An Example from Power Residues of the Critical Problem of Crapo and Rota

K. R. Matthews
Department of Mathematics, University of Queensland, St. Lucia, Brisbane, Queensland, 4067 Australia
Communicated by H. Zassenhaus

Received June 13, 1975

A natural density arising from the author's recent work on a generalization of Artin's conjecture for primitive roots is shown to be essentially the characteristic polynomial of a geometric lattice, as defined by Crapo and Rota. Necessary and sufficient conditions are obtained for the vanishing of this density.

1. Introduction

Let p be a prime, a_{1}, \ldots, a_{n} be nonzero integers, and let P be the set of primes $q \equiv 1(\bmod p)$ such that each of a_{1}, \ldots, a_{n} is a p th power nonresidue $\bmod q$. The natural density $d(p)$ of P is defined by

$$
d(p)=\lim _{x \rightarrow \infty}(\pi(x))^{-1} \sum_{\substack{q \leqslant x \\ q \in P}} 1,
$$

where $\pi(x)$ is the number of primes not exceeding x. In a recent paper of the author [2] the problem of finding necessary and sufficient conditions for $d(3)$ to vanish arose. The general problem of the vanishing of $d(p)$ turns out to be a critical problem as defined by Crapo and Rota [1,16.1].

Clearly $d(p)=0$ if one of a_{1}, \ldots, a_{n} is a perfect p th power, for then P is empty. However, the converse is not in general true. We shall find that certain p th power relations must hold between a_{1}, \ldots, a_{n} in order that $d(p)$ vanish.

2. A Formula for $d(p)$

The principle of inclusion-exclusion gives

$$
\begin{equation*}
\sum_{\substack{q \leqslant x \\ q \in P}} 1=\sum_{\substack{q \leqslant x \\ q=1(\bmod p)}} 1+\sum_{j=1}^{n}(-1)^{j} \sum_{\substack{1 \leqslant i_{1}<\cdots<i_{j} \leqslant n}}\left|\mathscr{S}_{i_{1}} \cap \cdots \cap \mathscr{S}_{i_{j}}\right|, \tag{1}
\end{equation*}
$$

where \mathscr{S}_{i} is the set of primes $q \leqslant x, q \equiv 1(\bmod p)$ such that a_{i} is a p th power residue $\bmod q$. The prime ideal theorem (see [3, p. 162]) gives for $1 \leqslant i_{1}<$ $\cdots<i_{j} \leqslant n$,

$$
\begin{aligned}
\lim _{x \rightarrow \infty}(\pi(x))^{-1}\left|\mathscr{S}_{i_{1}} \cap \cdots \cap \mathscr{S}_{i_{j}}\right| & =\left[\mathfrak{Q}\left(e^{2 \pi i / p},\left(a_{i_{1}}\right)^{1 / p}, \ldots,\left(a_{i_{j}}\right)^{1 / p}\right): \mathbb{Q}\right]^{-1} \\
& =\left(p^{j}(p-1)\right)^{-1} \tau\left(i_{1}, \ldots, i_{j}\right),
\end{aligned}
$$

where $\tau\left(i_{1}, \ldots, i_{j}\right)$ is the number of j-tuples of integers $\left(\nu_{1}, \ldots, v_{j}\right), 1 \leqslant \nu_{i} \leqslant p$ such that

$$
\begin{equation*}
a_{i}^{v_{1}} \cdots a_{i_{j}}^{v_{j}}=b^{p}, \quad b \text { an integer } \tag{2}
\end{equation*}
$$

Also

$$
\begin{equation*}
\lim _{x \rightarrow \infty}(\pi(x))^{-1} \sum_{\substack{q \not a x \\ q=1(\bmod p)}} 1=(p-1)^{-1} \tag{3}
\end{equation*}
$$

by the prime number theorem for arithmetic progressions. Consequently from (1), (2), and (3) we have

$$
\begin{equation*}
d(p)=(p-1)^{-1}\left[1+\sum_{j=1}^{n}(-1)^{j} p^{-j} \sum_{1 \leqslant i_{1}<\cdots<i_{j} \leqslant n} \tau\left(i_{1}, \ldots, i_{i}\right)\right] . \tag{4}
\end{equation*}
$$

Similarly

$$
(p-1)^{-k}\left[1+\sum_{j=1}^{n}(-1)^{j} p^{-k j} \sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{j} \leqslant n} \tau\left(i_{1}, \ldots, i_{j}\right)\right]
$$

is the natural density of the k-tuples $\left(q_{1}, \ldots, q_{k}\right)$ of primes $q_{j} \equiv 1(\bmod p)$ such that for all $i, 1 \leqslant i \leqslant n$, there exists a $j, 1 \leqslant j \leqslant k$, such that a_{i} is a p th power nonresidue $\bmod q_{j}$.

