
CONJECTURES ASSOCIATED WITH COMPUTING THE

CONTINUED FRACTION OF logb a

KEITH MATTHEWS

1. Shanks’ algorithm

Let a0 = a > a1 = b > 1 be positive integers. In his article [1],
Shanks gave an algorithm for computing the partial quotients of logb a.
Construct two sequences a0, a1, a2, . . . and n0, n1, n2, . . ., where the ai
are positive rationals and the ni are positive integers, by the following
rule: If ai−1 > ai > 1, then

a
ni−1

i ≤ ai−1 < a
ni−1+1
i(1.1)

ai+1 = ai−1/a
ni−1

i .(1.2)

Clearly (1.1) and (1.2) imply ai > ai+1 ≥ 1 and

(1.3) ai+1 ≤ a
1/n1···ni

1 .

Then there are two possibilities:

(i) ar+1 = 1 for some r ≥ 1. This implies a relation aq0 = ap1 for
positive integers p and q and so loga1 a0 = p/q.

(ii) ai+1 > 1 for all i. In this case the decreasing sequence {ai} tends
to a ≥ 1. Also (1.3) implies a = 1 unless perhaps ni = 1 for all
sufficiently large i; but then (1.2) becomes ai+1 = ai−1/ai and
hence a = a/a = 1.

If ai−1 > ai > 1, then from (1.1) we have

(1.4) ni−1 =

⌊
log ai−1

log ai

⌋
.

Let xi = logai+1
ai if ai+1 > 1. Then we have

Lemma 1.1 If ai+2 > 1, then

(1.5) xi = ni +
1

xi+1

.
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Proof. From (1.2), we have

log ai+2 = log ai − ni log ai+1

1 =
log ai

log ai+1

· log ai+1

log ai+2

− ni ·
log ai+1

log ai+2

= xixi+1 − nixi+1,

from which (1.5) follows.

From Lemma 1.1, we deduce
Lemma 1.2

(a) If loga1 a0 is irrational, then

xi = ni +
1

xi+1

for all i ≥ 0.

(b) If loga1 a0 is rational, with ar+1 = 1, then

xi =

{
ni + 1

xi+1
if 0 ≤ i < r − 1,

nr−1 if i = r − 1.

In view of the equation loga1 a0 = x0, Lemma 1.2 leads immediately to
Corollary 1.1
(1.6)

loga1 a0 =

{
[n0, n1, . . .] if loga1 a0 is irrational,
[n0, n1, . . . , nr−1] if loga1 a0 is rational and ar+1 = 1.

Remark It is an easy exercise to show that

(1.7) a2j =
a
q2j−2

0

a
p2j−2

1

, a2j+1 =
a
p2j−1

1

a
q2j−1

0

where pk/qk is the k–th convergent to loga1 a0.

Example 1.1 log2 10: Here a0 = 10, a1 = 2. Then 23 < 10 < 24, so
n0 = 3 and a2 = 10/23 = 1.25.

Further, 1.253 < 2 < 1.254, so n1 = 3 and a3 = 2/1.253 = 1.024.
Also, 1.0249 < 1.25 < 1.02410, so n2 = 9 and

a4 = 1.25/1.0249

= 1250000000000000000000000000/1237940039285380274899124224

= 1.0097419586 · · ·

Continuing we obtain
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i ni ai pi/qi
0 3 10 3/1
1 3 2 10/3
2 9 1.25 93/28
3 2 1.024 196/59
4 2 1.0097419586 · · · 485/146
5 4 1.0043362776 · · · 2136/643
6 6 1.0010415475 · · · 13301/4004
7 2 1.0001628941 · · · 28738/8651
8 1 1.0000637223 · · · 42039/12655
9 1 1.0000354408 · · · 70777/21306
10 1.0000282805 · · ·
11 1.0000071601 · · ·

log2 10 = [3, 3, 9, 2, 2, 4, 6, 2, 1, 1, . . .].

2. Some Pseudocode

In Table 1 we present pseudocode for the Shanks algorithm.
It soon becomes impractical to perform the calculations in multi-

precision arithmetic, as the numerators and denominators of ai grow
rapidly.

In Algorithm 1, we are replacing ai by A[i]/c, where c > 1 is an
integer. If the condition bb>e were replaced by bb>c, the A[i] would
decrease strictly until they reached c. Also m[0]=n[0] and we can
expect a number of the initial m[i] to be partial quotients. The larger
we take c, the more partial quotients will be produced.

