
CONJECTURES ASSOCIATED WITH COMPUTING THE

CONTINUED FRACTION OF logb a

KEITH MATTHEWS

1. Shanks’ algorithm

Let a0 = a > a1 = b > 1 be positive integers. In his article [1],
Shanks gave an algorithm for computing the partial quotients of logb a.
Construct two sequences a0, a1, a2, . . . and n0, n1, n2, . . ., where the ai
are positive rationals and the ni are positive integers, by the following
rule: If ai−1 > ai > 1, then

a
ni−1

i ≤ ai−1 < a
ni−1+1
i(1.1)

ai+1 = ai−1/a
ni−1

i .(1.2)

Clearly (1.1) and (1.2) imply ai > ai+1 ≥ 1 and

(1.3) ai+1 ≤ a
1/n1···ni

1 .

Then there are two possibilities:

(i) ar+1 = 1 for some r ≥ 1. This implies a relation aq0 = ap1 for
positive integers p and q and so loga1 a0 = p/q.

(ii) ai+1 > 1 for all i. In this case the decreasing sequence {ai} tends
to a ≥ 1. Also (1.3) implies a = 1 unless perhaps ni = 1 for all
sufficiently large i; but then (1.2) becomes ai+1 = ai−1/ai and
hence a = a/a = 1.

If ai−1 > ai > 1, then from (1.1) we have

(1.4) ni−1 =

⌊
log ai−1

log ai

⌋
.

Let xi = logai+1
ai if ai+1 > 1. Then we have

Lemma 1.1 If ai+2 > 1, then

(1.5) xi = ni +
1

xi+1

.

Date: 16th January 2019.

1



2 KEITH MATTHEWS

Proof. From (1.2), we have

log ai+2 = log ai − ni log ai+1

1 =
log ai

log ai+1

· log ai+1

log ai+2

− ni ·
log ai+1

log ai+2

= xixi+1 − nixi+1,

from which (1.5) follows.

From Lemma 1.1, we deduce
Lemma 1.2

(a) If loga1 a0 is irrational, then

xi = ni +
1

xi+1

for all i ≥ 0.

(b) If loga1 a0 is rational, with ar+1 = 1, then

xi =

{
ni + 1

xi+1
if 0 ≤ i < r − 1,

nr−1 if i = r − 1.

In view of the equation loga1 a0 = x0, Lemma 1.2 leads immediately to
Corollary 1.1
(1.6)

loga1 a0 =

{
[n0, n1, . . .] if loga1 a0 is irrational,
[n0, n1, . . . , nr−1] if loga1 a0 is rational and ar+1 = 1.

Remark It is an easy exercise to show that

(1.7) a2j =
a
q2j−2

0

a
p2j−2

1

, a2j+1 =
a
p2j−1

1

a
q2j−1

0

where pk/qk is the k–th convergent to loga1 a0.

Example 1.1 log2 10: Here a0 = 10, a1 = 2. Then 23 < 10 < 24, so
n0 = 3 and a2 = 10/23 = 1.25.

Further, 1.253 < 2 < 1.254, so n1 = 3 and a3 = 2/1.253 = 1.024.
Also, 1.0249 < 1.25 < 1.02410, so n2 = 9 and

a4 = 1.25/1.0249

= 1250000000000000000000000000/1237940039285380274899124224

= 1.0097419586 · · ·

Continuing we obtain



COMPUTING THE CONTINUED FRACTION OF logb a 3

i ni ai pi/qi
0 3 10 3/1
1 3 2 10/3
2 9 1.25 93/28
3 2 1.024 196/59
4 2 1.0097419586 · · · 485/146
5 4 1.0043362776 · · · 2136/643
6 6 1.0010415475 · · · 13301/4004
7 2 1.0001628941 · · · 28738/8651
8 1 1.0000637223 · · · 42039/12655
9 1 1.0000354408 · · · 70777/21306
10 1.0000282805 · · ·
11 1.0000071601 · · ·

log2 10 = [3, 3, 9, 2, 2, 4, 6, 2, 1, 1, . . .].

2. Some Pseudocode

In Table 1 we present pseudocode for the Shanks algorithm.
It soon becomes impractical to perform the calculations in multi-

precision arithmetic, as the numerators and denominators of ai grow
rapidly.

In Algorithm 1, we are replacing ai by A[i]/c, where c > 1 is an
integer. If the condition bb>e were replaced by bb>c, the A[i] would
decrease strictly until they reached c. Also m[0]=n[0] and we can
expect a number of the initial m[i] to be partial quotients. The larger
we take c, the more partial quotients will be produced.

