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Proposition

(a) Let U + V
√
D = (A+B

√
D)(u+ v

√
D, where

A2 −DB2 = N, u2 −Dv2 = ±1, B > 0, u > 0, v > 0 and B ≤ |V |.

Then

(i) A ≥ 0⇒ U > 0 and V > 0,

(ii) A < 0 and N > 0⇒ U < 0 and V < 0,

eg. (−4 +
√

3)(2 +
√

3) = −5− 2
√

3. (u2 −Dv2 = 1);

(−4 +
√

13)(18 + 5
√

13) = −7− 2
√

13. (u2 −Dv2 = −1);

(iii) A < 0 and N < 0⇒ U > 0 and V > 0.

eg. (−1 +
√

3)(2 +
√

3) = 1 +
√

3. (u2 −Dv2 = 1);

eg. (−4 + 3
√

13)(18 + 5
√

13) = 123 + 34
√

13. (u2 −Dv2 = −1);

(b) Let U + V
√
D = (A+B

√
D)(u− v

√
D, where

A2 −DB2 = N, u2 −Dv2 = ±1, B > 0, u > 0, v > 0 and B ≤ |V |.

Then

(i) A < 0⇒ U < 0 < V ,

(ii) A ≥ 0 and N > 0⇒ V < 0 < U ,

eg. (4 +
√

3)(2−
√

3) = 5− 2
√

3. (u2 −Dv2 = 1);

eg. (4 +
√

13)(18− 5
√

13) = 7− 2
√

13. (u2 −Dv2 = −1);

(iii) A ≥ 0 and N < 0⇒ U < 0 < V .

eg. (1 +
√

3)(2−
√

3) = −1 +
√

3. (u2 −Dv2 = 1);

eg. (4 + 3
√

13)(18− 5
√

13) = −123 + 34
√

13. (u2 −Dv2 = −1);

Remark. (a) and (b) (i) are obvious. (b) (ii) and (iii) follow by conjugation
from (a)(ii) and (iii).
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Proof. We first prove (a)(ii). Assume A < 0.

U = −|A|u+BDv (1)

V = −|A|v +Bu. (2)

First assume u2 −Dv2 = 1.
Now u >

√
Dv and |A| >

√
DB. Hence |A|u > BDv and by equation (1)

we have U < 0.

Next |A| ≤ |U | as B ≤ |V | and A2 = DB2 +N,U2 = DV 2 +N . Hence

|A| ≤ |A|u−BDv
BDv ≤ |A|(u− 1)

BDvu ≤ |A|(u− 1)u

However

|A|(u− 1)u < |A|v2D ⇐⇒ (u− 1)u < v2D ⇐⇒ 1 = u2 −Dv2 < u.

Hence BDvu < |A|v2D and so Bu < |A|v. Then equation (2) implies V < 0.

Now assume u2 −Dv2 = −1.
We have u <

√
Dv and

√
DB < |A|. Hence u

√
DB < |A|

√
Dv and

uB < |A|v.
Hence from equation (2), V < 0.
Also B ≤ |V | = |A|v −Bu. Hence B(1 + u) < |A|v.
We want to prove |A|u > DBv ie. |A| > DBv/u.
But |A| > B(1 + u)/v, so it suffices to prove

B(1 + u)/v ≥ DBv/u,

or u ≥ Dv2 − u2 = 1.
Proof of (a)(iii). Assume A < 0.
First assume u2 −Dv2 = 1 and A2 −DB2 = −|N |. Then
u >
√
Dv and |A| <

√
DB. Hence |A|v < Bu and V > 0.

Next, we have to show BDv > |A|u. Suppose instead that BDv ≤ |A|u.
Now B ≤ |V | and (2) give B ≤ Bu− |A|v. Hence

B(u− 1) ≥ |A|v
B(u− 1)/v ≥ |A|.
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Hence u(B(u− 1)/v ≥ BDv and we deduce that 1 ≥ u, a contradiction.
Secondly, assume u2−Dv2 = −1 and A2−DB2 = −|N |. Now u <

√
Dv

and |A| <
√
DB. Hence u|A| < DBv and equation (2) gives U > 0.

We prove Bu > |A|v by contradiction. Suppose Bu ≤ |A|v. Then
B ≤ |V | = |A|v −Bu and

B(1 + u) ≤ |A|v
B(1 + u)/v ≤ A <

√
DB

(1 + u)/v <
√
D.

Hence (1 + u)2 < Dv2 = u2 + 1 and we have 2u < 0, a contradiction.
Hence Bu > |A|v and hence V > 0.

Corollary Let x0+y0

√
D be a fundamental solution for a class of solutions to

x2−Dy2 = N . Also let η be the fundamental solution of the Pell’s equation
x2 −Dy2 = 1 and let

(x0 + y0

√
D)ηn = xn + yn

√
D.

Then

(a) Suppose N > 0.

(i) Suppose x0 > 0. Then if n > 0, we have xn > 0 and yn > 0, while
if n < 0, we have xn > 0 and yn < 0.

(ii) Suppose x0 < 0. Then if n > 0, we have xn < 0 and yn < 0, while
if n < 0, we have xn < 0 and yn > 0.

(b) Suppose N < 0.

(i) Suppose x0 > 0. Then if n > 0, we have xn > 0 and yn > 0, while
if n < 0, we have xn < 0 and yn > 0.

(ii) Suppose x0 < 0. Then if n > 0, we have xn > 0 and yn > 0, while
if n < 0, we have xn < 0 and yn > 0.
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