CONJECTURES ASSOCIATED WITH COMPUTING THE CONTINUED FRACTION OF $\log _{b} a$

KEITH MATTHEWS

1. Shanks' ALGORITHM

Let $a_{0}=a>a_{1}=b>1$ be positive integers. In his article [1], Shanks gave an algorithm for computing the partial quotients of $\log _{b} a$. Construct two sequences $a_{0}, a_{1}, a_{2}, \ldots$ and $n_{0}, n_{1}, n_{2}, \ldots$, where the a_{i} are positive rationals and the n_{i} are positive integers, by the following rule: If $a_{i-1}>a_{i}>1$, then

$$
\begin{align*}
a_{i}^{n_{i-1}} & \leq a_{i-1}<a_{i}^{n_{i-1}+1} \tag{1.1}\\
a_{i+1} & =a_{i-1} / a_{i}^{n_{i-1}} . \tag{1.2}
\end{align*}
$$

Clearly (1.1) and (1.2) imply $a_{i}>a_{i+1} \geq 1$ and

$$
\begin{equation*}
a_{i+1} \leq a_{1}^{1 / n_{1} \cdots n_{i}} . \tag{1.3}
\end{equation*}
$$

Then there are two possibilities:
(i) $a_{r+1}=1$ for some $r \geq 1$. This implies a relation $a_{0}^{q}=a_{1}^{p}$ for positive integers p and q and so $\log _{a_{1}} a_{0}=p / q$.
(ii) $a_{i+1}>1$ for all i. In this case the decreasing sequence $\left\{a_{i}\right\}$ tends to $a \geq 1$. Also (1.3) implies $a=1$ unless perhaps $n_{i}=1$ for all sufficiently large i; but then (1.2) becomes $a_{i+1}=a_{i-1} / a_{i}$ and hence $a=a / a=1$.
If $a_{i-1}>a_{i}>1$, then from (1.1) we have

$$
\begin{equation*}
n_{i-1}=\left\lfloor\frac{\log a_{i-1}}{\log a_{i}}\right\rfloor . \tag{1.4}
\end{equation*}
$$

Let $x_{i}=\log _{a_{i+1}} a_{i}$ if $a_{i+1}>1$. Then we have
Lemma 1.1 If $a_{i+2}>1$, then

$$
\begin{equation*}
x_{i}=n_{i}+\frac{1}{x_{i+1}} . \tag{1.5}
\end{equation*}
$$

[^0]Proof. From (1.2), we have

$$
\begin{aligned}
\log a_{i+2} & =\log a_{i}-n_{i} \log a_{i+1} \\
1 & =\frac{\log a_{i}}{\log a_{i+1}} \cdot \frac{\log a_{i+1}}{\log a_{i+2}}-n_{i} \cdot \frac{\log a_{i+1}}{\log a_{i+2}} \\
& =x_{i} x_{i+1}-n_{i} x_{i+1}
\end{aligned}
$$

from which (1.5) follows.
From Lemma 1.1, we deduce

Lemma 1.2

(a) If $\log _{a_{1}} a_{0}$ is irrational, then

$$
x_{i}=n_{i}+\frac{1}{x_{i+1}} \text { for all } i \geq 0
$$

(b) If $\log _{a_{1}} a_{0}$ is rational, with $a_{r+1}=1$, then

$$
x_{i}= \begin{cases}n_{i}+\frac{1}{x_{i+1}} & \text { if } 0 \leq i<r-1, \\ n_{r-1} & \text { if } i=r-1\end{cases}
$$

In view of the equation $\log _{a_{1}} a_{0}=x_{0}$, Lemma 1.2 leads immediately to Corollary 1.1

$$
\log _{a_{1}} a_{0}= \begin{cases}{\left[n_{0}, n_{1}, \ldots\right]} & \text { if } \log _{a_{1}} a_{0} \text { is irrational, } \tag{1.6}\\ {\left[n_{0}, n_{1}, \ldots, n_{r-1}\right]} & \text { if } \log _{a_{1}} a_{0} \text { is rational and } a_{r+1}=1\end{cases}
$$