This formula can be transformed somewhat. Let p_{1}, \ldots, p_{t} be the distinct primes which divide $a_{1} a_{2} \cdots a_{n}$ and let $\nu_{p_{r}}\left(a_{s}\right)$ be the exponent to which p_{r} divides a_{s}. Then (2) is equivalent to a vector equation in $V_{t}(\mathscr{F})(\mathscr{F}=G F(p))$, namely,

$$
v_{1} C_{i_{1}}+\cdots+v_{j} C_{i_{j}}=0
$$

where C_{1}, \ldots, C_{n} are the columns of the $t \times n$ exponent matrix $C=\left[\nu_{v_{r}}\left(a_{3}\right)\right]$. Hence $\tau\left(i_{1}, \ldots, i_{j}\right)$ is the number of vectors in the null space of the matrix [$C_{i_{1}}|\cdots| C_{i_{1}}$]. Consequently

$$
\begin{equation*}
\tau\left(i_{1}, \ldots, i_{j}\right)=p^{j-\operatorname{rank}\left[c_{i_{1}}|\ldots| c_{i},\right.} \tag{5}
\end{equation*}
$$

From (4) and (5) we obtain

$$
\begin{equation*}
d(p)=\left[p^{t}(p-1)\right]^{-1}\left[p^{t}+\sum_{j=1}^{n}(-1)^{j} \sum_{1 \leqslant i_{1}<\cdots<i_{j} \leqslant n} p^{t-\operatorname{rank}\left[c_{i_{1}}|\cdots| c_{i}, 1\right.}\right] . \tag{6}
\end{equation*}
$$

It turns out that $p^{t} d(p)$ is the number of projective hyperplanes in $V_{t}(\mathscr{F})$ (i.e., sets of the form $\alpha_{1} x_{1}+\cdots+\alpha_{t} x_{t}=0, \alpha_{1}, \ldots, \alpha_{t}$ not all zero) which do not pass through any of C_{1}, \ldots, C_{n} (see Lemma 1).

3. The Critical Problem of Crapo and Rota

We may assume that C_{1}, \ldots, C_{n} are each nonzero, for $C_{i}=0$ is equivalent to a_{i} being a perfect p th power, and we know that $d(p)=0$ in this case.

With Crapo and Rota we say that a sequence L_{1}, \ldots, L_{k} of linear functionals on $V_{t}(\mathscr{F})$ distinguishes the set $S=\left\{C_{1}, \ldots, C_{n}\right\}$ if for each $C_{i}, 1 \leqslant i \leqslant n$, there corresponds an L_{j} such that $L_{j}\left(C_{i}\right) \neq 0$. The minimum k for which such a sequence exists is called the critical exponent c of S. It is clear that $1 \leqslant c \leqslant t$.

Crapo and Rota use Möbius theory to prove the following result (see [1, 16.4]).

Lemma 1. The number N_{k} of k sequences L_{1}, \ldots, L_{k} of linear functionals on $V_{t}(\mathscr{F})$ which distinguish $S=\left\{C_{1}, \ldots, C_{n}\right\}$ is equal to $P\left(p^{k}\right)$, where $P(\lambda)$ is the polynomial defined by

$$
\begin{equation*}
P(\lambda)=\lambda^{t}+\sum_{j=1}^{n}(-1)^{i} \sum_{1 \leqslant i_{1}<\cdots<i_{j} \leqslant n} \lambda^{t-\operatorname{rank}\left[C_{i_{1}}|\cdots| C_{i_{j}}\right]} \tag{7}
\end{equation*}
$$

$(P(\lambda)$ is the characteristic polynomial of the geometric lattice spanned by C_{1}, \ldots, C_{n}.)