3. Formal description of algorithm 1

We define two integer sequences

{Ai,c}, i = 0, . . . , l(c) and {mj,c}, j = 0, . . . , l(c)− 2,

as follows:
Let A0,c = c · a0, A1,c = c · a1. Then if i ≥ 1 and Ai−1,c > Ai,c > c, we

define mi−1,c and Ai+1,c by means of an intermediate sequence {Bi,r,c},
defined for r ≥ 0, by Bi,0,c = Ai−1,c and

(3.1) Bi,r+1,c =

⌊
cBi,r,c

Ai,c

⌋
, r ≥ 0.

Then c ≤ Bi,r+1,c < Bi,r,c, if Bi,r,c ≥ Ai,c > c and hence there is a
unique integer m = mi−1,c ≥ 1 such that

Bi,m,c < Ai,c ≤ Bi,m−1,c.
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Shanks’ algorithm Algorithm 1
input: integers a>b>1 input: integers a>b>1,t≥1
output: n[0],n[1],. . . output: m[0],m[1],. . .
s:= 0 s:= 0; c:= b^t; e:= c+b*b*sqrt(c)

a[0]:= a; a[1]:= b A[0]:= a*c; A[1]:= b*c

aa:= a[0]; bb:= a[1] aa:= A[0]; bb:= A[1]

while(bb > 1){ while(bb > e){
i:=0 i:=0

while(aa ≥ bb){ while(aa ≥ bb){
aa:= aa/bb aa:= int(aa*c,bb)

i:= i+1 i:= i+1

} }
a[s+2]:= aa A[s+2]:= aa

n[s]:= i m[s]:= i

t:= bb t:= bb

bb:= aa bb:= aa

aa:= t aa:= t

s:= s+1 s:= s+1

} }

Table 1.

Then we define Ai+1,c = Bi,m,c. Hence Ai+1,c ≥ c and the sequence
{Ai,c} decreases strictly.

We believe that with c = bt, t ≥ 1, provided Ai+1,c > c + b2
√
c, we

have mi−1,c = ni. (See http://www.numbertheory.org/php/log3.

html for a BCMATH program.)
At one stage the weaker condition Ai+1,c > c + b

√
c also seemed

to have the same property; however taking (a, b) = (991, 2) and t =
146, 147, 148 gave a counter–example. The weaker condition has the
charm of producing longer list of partial quotients. (See http://www.

numbertheory.org/php/log4.html for a BCMATH program.)

We can extend the algorithm to logb(a/d), where a/d > 1. In the
pseudo code, we replace c = bt by c = bt ∗ d and A[0] = a ∗ bt.
Example 2.2 a0 = 3, a1 = 2. Here are the sequences {mi,c} for log2 3,
with c = 2u, u = 1, . . . , 50, without using the cutoff A[i+1] > c+b2