Remark It is an easy exercise to show that

$$
\begin{equation*}
a_{2 j}=\frac{a_{0}^{q_{2 j-2}}}{a_{1}^{p_{2 j-2}}}, \quad a_{2 j+1}=\frac{a_{1}^{p_{2 j-1}}}{a_{0}^{q_{2 j-1}}} \tag{1.7}
\end{equation*}
$$

where p_{k} / q_{k} is the k-th convergent to $\log _{a_{1}} a_{0}$.
Example 1.1 $\log _{2}$ 10: Here $a_{0}=10, a_{1}=2$. Then $2^{3}<10<2^{4}$, so $n_{0}=3$ and $a_{2}=10 / 2^{3}=1.25$.

Further, $1.25^{3}<2<1.25^{4}$, so $n_{1}=3$ and $a_{3}=2 / 1.25^{3}=1.024$.
Also, $1.024^{9}<1.25<1.024^{10}$, so $n_{2}=9$ and

$$
\begin{aligned}
a_{4} & =1.25 / 1.024^{9} \\
& =1250000000000000000000000000 / 1237940039285380274899124224 \\
& =1.0097419586 \cdots
\end{aligned}
$$

Continuing we obtain

i	n_{i}	a_{i}	p_{i} / q_{i}
0	3	10	$3 / 1$
1	3	2	$10 / 3$
2	9	1.25	$93 / 28$
3	2	1.024	$196 / 59$
4	2	$1.0097419586 \cdots$	$485 / 146$
5	4	$1.0043362776 \cdots$	$2136 / 643$
6	6	$1.0010415475 \cdots$	$13301 / 4004$
7	2	$1.0001628941 \cdots$	$28738 / 8651$
8	1	$1.0000637223 \cdots$	$42039 / 12655$
9	1	$1.0000354408 \cdots$	$70777 / 21306$
10		$1.0000282805 \cdots$	
11		$1.0000071601 \cdots$	

$\log _{2} 10=[3,3,9,2,2,4,6,2,1,1, \ldots]$.

2. Some Pseudocode

In Table 1 we present pseudocode for the Shanks algorithm.
It soon becomes impractical to perform the calculations in multiprecision arithmetic, as the numerators and denominators of a_{i} grow rapidly.

In Algorithm 1, we are replacing a_{i} by $A[i] / c$, where $c>1$ is an integer. If the condition $\mathrm{bb}>\mathrm{e}$ were replaced $\mathrm{by} \mathrm{bb}>\mathrm{c}$, the A [i] would decrease strictly until they reached c. Also $m[0]=n[0]$ and we can expect a number of the initial $m[i]$ to be partial quotients. The larger we take c, the more partial quotients will be produced.

3. Formal description of algorithm 1

We define two integer sequences

$$
\left\{A_{i, c}\right\}, i=0, \ldots, l(c) \text { and }\left\{m_{j, c}\right\}, j=0, \ldots, l(c)-2,
$$

as follows:
Let $A_{0, c}=c \cdot a_{0}, A_{1, c}=c \cdot a_{1}$. Then if $i \geq 1$ and $A_{i-1, c}>A_{i, c}>c$, we define $m_{i-1, c}$ and $A_{i+1, c}$ by means of an intermediate sequence $\left\{B_{i, r, c}\right\}$, defined for $r \geq 0$, by $B_{i, 0, c}=A_{i-1, c}$ and

$$
\begin{equation*}
B_{i, r+1, c}=\left\lfloor\frac{c B_{i, r, c}}{A_{i, c}}\right\rfloor, r \geq 0 . \tag{3.1}
\end{equation*}
$$