3. Formal description of algorithm 1

We define two integer sequences

{Ai,c}, i = 0, . . . , l(c) and {mj,c}, j = 0, . . . , l(c)− 2,

as follows:
Let A0,c = c · a0, A1,c = c · a1. Then if i ≥ 1 and Ai−1,c > Ai,c > c, we

define mi−1,c and Ai+1,c by means of an intermediate sequence {Bi,r,c},
defined for r ≥ 0, by Bi,0,c = Ai−1,c and

(3.1) Bi,r+1,c =

⌊
cBi,r,c

Ai,c

⌋
, r ≥ 0.

Then c ≤ Bi,r+1,c < Bi,r,c, if Bi,r,c ≥ Ai,c > c and hence there is a
unique integer m = mi−1,c ≥ 1 such that

Bi,m,c < Ai,c ≤ Bi,m−1,c.



4 KEITH MATTHEWS

Shanks’ algorithm Algorithm 1
input: integers a>b>1 input: integers a>b>1,t≥1
output: n[0],n[1],. . . output: m[0],m[1],. . .
s:= 0 s:= 0; c:= b^t; e:= c+b*b*sqrt(c)

a[0]:= a; a[1]:= b A[0]:= a*c; A[1]:= b*c

aa:= a[0]; bb:= a[1] aa:= A[0]; bb:= A[1]

while(bb > 1){ while(bb > e){
i:=0 i:=0

while(aa ≥ bb){ while(aa ≥ bb){
aa:= aa/bb aa:= int(aa*c,bb)

i:= i+1 i:= i+1

} }
a[s+2]:= aa A[s+2]:= aa

n[s]:= i m[s]:= i

t:= bb t:= bb

bb:= aa bb:= aa

aa:= t aa:= t

s:= s+1 s:= s+1

} }

Table 1.

Then we define Ai+1,c = Bi,m,c. Hence Ai+1,c ≥ c and the sequence
{Ai,c} decreases strictly.

We believe that with c = bt, t ≥ 1, provided Ai+1,c > c + b2
√
c, we

have mi−1,c = ni. (See http://www.numbertheory.org/php/log3.

html for a BCMATH program.)
At one stage the weaker condition Ai+1,c > c + b

√
c also seemed

to have the same property; however taking (a, b) = (991, 2) and t =
146, 147, 148 gave a counter–example. The weaker condition has the
charm of producing longer list of partial quotients. (See http://www.

numbertheory.org/php/log4.html for a BCMATH program.)

We can extend the algorithm to logb(a/d), where a/d > 1. In the
pseudo code, we replace c = bt by c = bt ∗ d and A[0] = a ∗ bt.
Example 2.2 a0 = 3, a1 = 2. Here are the sequences {mi,c} for log2 3,
with c = 2u, u = 1, . . . , 50, without using the cutoff A[i+1] > c+b2

√
c,

where the A[i] are allowed to decrease to c:
1,1,
1,1,1,
1,1,1,1,

http://www.numbertheory.org/php/log3.html
http://www.numbertheory.org/php/log3.html
http://www.numbertheory.org/php/log4.html
http://www.numbertheory.org/php/log4.html