For the convenience of the reader we give a proof based on inclusionexclusion.

Proof. For $1 \leqslant i_{1}<\cdots<i_{j} \leqslant n$ let $g\left(i_{1}, \ldots, i_{j}\right)$ be the number of linear functionals on $V_{t}(\mathscr{F})$ which vanish at each of $C_{i_{1}}, \ldots, C_{i_{j}}$. Then

$$
\begin{equation*}
N_{k}=p^{t k}+\sum_{j=1}^{n}(-1)^{j} \sum_{1 \leqslant i_{1}<\cdots<i_{j} \leqslant n} g^{k}\left(i_{1}, \ldots, i_{j}\right) \tag{8}
\end{equation*}
$$

by the principle of inclusion-exclusion.
However, $g\left(i_{1}, \ldots, i_{j}\right)$ is the number of elements in the quotient space $V_{t}(\mathscr{F}) / B\left(i_{1}, \ldots, i_{j}\right)$, where $B\left(i_{1}, \ldots, i_{j}\right)$ is the column space of $\left[C_{i_{1}}|\cdots| C_{i_{j}}\right]$. Hence

$$
\begin{equation*}
g\left(i_{1}, \ldots, i_{j}\right)=p^{t-\mathrm{rank}\left[c_{i_{1}}|\cdots| c_{i_{j}}\right]} \tag{9}
\end{equation*}
$$

From (8) and (9) it follows that $N_{k}=P\left(p^{k}\right)$.

Corollary 1. If c is the critical exponent of $S=\left\{C_{1}, \ldots, C_{n}\right\}$, then

$$
\begin{array}{ll}
P\left(p^{k}\right)=0 & \text { for } k=0,1, \ldots, c-1 \\
P\left(p^{k}\right)>0 & \text { for } k \geqslant c .
\end{array}
$$

The Corollary shows that $d(p)=0$ if and only if $c \geqslant 2$.
Corollary 2. If rank $C=n$ then $c=1$ and $d(p)>0$.
Proof. If rank $C=n$, then

$$
P(\lambda)=\lambda^{t-n}(\lambda-1)^{n}
$$

Hence $P(p)$ and so $d(p)$ are positive.
Remark. The condition rank $C=n$ means there is no nontrivial relation

$$
a_{1}^{\nu_{1}} \cdots a_{n}^{v_{n}}=b^{p}, \quad b \text { an integer, } \quad 1 \leqslant \nu_{i} \leqslant p
$$

This is certainly true, for example, if a_{1}, \ldots, a_{n} are pairwise relatively prime and none of a_{1}, \ldots, a_{n} is a perfect p th power.

4. A Necessary and Sufficient Condition for $d(p)>0$

By Corollary 2 we may assume that rank $C=r<n$. We also assume a_{1}, \ldots, a_{n} have been relabeled if necessary so that C_{1}, \ldots, C_{r} are linearly independent over \mathscr{F}.

Instead of the $P\left(p^{k}\right) k$ sequences of linear functionals on $V_{t}(\mathscr{F})$ which distinguish S, we consider the $\left.p^{-k(t-r a n k} C\right) P\left(p^{k}\right) k$ sequences of linear functionals on the column space of C, which distinguish S. Such linear functionals are given by the formula

$$
\begin{equation*}
L\left(\lambda_{1} C_{1}+\cdots+\lambda_{r} C_{r}\right)=\lambda_{1} \alpha_{1}+\cdots+\lambda_{r} \alpha_{r} \tag{10}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{r} \in \mathscr{F}$.
We also let

$$
\begin{align*}
& C_{r+1}=\lambda_{1,1} C_{1}+\cdots+\lambda_{1, r} C_{r} \\
& \vdots \tag{11}\\
& C_{n}=\lambda_{n-r, 1} C_{1}+\cdots+\lambda_{n-r, r} C_{r}
\end{align*}
$$

(Equations (11) are equivalent to

$$
a_{r+1}=a_{1}^{\lambda_{1,1}} \cdots a_{r}^{\lambda_{1}, r} b_{1}^{p}, \ldots, a_{n}=a_{1}^{\lambda_{n-r, 1}} \cdots a_{r}^{\lambda_{n-r, r}} b_{n-r}^{p}
$$

where b_{1}, \ldots, b_{n-r} are rational.)