Then $c \leq B_{i, r+1, c}<B_{i, r, c}$, if $B_{i, r, c} \geq A_{i, c}>c$ and hence there is a unique integer $m=m_{i-1, c} \geq 1$ such that

$$
B_{i, m, c}<A_{i, c} \leq B_{i, m-1, c}
$$

Shanks' algorithm	Algorithm 1
```input: integers a>b>1 output: n[0],n[1],... s:= 0 a[0]:= a; a[1]:= b aa:= a[0]; bb:= a[1] while(bb > 1){ i:=0 while(aa \geq bb){ aa:= aa/bb i:= i+1 } a[s+2]:= aa n[s]:= i t:= bb bb:= aa aa:= t s:= s+1 }```	```input: integers a>b>1,t\geq1 output: m[0],m[1],... s:= 0; c:= b^t; e:= c+b*b*sqrt(c) A[0]:= a*c; A[1]:= b*c aa:= A[0]; bb:= A[1] while(bb > e){ i:=0 while(aa \geq bb){ aa:= int(aa*c,bb) i:= i+1 } A[s+2]:= aa m[s]:= i t:= bb bb:= aa aa:= t s:= s+1 }```

Table 1.

Then we define $A_{i+1, c}=B_{i, m, c}$. Hence $A_{i+1, c} \geq c$ and the sequence $\left\{A_{i, c}\right\}$ decreases strictly.

We believe that with $c=b^{t}, t \geq 1$, provided $A_{i+1, c}>c+b^{2} \sqrt{c}$, we have $m_{i-1, c}=n_{i}$. (See http://www.numbertheory.org/php/log3. html for a BCMATH program.)

At one stage the weaker condition $A_{i+1, c}>c+b \sqrt{c}$ also seemed to have the same property; however taking $(a, b)=(991,2)$ and $t=$ $146,147,148$ gave a counter-example. The weaker condition has the charm of producing longer list of partial quotients. (See http://www. numbertheory.org/php/log4.html for a BCMATH program.)

We can extend the algorithm to $\log _{b}(a / d)$, where $a / d>1$. In the pseudo code, we replace $\mathrm{c}=\mathrm{b}^{\mathrm{t}}$ by $\mathrm{c}=\mathrm{b}^{\mathrm{t}} * \mathrm{~d}$ and $\mathrm{A}[0]=\mathrm{a} * \mathrm{~b}^{\mathrm{t}}$.
Example 2.2 $a_{0}=3, a_{1}=2$. Here are the sequences $\left\{m_{i, c}\right\}$ for $\log _{2} 3$, with $c=2^{u}, u=1, \ldots, 50$, without using the cutoff $A[i+1]>c+b^{2} \sqrt{c}$, where the $A[i]$ are allowed to decrease to $c$ :

1,1,
$1,1,1$,
$1,1,1,1$,