√
c,

where the A[i] are allowed to decrease to c:
1,1,
1,1,1,
1,1,1,1,

http://www.numbertheory.org/php/log3.html
http://www.numbertheory.org/php/log3.html
http://www.numbertheory.org/php/log4.html
http://www.numbertheory.org/php/log4.html
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1,1,1,2,
1,1,1,2,
1,1,1,2,3,
1,1,1,2,2,2,
1,1,1,2,2,2,1,
1,1,1,2,2,2,1,2,
1,1,1,2,2,3,2,3,
1,1,1,2,2,3,2,
1,1,1,2,2,3,1,2, 1, 1,1,2,
1,1,1,2,2,3,1,3, 1, 1,3,1,
1,1,1,2,2,3,1,4, 3, 1,
1,1,1,2,2,3,1,4, 1, 9,1,
1,1,1,2,2,3,1,5,24, 1,2,
1,1,1,2,2,3,1,5, 3, 1,1, 2,7,
1,1,1,2,2,3,1,5, 2, 1,1, 5,3,1,
1,1,1,2,2,3,1,5, 2, 2,1, 3,1,16,
1,1,1,2,2,3,1,5, 2,15,1, 6,2
1,1,1,2,2,3,1,5, 2, 9,5, 1,2,
1,1,1,2,2,3,1,5, 2,13,1, 1,1, 6,1,2,2,
1,1,1,2,2,3,1,5, 2,17,2, 7,8,
1,1,1,2,2,3,1,5, 2,19,1,49,2, 1,
1,1,1,2,2,3,1,5, 2,22,4, 8,3, 4, 1,
1,1,1,2,2,3,1,5, 2,22,2, 1,3, 1, 3, 8,
1,1,1,2,2,3,1,5, 2,22,1, 6,3, 1, 1, 3, 4, 2,
1,1,1,2,2,3,1,5, 2,23,2, 1,1, 2, 1,12,17,
1,1,1,2,2,3,1,5, 2,23,3, 2,2, 2, 2, 1, 3, 2,
1,1,1,2,2,3,1,5, 2,23,2, 1,7, 2, 2,14, 1, 1, 6,
1,1,1,2,2,3,1,5, 2,23,2, 1,1, 1, 1, 1, 8, 2, 1,14, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1,
1,1,1,2,2,3,1,5, 2,23,2, 2,4, 2, 2, 1, 1, 4, 1,10, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,11, 2, 9, 3, 3, 1, 2, 1, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,30, 3, 4, 1, 1, 8, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,2, 7, 3, 4, 1, 23, 1, 5, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,17, 1, 2, 1, 1, 3, 1,430,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,54, 22,10, 1, 1,12, 1,
1,1,1,2,2,3,1,5, 2,23,2, 2,2,55, 1,49, 1, 4, 7, 1, 1, 4,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1,120, 1, 6, 1, 3, 2, 8, 2, 3, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 60, 5, 2, 22, 1, 3, 1, 1, 1, 3,2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 65, 1,22, 3, 2, 1, 10, 1, 3, 3,2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 59, 1, 6, 14, 3, 3, 1, 8, 5, 1,1,1,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56,10, 1, 7, 1, 2, 1, 2, 8, 3,1,1, 3,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56, 1, 3,741, 1,12, 1,12, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56, 3, 1, 1, 1, 1, 8, 1,109, 2,1,2, 7,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 56,16, 1, 1, 1, 2, 5, 1, 2, 1,5,6, 1, 2,1, 2,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1,11, 1, 1, 1, 2, 1, 20,14,3,5,13,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1, 6, 1, 1, 8, 1, 2, 4, 1,1,1, 1,16,1,14,1,1,
1,1,1,2,2,3,1,5, 2,23,2, 2,1, 1, 55, 1, 5, 3, 2, 7, 1, 2, 16, 2,1,1, 1, 1,2,

Example 2.2 a0 = 3, a1 = 2. Here are the sequences {mi,c} for log2 3,
with c = 2u, u = 1, . . . , 50, using the cutoff A[i + 1] > c + b2

√
c. Note

the monotonic increasing lengths of correct partial quotients. (We
are actually using a variation of Algorithm 1, to ensure that in the
few cases where bc < c + b2

√
c that m[0] = n[0] is returned. (See

http://www.numbertheory.org/gnubc/logx for a BC version with
this modification.
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1,
1,
1, 1,
1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1, 2,
1, 1, 1, 2,
1, 1, 1, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1,
1, 1, 1, 2, 2, 3, 1, 5,
1, 1, 1, 2, 2, 3, 1, 5,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 2,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1,
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55,

In fact

log2 3 = [1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, . . .].

4. Another integer part algorithm

Algorithm 2. This algorithm is much slower than Algorithm 1
numerically, when it meets a large partial quotient. Also it seems to
give the same output. However it is easier to describe and it may be
capable of theoretical analysis. Let a0 > a1 > 1 be positive integers.
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Let A0 = a ·c, A1 = b ·c, where c = bt. If Ai−1 > Ai > c, let mi−1 ∈ N
be defined by

(4.1) c ≤ Ai−1c
mi−1

A
mi−1

i

< Ai.

Then define Ai+1 by

(4.2) Ai+1 =

⌊
Ai−1c

mi−1

A
mi−1

i

⌋
.