COMPUTING THE CONTINUED FRACTION OF logb a 5

1,1,1,2,
1,1,1,2,
1,1,1,2,3,
1,1,1,2,2,2,
1,1,1,2,2,2,1,
1,1,1,2,2,2,1,2,
1,1,1,2,2,3,2,3,
1,1,1,2,2,3,2,
1,1,1,2,2,3,1,2, 1, 1,1,2,
1,1,1,2,2,3,1,3, 1, 1,3,1,
1,1,1,2,2,3,1,4, 3, 1,
1,1,1,2,2,3,1,4, 1, 9,1,
1,1,1,2,2,3,1,5,24, 1,2,
1,1,1,2,2,3,1,5, 3, 1,1, 2,7,
1,1,1,2,2,3,1,5, 2, 1,1, 5,3,1,
1,1,1,2,2,3,1,5, 2, 2,1, 3,1,16,
1,1,1,2,2,3,1,5, 2,15,1, 6,2
1,1,1,2,2,3,1,5, 2, 9,5, 1,2,
1,1,1,2,2,3,1,5, 2,13,1, 1,1, 6,1,2,2,
1,1,1,2,2,3,1,5, 2,17,2, 7,8,
1,1,1,2,2,3,1,5, 2,19,1,49,2, 1,
1,1,1,2,2,3,1,5, 2,22,4, 8,3, 4, 1,
1,1,1,2,2,3,1,5, 2,22,2, 1,3, 1, 3, 8,
1,1,1,2,2,3,1,5, 2,22,1, 6,3, 1, 1, 3, 4, 2,
1,1,1,2,2,3,1,5, 2,23,2, 1,1, 2, 1,12,17,
1,1,1,2,2,3,1,5, 2,23,3, 2,2, 2, 2, 1, 3, 2,
1,1,1,2,2,3,1,5, 2,23,2, 1,7, 2, 2,14, 1, 1, 6,
1,1,1,2,2,3,1,5, 2,23,2, 1,1, 1, 1, 1, 8, 2, 1,14, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1,
1,1,1,2,2,3,1,5, 2,23,2, 2,4, 2, 2, 1, 1, 4, 1,10, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,11, 2, 9, 3, 3, 1, 2, 1, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,30, 3, 4, 1, 1, 8, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,2, 7, 3, 4, 1, 23, 1, 5, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,17, 1, 2, 1, 1, 3, 1,430,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,54, 22,10, 1, 1,12, 1,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,55, 1,49, 1, 4, 7, 1, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1,120, 1, 6, 1, 3, 2, 8, 2, 3, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 60, 5, 2, 22, 1, 3, 1, 1, 1, 3,2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 65, 1,22, 3, 2, 1, 10, 1, 3, 3,2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 59, 1, 6, 14, 3, 3, 1, 8, 5, 1,1,1,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56,10, 1, 7, 1, 2, 1, 2, 8, 3,1,1, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56, 1, 3,741, 1,12, 1,12, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56, 3, 1, 1, 1, 1, 8, 1,109, 2,1,2, 7,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56,16, 1, 1, 1, 2, 5, 1, 2, 1,5,6, 1, 2,1, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1,11, 1, 1, 1, 2, 1, 20,14,3,5,13,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1, 6, 1, 1, 8, 1, 2, 4, 1,1,1, 1,16,1,14,1,1,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1, 5, 3, 2, 7, 1, 2, 16, 2,1,1, 1, 1,2,

Example 2.2 a0 = 3, a1 = 2. Here are the sequences {mi,c} for log2 3,
with c = 2u, u = 1, . . . , 50, using the cutoff A[i + 1] > c + b2

√
c. Note

the monotonic increasing lengths of correct partial quotients. (We
are actually using a variation of Algorithm 1, to ensure that in the
few cases where bc < c + b2

√
c that m[0] = n[0] is returned. (See

http://www.numbertheory.org/gnubc/logx for a BC version with
this modification.



6 KEITH MATTHEWS

1,
1,
1, 1,
1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1, 2,
1, 1, 1, 2,
1, 1, 1, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1, 5,
1, 1, 1, 2, 2, 3, 1, 5,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55,

In fact

log2 3 = [1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, . . .].

4. Another integer part algorithm

Algorithm 2. This algorithm is much slower than Algorithm 1
numerically, when it meets a large partial quotient. Also it seems to
give the same output. However it is easier to describe and it may be
capable of theoretical analysis. Let a0 > a1 > 1 be positive integers.



COMPUTING THE CONTINUED FRACTION OF logb a 7

Let A0 = a ·c, A1 = b ·c, where c = bt. If Ai−1 > Ai > c, let mi−1 ∈ N
be defined by

(4.1) c ≤ Ai−1c
mi−1

A
mi−1

i

< Ai.

Then define Ai+1 by

(4.2) Ai+1 =

⌊
Ai−1c

mi−1

A
mi−1

i

⌋
.

Then c ≤ Ai+1 < Ai and eventually Ai = c.
Again it seems likely that if Ai+1 > c+ b2

√
c, then mi−1 = ni−1. We

have found that both Algorithms 1 and 2 have the same output.
If we write bi = Ai/c, then (4.1) and (4.2) give

b
mi−1

i ≤ bi−1 < b
mi−1+1
i(4.3)

bi+1 =
1

c

⌊
bi−1c

b
mi−1

i

⌋
.(4.4)

The resemblance to Shanks’ algorithm is now more striking.
In fact, if we write bi,c and mi,c, instead of bi and mi, then bi,c → ai

and mi,c → ni as c→∞, where ai and ni are defined in (1.1) and (1.2).
We prove bi,c → ai as c→∞ by induction on i ≥ 0. There is nothing

to prove when i = 0 and i = 1, as b0,c = a0 and b1,c = a1. So let i ≥ 1
and assume bi−1,c → ai−1 and bi,c → ai. Then from (4.3),

(4.5) mi,c =

⌊
log bi−1,c

log bi,c

⌋
→

⌊
log ai−1

log ai

⌋
= ni,

assuming that logb a is not rational and hence log ai−1/ log ai is not an
integer.

Then by (4.4), as

bi+1,c =
bi−1,c

b
mi,c

i,c

− θi,c
c
,

where 0 ≤ θi,c < 1, it follows from the induction hypothesis and (4.5)
that

bi+1,c →
ai−1

ani
i

= ai+1.