```
1,1,1,2,
1,1,1,2,
1,1,1,2,3,
1,1,1,2,2,2,
1,1,1,2,2,2,1,
1,1,1,2,2,2,1,2,
1,1,1,2,2,3,2,3,
1,1,1,2,2,3,2,
1,1,1,2,2,3,1,2, 1, 1,1,2,
1,1,1,2,2,3,1,3, 1, 1,3,1,
1,1,1,2,2,3,1,4, 3, 1,
1,1,1,2,2,3,1,4, 1, 9,1,
1,1,1,2,2,3,1,5,24, 1,2,
1,1,1,2,2,3,1,5, 3, 1,1, 2,7,
1,1,1,2,2,3,1,5, 2, 1,1, 5,3,1,
1,1,1,2,2,3,1,5, 2, 2,1, 3,1,16,
1,1,1,2,2,3,1,5, 2,15,1, 6,2
1,1,1,2,2,3,1,5, 2, 9,5, 1,2,
1,1,1,2,2,3,1,5, 2,13,1, 1,1, 6,1,2,2,
1,1,1,2,2,3,1,5, 2,17,2, 7,8,
1,1,1,2,2,3,1,5, 2,19,1,49,2, 1,
1,1,1,2,2,3,1,5, 2,22,4, 8,3, 4, 1,
1,1,1,2,2,3,1,5, 2,22,2, 1,3, 1, 3, 8,
1,1,1,2,2,3,1,5, 2,22,1, 6,3,1, 1, 3, 4, 2,
1,1,1,2,2,3,1,5, 2,23,2, 1,1, 2, 1,12,17,
1,1,1,2,2,3,1,5, 2,23,3, 2,2, 2, 2, 1, 3, 2,
1,1,1,2,2,3,1,5, 2,23,2, 1,7, 2, 2,14, 1, 1, 6,
1,1,1,2,2,3,1,5, 2,23,2, 1,1, 1, 1, 1, 8, 2, 1,14, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1,
1,1,1,2,2,3,1,5, 2,23,2, 2,4, 2, 2, 1, 1, 4, 1,10, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,11, 2, 9, 3, 3, 1, 2, 1, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,30, 3, 4, 1, 1, 8, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,2, 7, 3, 4, 1, 23, 1, 5, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,17, 1, 2, 1, 1, 3, 1,430,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,54, 22,10, 1, 1,12, 1,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,55, 1,49, 1, 4, 7, 1, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1,120, 1, 6, 1, 3, 2, 8, 2, 3, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 60, 5, 2, 22, 1, 3, 1, 1, 1, 3,2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 65, 1,22, 3, 2, 1, 10, 1, 3, 3,2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 59, 1, 6, 14, 3, 3, 1, 8, 5, 1,1,1,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56,10, 1, 7, 1, 2, 1, 2, 8, 3,1,1, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56, 1, 3,741, 1,12, 1,12, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56, 3, 1, 1, 1, 1, 8, 1,109, 2,1,2, 7,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56,16, 1, 1, 1, 2, 5, 1, 2, 1,5,6, 1, 2,1, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1,11, 1, 1, 1, 2, 1, 20,14,3,5,13,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1, 6, 1, 1, 8, 1, 2, 4, 1,1,1, 1,16,1,14,1,1,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1, 5, 3, 2, 7, 1, 2, 16, 2,1,1, 1, 1,2,
```

Example 2.2 $a_{0}=3, a_{1}=2$. Here are the sequences $\left\{m_{i, c}\right\}$ for $\log _{2} 3$, with $c=2^{u}, u=1, \ldots, 50$, using the cutoff $A[i+1]>c+b^{2} \sqrt{c}$. Note the monotonic increasing lengths of correct partial quotients. (We are actually using a variation of Algorithm 1, to ensure that in the few cases where $b c<c+b^{2} \sqrt{c}$ that $m[0]=n[0]$ is returned. (See http://www.numbertheory.org/gnubc/logx for a BC version with this modification.


In fact

$$
\log _{2} 3=[1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,15, \ldots]
$$

## 4. Another integer part algorithm

Algorithm 2. This algorithm is much slower than Algorithm 1 numerically, when it meets a large partial quotient. Also it seems to give the same output. However it is easier to describe and it may be capable of theoretical analysis. Let $a_{0}>a_{1}>1$ be positive integers.

