiis

= Ti%it1 — NiLit1,
from which ([1.5]) follows.

From Lemma 1.1, we deduce
Lemma 1.2

(a) If log,, ag is irrational, then

for all 7+ > 0.

Li+1

(b) If log,, ao is rational, with a,,; = 1, then

ni+—— if0<i<r—1,
€T; = LTi4+1
Ny_1 ifi=r—1.

In view of the equation log, ag = xo, Lemma 1.2 leads immediately to
Corollary 1.1

(1.6)

[no, n1, - -] if log,, ap is irrational,

log, ag = : . :
Say 40 [no,n1,...,n,—1] if log, ao is rational and a,41 = 1.

Remark It is an easy exercise to show that

a82j72 a1172j—1
(17) Q25 = aij—Q’ A25+1 = anj—l
1 0

where py, /gy, is the k-th convergent to log,, ao.

Example 1.1 log, 10: Here ay = 10, a; = 2. Then 23 < 10 < 2%, so0
no = 3 and ay = 10/2% = 1.25.
Further, 1.25% < 2 < 1.25%, so n; = 3 and a3 = 2/1.25% = 1.024.
Also, 1.024° < 1.25 < 1.024!° so ny, = 9 and

a; = 1.25/1.024°
= 1250000000000000000000000000/1237940039285380274899124224
1.0097419586 - - -

Continuing we obtain
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Lo n a; pi/ai
03 10 3/1
13 5 10/3
219 1.25 93/28
372 1.024 196/59

4 | 2 |1.0097419586 - - - 485/146

5 | 4 ]1.0043362776 - - - 2136/643
6 | 6 |1.0010415475--- | 13301/4004
7 |2 11.0001628941--- | 28738/8651
8 | 1 |1.0000637223--- | 42039/12655
9 | 1 |1.0000354408--- | 70777/21306
10 1.0000282805 - - -

11 1.0000071601 - - -

log, 10 = [3,3,9,2,2,4,6,2,1,1,.. ].

2. SOME PSEUDOCODE

In Table [1| we present pseudocode for the Shanks algorithm.

It soon becomes impractical to perform the calculations in multi-
precision arithmetic, as the numerators and denominators of a; grow
rapidly.

In Algorithm 1, we are replacing a; by A[i]/c, where ¢ > 1 is an
integer. If the condition bb>e were replaced by bb>c, the A[i] would
decrease strictly until they reached c. Also m[0]=n[0] and we can
expect a number of the initial m[i] to be partial quotients. The larger
we take ¢, the more partial quotients will be produced.

3. FORMAL DESCRIPTION OF ALGORITHM 1
We define two integer sequences
{Ai.},i=0,...,l(c) and {m; .}, j=0,...,l(c) — 2,

as follows:

Let Ag. =c-ap, A1 =c-a;. Thenifi >1and A;_1,. > A;. > ¢, we
define m;_; . and A;;; . by means of an intermediate sequence {B; .},
defined for » > 0, by B, . = Ai—1. and

B o CBi,r,c
1, r+1l,c — A )
%,C

Then ¢ < B q1c < Biye, if Bir. > A;. > c and hence there is a
unique integer m = m;_; . > 1 such that

Bi,m,c < Ai,c S Bi,m—l,c‘

(3.1) r>0.
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Shanks’ algorithm Algorithm 1
input: integers a>b>1| input: integers a>b>1,t>1
output: n[0],n[1],... output: m[0],m[1],...
s:= 0 s:= 0; c:= b"t; e:= c+bxb*sqrt(c)
al0]:= a; al[1]l:= b A[0] := axc; A[1]:= bx*xc
aa:= al[0]; bb:= all] aa:= A[0]; bb:= A[1]
while(bb > 1){ while(bb > e){
i:=0 i:=0
while(aa > bb){ while(aa > bb){
aa:= aa/bb aa:= int(aax*c,bb)
i:= i+l i:= i+l
} }
als+2]:= aa A[s+2] := aa
nls]:= 1 mls]:= i
t:= bb t:= bb
bb:= aa bb:= aa
aa:= t aa:= t
s:= s+l s:= s+l
} }

TABLE 1.

Then we define A; ;1. = B;m.. Hence A;11,. > c and the sequence
{A; .} decreases strictly.

We believe that with ¢ = b',¢ > 1, provided A; 1. > ¢+ b*\/c, we
have m;_;,. = n;. (See http://www.numbertheory.org/php/log3.
html for a BCMATH program.)

At one stage the weaker condition A;11. > ¢+ by/c also seemed
to have the same property; however taking (a,b) = (991,2) and t =
146,147,148 gave a counter—example. The weaker condition has the
charm of producing longer list of partial quotients. (See http://www.
numbertheory.org/php/logd.html for a BCMATH program.)

We can extend the algorithm to log,(a/d), where a/d > 1. In the
pseudo code, we replace ¢ = b* by ¢ = b* xd and A[0] = a * b".
Example 2.2 qy = 3,a; = 2. Here are the sequences {m, .} for log, 3,
with ¢ = 2“,u = 1,...,50, without using the cutoff A[i+1] > c+%\/c,
where the A[i] are allowed to decrease to c:

B

o e
o

1,
1,1,

>
>


http://www.numbertheory.org/php/log3.html
http://www.numbertheory.org/php/log3.html
http://www.numbertheory.org/php/log4.html
http://www.numbertheory.org/php/log4.html
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6,1,2,2,
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(We

are actually using a variation of Algorithm 1, to ensure that in the

few cases where bc < ¢ + b*y/c that m|0]

http

1,16,1,14,1,1,
1, 1,2,
(See

1,1,1,

16, 2,1,1,

n[0] is returned.

