Some remarks about the solutions of $x^2 - Dy^2 = \pm N$.

Keith Matthews

Proposition

(a) Let $U + V\sqrt{D} = (A + B\sqrt{D})(u + v\sqrt{D})$, where $A^2 - DB^2 = N, u^2 - Dv^2 = \pm 1, B > 0, u > 0, v > 0$ and $B \le |V|$.

Then

(i)
$$A \ge 0 \Rightarrow U > 0$$
 and $V > 0$,
(ii) $A < 0$ and $N > 0 \Rightarrow U < 0$ and $V < 0$,
eg. $(-4 + \sqrt{3})(2 + \sqrt{3}) = -5 - 2\sqrt{3}$. $(u^2 - Dv^2 = 1)$;
 $(-4 + \sqrt{13})(18 + 5\sqrt{13}) = -7 - 2\sqrt{13}$. $(u^2 - Dv^2 = -1)$;
(iii) $A < 0$ and $N < 0 \Rightarrow U > 0$ and $V > 0$.

(iii)
$$A < 0$$
 and $N < 0 \Rightarrow U > 0$ and $V > 0$.
eg. $(-1 + \sqrt{3})(2 + \sqrt{3}) = 1 + \sqrt{3}$. $(u^2 - Dv^2 = 1)$;
eg. $(-4 + 3\sqrt{13})(18 + 5\sqrt{13}) = 123 + 34\sqrt{13}$. $(u^2 - Dv^2 = -1)$;

(b) Let
$$U + V\sqrt{D} = (A + B\sqrt{D})(u - v\sqrt{D})$$
, where

$$A^{2} - DB^{2} = N, u^{2} - Dv^{2} = \pm 1, B > 0, u > 0, v > 0 \text{ and } B \le |V|.$$

Then

(i)
$$A < 0 \Rightarrow U < 0 < V$$
,

(ii)
$$A \ge 0$$
 and $N > 0 \Rightarrow V < 0 < U$,
eg. $(4 + \sqrt{3})(2 - \sqrt{3}) = 5 - 2\sqrt{3}$. $(u^2 - Dv^2 = 1)$;
eg. $(4 + \sqrt{13})(18 - 5\sqrt{13}) = 7 - 2\sqrt{13}$. $(u^2 - Dv^2 = -1)$;

(iii)
$$A \ge 0$$
 and $N < 0 \Rightarrow U < 0 < V$.
eg. $(1 + \sqrt{3})(2 - \sqrt{3}) = -1 + \sqrt{3}$. $(u^2 - Dv^2 = 1)$;
eg. $(4 + 3\sqrt{13})(18 - 5\sqrt{13}) = -123 + 34\sqrt{13}$. $(u^2 - Dv^2 = -1)$;

Remark. (a) and (b) (i) are obvious. (b) (ii) and (iii) follow by conjugation from (a)(ii) and (iii).

Proof. We first prove (a)(ii). Assume A < 0.

$$U = -|A|u + BDv \tag{1}$$

$$V = -|A|v + Bu. \tag{2}$$

First assume $u^2 - Dv^2 = 1$.

Now $u > \sqrt{D}v$ and $|A| > \sqrt{D}B$. Hence |A|u > BDv and by equation (1) we have U < 0.

Next $|A| \leq |U|$ as $B \leq |V|$ and $A^2 = DB^2 + N, U^2 = DV^2 + N$. Hence

$$|A| \leq |A|u - BDv$$

$$BDv \leq |A|(u-1)$$

$$BDvu \leq |A|(u-1)u$$

However

$$|A|(u-1)u < |A|v^2D \iff (u-1)u < v^2D \iff 1 = u^2 - Dv^2 < u.$$

Hence $BDvu < |A|v^2D$ and so Bu < |A|v. Then equation (2) implies V < 0. Now assume $u^2 - Dv^2 = -1$.

We have $u < \sqrt{D}v$ and $\sqrt{D}B < |A|$. Hence $u\sqrt{D}B < |A|\sqrt{D}v$ and uB < |A|v.

Hence from equation (2), V < 0. Also $B \le |V| = |A|v - Bu$. Hence B(1+u) < |A|v. We want to prove |A|u > DBv ie. |A| > DBv/u. But |A| > B(1+u)/v, so it suffices to prove

$$B(1+u)/v \ge DBv/u,$$

or $u \ge Dv^2 - u^2 = 1$. **Proof of (a)(iii)**. Assume A < 0. First assume $u^2 - Dv^2 = 1$ and $A^2 - DB^2 = -|N|$. Then $u > \sqrt{D}v$ and $|A| < \sqrt{D}B$. Hence |A|v < Bu and V > 0. Next, we have to show BDv > |A|u. Suppose instead that $BDv \le |A|u$. Now $B \le |V|$ and (2) give $B \le Bu - |A|v$. Hence

$$B(u-1) \geq |A|v$$

$$B(u-1)/v \geq |A|.$$

Hence $u(B(u-1)/v \ge BDv$ and we deduce that $1 \ge u$, a contradiction. Secondly, assume $u^2 - Dv^2 = -1$ and $A^2 - DB^2 = -|N|$. Now $u < \sqrt{D}v$

and $|A| < \sqrt{DB}$. Hence u|A| < DBv and equation (2) gives U > 0. We prove Bu > |A|u by contradiction. Suppose $Bu \leq |A|u$. The

We prove Bu > |A|v by contradiction. Suppose $Bu \le |A|v$. Then $B \le |V| = |A|v - Bu$ and

$$B(1+u) \leq |A|v$$

$$B(1+u)/v \leq A < \sqrt{D}B$$

$$(1+u)/v < \sqrt{D}.$$

Hence $(1+u)^2 < Dv^2 = u^2 + 1$ and we have 2u < 0, a contradiction. Hence Bu > |A|v and hence V > 0.

Corollary Let $x_0 + y_0 \sqrt{D}$ be a fundamental solution for a class of solutions to $x^2 - Dy^2 = N$. Also let η be the fundamental solution of the Pell's equation $x^2 - Dy^2 = 1$ and let

$$(x_0 + y_0\sqrt{D})\eta^n = x_n + y_n\sqrt{D}.$$

Then

- (a) Suppose N > 0.
 - (i) Suppose $x_0 > 0$. Then if n > 0, we have $x_n > 0$ and $y_n > 0$, while if n < 0, we have $x_n > 0$ and $y_n < 0$.
 - (ii) Suppose $x_0 < 0$. Then if n > 0, we have $x_n < 0$ and $y_n < 0$, while if n < 0, we have $x_n < 0$ and $y_n > 0$.
- (b) Suppose N < 0.
 - (i) Suppose $x_0 > 0$. Then if n > 0, we have $x_n > 0$ and $y_n > 0$, while if n < 0, we have $x_n < 0$ and $y_n > 0$.
 - (ii) Suppose $x_0 < 0$. Then if n > 0, we have $x_n > 0$ and $y_n > 0$, while if n < 0, we have $x_n < 0$ and $y_n > 0$.