Then c ≤ Ai+1 < Ai and eventually Ai = c.
Again it seems likely that if Ai+1 > c+ b2

√
c, then mi−1 = ni−1. We

have found that both Algorithms 1 and 2 have the same output.
If we write bi = Ai/c, then (4.1) and (4.2) give

b
mi−1

i ≤ bi−1 < b
mi−1+1
i(4.3)

bi+1 =
1

c

⌊
bi−1c

b
mi−1

i

⌋
.(4.4)

The resemblance to Shanks’ algorithm is now more striking.
In fact, if we write bi,c and mi,c, instead of bi and mi, then bi,c → ai

and mi,c → ni as c→∞, where ai and ni are defined in (1.1) and (1.2).
We prove bi,c → ai as c→∞ by induction on i ≥ 0. There is nothing

to prove when i = 0 and i = 1, as b0,c = a0 and b1,c = a1. So let i ≥ 1
and assume bi−1,c → ai−1 and bi,c → ai. Then from (4.3),

(4.5) mi,c =

⌊
log bi−1,c

log bi,c

⌋
→

⌊
log ai−1

log ai

⌋
= ni,

assuming that logb a is not rational and hence log ai−1/ log ai is not an
integer.

Then by (4.4), as

bi+1,c =
bi−1,c

b
mi,c

i,c

− θi,c
c
,

where 0 ≤ θi,c < 1, it follows from the induction hypothesis and (4.5)
that

bi+1,c →
ai−1

ani
i

= ai+1.

5. A theorem

The next result is an attempt to obtain a result similar to (1.4), on
the assumption that Ai,c is ”large”. We believe that with the stronger
assumption A[i] > c + b2

√
c, c = bt, that we always get the first alter-

native in (5.1).



8 KEITH MATTHEWS

Theorem 2.2 With Gi,c = Ai,c/c and Ai,c > c+
√
c, we have

(5.1)

⌊
logGi−1,c

logGi,c

⌋
= mi−1,c or 1 +mi−1,c.

Proof. By inequalities (3.5) of our paper, with r = mi−1,c, we get

(5.2)
Gi−1,c

Gr
i,c

−
(1− 1

Gr
i,c

)

c(1− 1
Gi,c

)
< Gi+1,c ≤

Gi−1,c

Gr
i,c

.

Also 1 ≤ Gi+1,c and (5.2) imply

1 ≤ Gi−1,c

Gr
i,c

and hence

(5.3) r ≤
⌊

logGi−1,c

logGi,c

⌋
.

If we now assume Ai,c > c+
√
c, we can deduce that

(5.4)

⌊
logGi−1,c

logGi,c

⌋
≤ r + 1.

For (5.2) and the inequality Gi+1,c < Gi,c imply

(5.5)
Gi−1,c

Gr
i,c

− 1

c(1− 1
Gi,c

)
< Gi,c.

If we now assume that Gi,c > 1 + 1/
√
c, (5.5) gives

Gi−1,c

Gr
i,c

< Gi,c +
1

c

(
1− 1

1+ 1√
c

)
= Gi,c +

1√
c

(
1 +

1√
c

)
< Gi,c +

Gi,c√
c

= Gi,c

(
1 +

1√
c

)
< G2

i,c.

Hence

Gi−1,c < Gr+2
i,c

logGi−1,c

logGi,c

< r + 2⌊
logGi−1,c

logGi,c

⌋
≤ r + 1.(5.6)
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Hence from (5.3) and (5.6), we have⌊
logGi−1,c

logGi,c

⌋
= r or r + 1.

6. The first two partial quotients of log2 (2r + 1)

We conclude with some partial information about the continued frac-
tion expansion of log2 (2r + 1).

If r ≥ 1, log2 (2r + 1) = [r, n1, . . .], where

n1 =
⌊
log 2/ log

(
1 + 2−r

)⌋
= b2r log 2c or b2r log 2c+ 1.

Both possibilities can occur. For example,

(a) log2 3 = [1, 1, 1, 2, 2, 3, 1, 5, 2, 23, . . .] (b2 log 2c = 1);
(b) log2 5 = [2, 3, 9, 2, 2, 4, 6, 2, 1, 1, . . .] (b4 log 2c = 2).

Proof. Assume r ≥ 1. Then 2r < 2r + 1 < 2r+1 and hence

r < log2 (2r + 1) < r + 1,

so

(6.1) log2 (2r + 1) = r +
1

s
, s > 1,

where

(6.2) s = log 2/ log
(
1 + 2−r

)
.

From (6.2) and the mean-value theorem, it follows that

1

s
log 2 = log (2r + 1)− log (2r) =

1

2r + θ
,

where 0 < θ < 1.
Hence s = (2r + θ) log 2 and hence

2r log 2 < s < (2r + 1) log 2 < 2r log 2 + 1.

Hence n1 = bsc = b2r log 2c or b2r log 2c+ 1.
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