//www .numbertheory.org/gnubc/logx for a BC version with

this modification.

1, 2,

3,2,7,

1, 6,
1, 5,

55,
1, 55,

B

2. Here are the sequences {m; .} for log, 3,
., 50, using the cutoff A[i + 1] > ¢+ b*y/c. Note

37 3]

1,..

the monotonic increasing lengths of correct partial quotients.

Example 2.2 q
with ¢ = 2%, u
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]

[1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,15, ..

log, 3

4. ANOTHER INTEGER PART ALGORITHM

Algorithm 2. This algorithm is much slower than Algorithm 1
numerically, when it meets a large partial quotient. Also it seems to

give the same output. However it is easier to describe and it may be

capable of theoretical analysis. Let ag > a; > 1 be positive integers.
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Let Ay =a-c, Ay =b-c, wherec = b'. If A;_1 > A; > ¢, let m;_; €N
be defined by

A, M-t
(4.1) c< Ain—cﬂ < A;.
Then define A;,, by
Ai— cMi—1
(4.2) Aipr = {%J

Then ¢ < A;11 < A; and eventually A; = c.
Again it seems likely that if A;,; > ¢+ b*\/c, then m;_; = n;_;. We
have found that both Algorithms 1 and 2 have the same output.

If we write b; = A;/c, then (4.1)) and (4.2) give

(4.3) Bt < by < bt
1 bi,lc
(4.4) bip1 = E{b;n—_lJ

The resemblance to Shanks’ algorithm is now more striking.
In fact, if we write b; . and m, ., instead of b; and m;, then b, . — a;
and m; . — n; as ¢ — 00, where a; and n; are defined in and .
We prove b, . — a; as ¢ — oo by induction on ¢ > 0. There is nothing
to prove when ¢ = 0 and @ = 1, as by, = ap and by . = a;. So let i > 1
and assume b;_; . — a;—1 and b; . — a;. Then from (4.3)),

(4.5) Mie = {%J - Llogaqu —

log b; . log a;

assuming that log, a is not rational and hence loga;_1/loga; is not an
integer.

Then by (4.4), as

. bi—l,c
i+l,e — Tmye )

where 0 < 6, . < 1, it follows from the induction hypothesis and (4.5)
that

b aji—1
itle 7 ;. — Qit1-
a;

5. A THEOREM
The next result is an attempt to obtain a result similar to (1.4)), on
the assumption that A; . is "large”. We believe that with the stronger

assumption A[i] > ¢ + b*\/c,c = V', that we always get the first alter-
native in ([5.1]).
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Theorem 2.2 With G; . = A;./c and A; . > ¢+ /¢, we have

(5.1) {

Proof. By inequalities (3.5) of our paper, with r = m;_; ., we get

IOg Gi—l,c

=mi_1.0r 1+m;_1..
log G, . J b b

59 Gic1e (1 - Glr ) G < Gic1e
. — — 2 < Gigte ~.
52) G, i) s
Also 1 < Giq1. and (5.2) imply

Gifl c

1< d
- GY,

and hence

(5.3) r < L—log GH’CJ .

log G .

If we now assume A; . > ¢+ +/c, we can deduce that
log Gi—l,c

4
(5 ) \‘ logGi,c

For (5.2) and the inequality Gji1. < G imply
Gifl,c 1

G’g,c C(]. - G1~ )
If we now assume that G;. > 1+ 1//c, (5.5) gives

Gioi.c 1
Gite oG4
G ’

JSr—i—l.

(55) < Gi,c-

Hence
Gire < G2
IOg Gi—l,c
log G,

IOgGi—lc
5.6 — | < 1.
(5:6) { log G J =T
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Hence from (5.3 and (5.6), we have

Vog Gi1,c

log G J =rorr+1.

6. THE FIRST TWO PARTIAL QUOTIENTS OF log, (2" 4 1)

We conclude with some partial information about the continued frac-
tion expansion of log, (2" + 1).

Ifr>1,log, (2" +1) = [r,nq,...], where
ni = |log2/log (1+27")] = [2"log2] or |2"log2] + 1.

Both possibilities can occur. For example,

(a) log,3=11,1,1,2,2,3,1,5,2,23,.. ] (|[2log2] = 1);
(b) log,5 = [2,3,9,2,2,4,6,2,1,1,...] (|[4log2]| = 2).

Proof. Assume r > 1. Then 2" < 2" + 1 < 2! and hence

r<logy, (2"+1) <r+1,

SO
1
(6.1) log, (2" 4+ 1) =r+ -, s > 1,
s
where
(6.2) s =1log2/log (14+27").
From ([6.2) and the mean-value theorem, it follows that
1 1
—log2=1log (2" +1) —log(2") =
S log2 =log (2" +1) — log (27) ST

where 0 < 6 < 1.
Hence s = (2" + ) log 2 and hence

2"log2 < s < (2" +1)log2 < 2"log2 + 1.
Hence ny = |s| = |2"log 2| or |2"log2] + 1.
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