Let $A_{0}=a \cdot c, A_{1}=b \cdot c$, where $c=b^{t}$. If $A_{i-1}>A_{i}>c$, let $m_{i-1} \in \mathbb{N}$ be defined by

$$
\begin{equation*}
c \leq \frac{A_{i-1} c^{m_{i-1}}}{A_{i}^{m_{i-1}}}<A_{i} \tag{4.1}
\end{equation*}
$$

Then define $A_{i+1}$ by

$$
\begin{equation*}
A_{i+1}=\left\lfloor\frac{A_{i-1} c^{m_{i-1}}}{A_{i}^{m_{i-1}}}\right\rfloor \tag{4.2}
\end{equation*}
$$

Then $c \leq A_{i+1}<A_{i}$ and eventually $A_{i}=c$.
Again it seems likely that if $A_{i+1}>c+b^{2} \sqrt{c}$, then $m_{i-1}=n_{i-1}$. We have found that both Algorithms 1 and 2 have the same output.

If we write $b_{i}=A_{i} / c$, then (4.1) and (4.2) give

$$
\begin{align*}
b_{i}^{m_{i-1}} & \leq b_{i-1}<b_{i}^{m_{i-1}+1}  \tag{4.3}\\
b_{i+1} & =\frac{1}{c}\left\lfloor\frac{b_{i-1} c}{b_{i}^{m_{i-1}}}\right\rfloor \tag{4.4}
\end{align*}
$$

The resemblance to Shanks' algorithm is now more striking.
In fact, if we write $b_{i, c}$ and $m_{i, c}$, instead of $b_{i}$ and $m_{i}$, then $b_{i, c} \rightarrow a_{i}$ and $m_{i, c} \rightarrow n_{i}$ as $c \rightarrow \infty$, where $a_{i}$ and $n_{i}$ are defined in (1.1) and (1.2).

We prove $b_{i, c} \rightarrow a_{i}$ as $c \rightarrow \infty$ by induction on $i \geq 0$. There is nothing to prove when $i=0$ and $i=1$, as $b_{0, c}=a_{0}$ and $b_{1, c}=a_{1}$. So let $i \geq 1$ and assume $b_{i-1, c} \rightarrow a_{i-1}$ and $b_{i, c} \rightarrow a_{i}$. Then from (4.3),

$$
\begin{equation*}
m_{i, c}=\left\lfloor\frac{\log b_{i-1, c}}{\log b_{i, c}}\right\rfloor \rightarrow\left\lfloor\frac{\log a_{i-1}}{\log a_{i}}\right\rfloor=n_{i} \tag{4.5}
\end{equation*}
$$

assuming that $\log _{b} a$ is not rational and hence $\log a_{i-1} / \log a_{i}$ is not an integer.

Then by (4.4), as

$$
b_{i+1, c}=\frac{b_{i-1, c}}{b_{i, c}^{m_{i, c}}}-\frac{\theta_{i, c}}{c},
$$

where $0 \leq \theta_{i, c}<1$, it follows from the induction hypothesis and 4.5) that

$$
b_{i+1, c} \rightarrow \frac{a_{i-1}}{a_{i}^{n_{i}}}=a_{i+1}
$$

## 5. A THEOREM

The next result is an attempt to obtain a result similar to (1.4), on the assumption that $A_{i, c}$ is "large". We believe that with the stronger assumption $A[i]>c+b^{2} \sqrt{c}, c=b^{t}$, that we always get the first alternative in (5.1).

Theorem 2.2 With $G_{i, c}=A_{i, c} / c$ and $A_{i, c}>c+\sqrt{c}$, we have

$$
\begin{equation*}
\left\lfloor\frac{\log G_{i-1, c}}{\log G_{i, c}}\right\rfloor=m_{i-1, c} \text { or } 1+m_{i-1, c} . \tag{5.1}
\end{equation*}
$$

Proof. By inequalities (3.5) of our paper, with $r=m_{i-1, c}$, we get

$$
\begin{equation*}
\frac{G_{i-1, c}}{G_{i, c}^{r}}-\frac{\left(1-\frac{1}{G_{i, c}^{r}}\right)}{c\left(1-\frac{1}{G_{i, c}}\right)}<G_{i+1, c} \leq \frac{G_{i-1, c}}{G_{i, c}^{r}} . \tag{5.2}
\end{equation*}
$$

Also $1 \leq G_{i+1, c}$ and (5.2) imply

$$
1 \leq \frac{G_{i-1, c}}{G_{i, c}^{r}}
$$

and hence

$$
\begin{equation*}
r \leq\left\lfloor\frac{\log G_{i-1, c}}{\log G_{i, c}}\right\rfloor \tag{5.3}
\end{equation*}
$$