5. A theorem

The next result is an attempt to obtain a result similar to (1.4), on
the assumption that Ai,c is ”large”. We believe that with the stronger
assumption A[i] > c + b2

√
c, c = bt, that we always get the first alter-

native in (5.1).



8 KEITH MATTHEWS

Theorem 2.2 With Gi,c = Ai,c/c and Ai,c > c+
√
c, we have

(5.1)

⌊
logGi−1,c

logGi,c

⌋
= mi−1,c or 1 +mi−1,c.

Proof. By inequalities (3.5) of our paper, with r = mi−1,c, we get

(5.2)
Gi−1,c

Gr
i,c

−
(1− 1

Gr
i,c

)

c(1− 1
Gi,c

)
< Gi+1,c ≤

Gi−1,c

Gr
i,c

.

Also 1 ≤ Gi+1,c and (5.2) imply

1 ≤ Gi−1,c

Gr
i,c

and hence

(5.3) r ≤
⌊

logGi−1,c

logGi,c

⌋
.

If we now assume Ai,c > c+
√
c, we can deduce that

(5.4)

⌊
logGi−1,c

logGi,c

⌋
≤ r + 1.

For (5.2) and the inequality Gi+1,c < Gi,c imply

(5.5)
Gi−1,c

Gr
i,c

− 1

c(1− 1
Gi,c

)
< Gi,c.

If we now assume that Gi,c > 1 + 1/
√
c, (5.5) gives

Gi−1,c

Gr
i,c

< Gi,c +
1

c

(
1− 1

1+ 1√
c

)
= Gi,c +

1√
c

(
1 +

1√
c

)
< Gi,c +

Gi,c√
c

= Gi,c

(
1 +

1√
c

)
< G2

i,c.

Hence

Gi−1,c < Gr+2
i,c

logGi−1,c

logGi,c

< r + 2⌊
logGi−1,c

logGi,c

⌋
≤ r + 1.(5.6)



COMPUTING THE CONTINUED FRACTION OF logb a 9

Hence from (5.3) and (5.6), we have⌊
logGi−1,c

logGi,c

⌋
= r or r + 1.

6. The first two partial quotients of log2 (2r + 1)

We conclude with some partial information about the continued frac-
tion expansion of log2 (2r + 1).

If r ≥ 1, log2 (2r + 1) = [r, n1, . . .], where

n1 =
⌊
log 2/ log

(
1 + 2−r

)⌋
= b2r log 2c or b2r log 2c+ 1.

Both possibilities can occur. For example,

(a) log2 3 = [1, 1, 1, 2, 2, 3, 1, 5, 2, 23, . . .] (b2 log 2c = 1);
(b) log2 5 = [2, 3, 9, 2, 2, 4, 6, 2, 1, 1, . . .] (b4 log 2c = 2).

Proof. Assume r ≥ 1. Then 2r < 2r + 1 < 2r+1 and hence

r < log2 (2r + 1) < r + 1,

so

(6.1) log2 (2r + 1) = r +
1

s
, s > 1,

where

(6.2) s = log 2/ log
(
1 + 2−r

)
.

From (6.2) and the mean-value theorem, it follows that

1

s
log 2 = log (2r + 1)− log (2r) =

1

2r + θ
,

where 0 < θ < 1.
Hence s = (2r + θ) log 2 and hence

2r log 2 < s < (2r + 1) log 2 < 2r log 2 + 1.

Hence n1 = bsc = b2r log 2c or b2r log 2c+ 1.

7. Acknowledgements

(i) This is a changed version of an earlier paper [2].
(ii) See http://www.numbertheory.org/gnubc/logx for a BC ver-

sion of Algorithm 1.

http://www.numbertheory.org/gnubc/logx


10 KEITH MATTHEWS

References

[1] D. Shanks, A logarithm algorithm, Math. Tables and Other Aids to Computation 8 (1954).
60-64.

[2] K.R. Matthews, T. Jackson, Heuristic versions of Shank’s algorithm for computing the con-

tinued fraction of logb a, Math. Tables and Other Aids to Computation 8 (1954). 60-64.

KEITH MATTHEWS
SCHOOL OF MATHEMATICS AND PHYSICS
UNIVERSITY OF QUEENSLAND
BRISBANE
AUSTRALIA 4072

E–mail: keithmatt@gmail.com


	1. Shanks' algorithm
	2. Some Pseudocode
	3. Formal description of algorithm 1
	4. Another integer part algorithm
	5. A theorem
	6. The first two partial quotients of log2(2r+1)
	7. Acknowledgements
	References