The following equations should be noted:

$$
L\left(C_{i}\right)=\left\{\begin{array}{l}
\alpha_{i} \quad \text { for } \quad 1 \leqslant i \leqslant r \\
\lambda_{i-r, 1} \alpha_{1}+\cdots+\lambda_{i-r, r} \alpha_{r}
\end{array} \quad \text { for } \quad r+1 \leqslant i \leqslant n\right.
$$

where L is defined by (10). We then have the
Theorem. $\quad d(p)=0$ if and only if for every r-tuple $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of nonzero elements of \mathscr{F}, we have

$$
\lambda_{j, 1} \alpha_{1}+\cdots+\lambda_{j, r} \alpha_{r}=0
$$

for some $j, 1 \leqslant j \leqslant n-r, j$ depending on $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. Here $\lambda_{j, k}$ are defined by (11).

Proof.

$$
\begin{aligned}
d(p)=0 \Leftrightarrow & c \geqslant 2, \\
& \Leftrightarrow \text { one linear functional } L \text { does not suffice to distinguish } S, \\
\Leftrightarrow & \forall L, \exists i, 1 \leqslant i \leqslant n, \text { such that } L\left(C_{i}\right)=0, \\
\Leftrightarrow & \forall L \text { given by }(10) \text { with each of } \alpha_{1}, \ldots, \alpha_{n} \text { nonzero, } \exists i, r+1 \leqslant \\
& i \leqslant n, \text { such that } L\left(C_{i}\right)=0, \\
\Leftrightarrow & \forall\left(\alpha_{1}, \ldots, \alpha_{r}\right) \text { with } \alpha_{1}, \ldots, \alpha_{r} \text { nonzero, } \exists j, 1 \leqslant j \leqslant n-r, \text { such that } \\
& \quad \lambda_{j, 1} \alpha_{1}+\cdots+\lambda_{j, r} \alpha_{r}=0 .
\end{aligned}
$$

Example. Take $n=4, r=2, p=3$ and assume that none of a_{1}, a_{2}, a_{3}, a_{4} is a perfect cube. Then

$$
C_{3}=\lambda_{1,1} C_{1}+\lambda_{1,2} C_{2} \quad \text { and } \quad C_{4}=\lambda_{2,1} C_{1}+\lambda_{2,2} C_{2}
$$

Hence by the Theorem, $d(3)=0$ if and only if

$$
\lambda_{1,1}+\lambda_{1,2}=0 \quad \text { or } \quad \lambda_{2,1}+\lambda_{2,2}=0
$$

and

$$
\lambda_{1,1}-\lambda_{1,2}=0 \quad \text { or } \quad \lambda_{2,1}-\lambda_{2,2}=0
$$

over $G F(3)$.
The only possible choices of systems are

$$
\lambda_{1,1}+\lambda_{1,2}=0 \quad \text { and } \quad \lambda_{2,1}-\lambda_{2,2}=0
$$

or

$$
\lambda_{2,1}+\lambda_{2,2}=0 \quad \text { and } \quad \lambda_{1,1}-\lambda_{1,2}=0
$$

The first possibility corresponds to

$$
\begin{equation*}
a_{3}=a_{1}^{2 s} a_{2}^{s} b_{1}^{3} \quad \text { and } \quad a_{4}=a_{1}{ }^{t} a_{2}^{t} b_{2}^{3} \tag{10}
\end{equation*}
$$

b_{1} and b_{2} rational, s and t not divisible by 3 , while the second possibility corresponds to interchanging a_{3} and a_{4} in (10).

References

1. H. H. Crapo and G. C. Rota, "On the Foundations of Combinatorial Theory: Combinatorial Geometries," M.I.T. Press, Cambridge, Mass., 1970.
2. K. R. Matthews, A generalisation of Artin's conjecture for primitive roots, Acta Arith. 29 (1976), 113-146.
3. A. Schinzel, A refinement of a theorem of Gerst on power residues, Acta Arith. 27 (1970), 161-168.