If we now assume $A_{i, c}>c+\sqrt{c}$, we can deduce that

$$
\begin{equation*}
\left\lfloor\frac{\log G_{i-1, c}}{\log G_{i, c}}\right\rfloor \leq r+1 \tag{5.4}
\end{equation*}
$$

For (5.2) and the inequality $G_{i+1, c}<G_{i, c}$ imply

$$
\begin{equation*}
\frac{G_{i-1, c}}{G_{i, c}^{r}}-\frac{1}{c\left(1-\frac{1}{G_{i, c}}\right)}<G_{i, c} . \tag{5.5}
\end{equation*}
$$

If we now assume that $G_{i, c}>1+1 / \sqrt{c}, \sqrt{5.5}$ gives

$$
\begin{aligned}
\frac{G_{i-1, c}}{G_{i, c}^{r}} & <G_{i, c}+\frac{1}{c\left(1-\frac{1}{1+\frac{1}{\sqrt{c}}}\right)} \\
& =G_{i, c}+\frac{1}{\sqrt{c}}\left(1+\frac{1}{\sqrt{c}}\right) \\
& <G_{i, c}+\frac{G_{i, c}}{\sqrt{c}}=G_{i, c}\left(1+\frac{1}{\sqrt{c}}\right)<G_{i, c}^{2}
\end{aligned}
$$

Hence

$$
\begin{align*}
G_{i-1, c} & <G_{i, c}^{r+2} \\
\frac{\log G_{i-1, c}}{\log G_{i, c}} & <r+2 \\
\left\lfloor\frac{\log G_{i-1, c}}{\log G_{i, c}}\right\rfloor & \leq r+1 . \tag{5.6}
\end{align*}
$$

Hence from (5.3) and (5.6), we have

$$
\left\lfloor\frac{\log G_{i-1, c}}{\log G_{i, c}}\right\rfloor=r \text { or } r+1
$$

## 6. The first two partial quotients of $\log _{2}\left(2^{r}+1\right)$

We conclude with some partial information about the continued fraction expansion of $\log _{2}\left(2^{r}+1\right)$.

$$
\begin{aligned}
& \text { If } r \geq 1, \log _{2}\left(2^{r}+1\right)=\left[r, n_{1}, \ldots\right] \text {, where } \\
& \qquad n_{1}=\left\lfloor\log 2 / \log \left(1+2^{-r}\right)\right\rfloor=\left\lfloor 2^{r} \log 2\right\rfloor \text { or }\left\lfloor 2^{r} \log 2\right\rfloor+1 .
\end{aligned}
$$

Both possibilities can occur. For example,
(a) $\log _{2} 3=[1,1,1,2,2,3,1,5,2,23, \ldots](\lfloor 2 \log 2\rfloor=1)$;
(b) $\log _{2} 5=[2,3,9,2,2,4,6,2,1,1, \ldots](\lfloor 4 \log 2\rfloor=2)$.

Proof. Assume $r \geq 1$. Then $2^{r}<2^{r}+1<2^{r+1}$ and hence

$$
r<\log _{2}\left(2^{r}+1\right)<r+1
$$

so

$$
\begin{equation*}
\log _{2}\left(2^{r}+1\right)=r+\frac{1}{s}, s>1 \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
s=\log 2 / \log \left(1+2^{-r}\right) \tag{6.2}
\end{equation*}
$$

From $(\sqrt{6.2})$ and the mean-value theorem, it follows that

$$
\frac{1}{s} \log 2=\log \left(2^{r}+1\right)-\log \left(2^{r}\right)=\frac{1}{2^{r}+\theta},
$$

where $0<\theta<1$.
Hence $s=\left(2^{r}+\theta\right) \log 2$ and hence

$$
2^{r} \log 2<s<\left(2^{r}+1\right) \log 2<2^{r} \log 2+1
$$

Hence $n_{1}=\lfloor s\rfloor=\left\lfloor 2^{r} \log 2\right\rfloor$ or $\left\lfloor 2^{r} \log 2\right\rfloor+1$.

## 7. Acknowledgements

(i) This is a changed version of an earlier paper [2].
(ii) See http://www.numbertheory.org/gnubc/logx for a BC version of Algorithm 1.

## References

[1] D. Shanks, A logarithm algorithm, Math. Tables and Other Aids to Computation 8 (1954). 60-64.
[2] K.R. Matthews, T. Jackson, Heuristic versions of Shank's algorithm for computing the continued fraction of $\log _{b} a$, Math. Tables and Other Aids to Computation 8 (1954). 60-64.

KEITH MATTHEWS
SCHOOL OF MATHEMATICS AND PHYSICS
UNIVERSITY OF QUEENSLAND
BRISBANE
AUSTRALIA 4072
E-mail: keithmatt@gmail.com


[^0]:    Date: 16th January 2019.

