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1. INTRODUCTION. For primes that can be written as a sum
of integer squares, p = a2 + (2b)2, Kaplansky [4] asked whether the
binary quadratic form F = x2 − py2 always represents a and 4b (that
is, are there integer solutions to x2 − py2 = a and x2 − py2 = 4b). Feit
[1] and Mollin [4] proved that F does always represent a and 4b using
the theory of ideals and the class group structure of quadratic orders.
In this Monthly, Walsh [7] proved a more general result using only
elementary methods. He showed that if D > 1 is a non-square odd
integer, D = a2 + (2b)2, and x2 − Dy2 represents −1, then there is
a factorization of D into positive integers r and s so that rx2 − sy2

represents a, and a possibly different factorization so that rx2 − sy2

represents 4b.
For any non-square positive integer D, odd or even, for which x2 −

Dy2 represents −1, we use the continued fraction algorithm to generate
particular a and b so that D = a2 + b2, where a is always odd and the
parity of b is opposite that of D. We also give explicit solutions to
x2 − Dy2 = ±a and x2 − Dy2 = ±2b. This shows that standard con-
tinued fraction methods give a more elementary answer to Kaplansky’s
question than the solutions by Feit and Mollin. While this solution is
not as elementary as Walsh’s, it always uses the trivial factorization of
D. We begin with some background.

2. THE CONTINUED FRACTION ALGORITHM. Any
irrational real number ξ can be written as an infinite (simple) continued
fraction

ξ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

where a0 = bξc (with b∗c denoting the greatest integer function) and
the ai are positive integers for i > 0. For D a positive integer, not
a square, the following well-known algorithm computes the continued
fraction expansion of

√
D [6, p. 76] [5, p. 358] [3, p. 251] and some
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related variables. Let P0 = 0, Q0 = 1, and a0 = b
√

Dc. For i ≥ 1,
define

(A) Pi = ai−1Qi−1 − Pi−1,
(B) Qi = (D − P 2

i )/Qi−1, and

(C) ai = b(Pi +
√

D)/Qic.
Also set A−2 = 0, A−1 = 1, Ai = aiAi−1 + Ai−2 for i ≥ 0, B−2 = 1,

B−1 = 0, and Bi = aiBi−1 + Bi−2 for i ≥ 0. The ai are the partial
quotients, the ratios (Pi +

√
D)/Qi are the complete quotients, and the

Ai/Bi are the convergents related to the continued fraction expansion

of
√

D.
The sequences {Pi}, {Qi}, and {ai} are periodic; denote the length

of the minimal period by `. For the continued fraction expansion of√
D, for i, k > 0, Pi+k` = Pi and similarly for {Qi} and {ai}. As an

example, in Table 1 we give the continued fraction expansion of
√

58,
which has ` = 7.

i −2 −1 0 1 2 3 4 5 6 7 8
Pi 0 7 2 4 3 4 2 7 7
Qi 1 9 6 7 7 6 9 1 9
ai 7 1 1 1 1 1 1 14 1
Ai 0 1 7 8 15 23 38 61 99 1447 1546
Bi 1 0 1 1 2 3 5 8 13 190 203

Table 1. Continued fraction expansion of
√

58

We will need the following facts:

(i) x2 −Dy2 represents −1 if and only ` is odd [6, p. 93] [5, p.
353] [3, p. 249].
(ii) Ai−1Bi − AiBi−1 = (−1)i for i ≥ 0 [6, p. 14] [5, p. 330] [3,
p. 225]. In particular, gcd(Ai, Ai−1) = 1.
(iii) A2

i−1 −DB2
i−1 = (−1)iQi for i ≥ 0 [6, p. 92] [5, p. 351] [3,

p. 246].
(iv) Qi = Q`−i for 0 ≤ i ≤ ` [6, p. 81] [3, p. 253].
(v) Pi+1Bi = Ai −Qi+1Bi−1 for i ≥ −1 [6, p. 70].
(vi) Qi+2 = Qi − ai+1(Pi+2 − Pi+1) for i ≥ 0 [6, p. 70] [5, p.
358].
(vii) DBi−1 = Ai−1Pi + Ai−2Qi for i ≥ 0 [6, p. 94].

3. EXPLICIT REPRESENTATIONS. In what follows, D is a
positive integer, not a square, x2 − Dy2 represents −1 (so by (i) ` is
odd), and n = (` + 1)/2. We prove the claims made in the second
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paragraph of the Introduction for a = Qn and b = Pn. The following
lemma establishes representations of ±Qn.

Lemma 1.

A2
n−1 −DB2

n−1 = (−1)nQn,(1)

A2
n−2 −DB2

n−2 = (−1)n−1Qn,(2)

and gcd(An−1, Bn−1) = gcd(An−2, Bn−2) = 1.

Proof. Equation (1) is an immediate consequence of (iii). Equation
(2) follows from (iii) with i = n − 1 and (iv) which gives Qn−1 = Qn.
By (ii), gcd(An−1, Bn−1) = gcd(An−2, Bn−2) = 1. �

The next theorem shows that D is the sum of the squares of the
claimed a and b.

Theorem 1. D = Q2
n + P 2

n , where Qn is odd and gcd(Pn, Qn) = 1.

Proof. That D = Q2
n + P 2

n is well known [6, p. 83], but the proof is
short, so we include it: by (B) D − P 2

n = QnQn−1, by (iv) Qn = Qn−1,
and the result follows.

Next we show that two consecutive Qi cannot both be even. Using
(A) we substitute Qi+1ai+1 − Pi+1 for Pi+2 in (vi) to get

Qi = Qi+1a
2
i+1 + Qi+2 − 2Pi+1ai+1.

If Qi+1 and Qi+2 were both even, Qi would also be even, and continuing
this, all Qj with 0 ≤ j ≤ i + 2 would be even. But Q0 = 1 is odd. It
follows that Qn = Qn−1 is odd.

Because D = Q2
n + P 2

n , if g = gcd(Qn, Pn), then g2 divides D. By
(1) and (2) g then divides A2

n−1 and A2
n−2, so by (ii), g = 1. �

Now we can establish a theorem that gives surprisingly simple ex-
plicit representations of ±2b.

Theorem 2. If (T1, U1) = (An−1 − An−2, Bn−1 −Bn−2), then

(3) T 2
1 −DU2

1 = (−1)n2Pn.

Similarly if (T2, U2) = (An−1 + An−2, Bn−1 + Bn−2), then

(4) T 2
2 −DU2

2 = (−1)n−12Pn.

Finally, gcd(T1, U1) = gcd(T2, U2) = 1.

Proof.

T 2
1 −DU2

1 = (An−1 − An−2)
2 −D(Bn−1 −Bn−2)

2

= (A2
n−1 −DB2

n−1) + (A2
n−2 −DB2

n−2)

− 2An−1An−2 + 2DBn−1Bn−2

= −2An−1An−2 + 2DBn−1Bn−2 by (1) and (2).(5)
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We now use (vii) with i = n to substitute DBn−1 = An−1Pn + An−2Qn

into (5) and get:

T 2
1 −DU2

1 = 2(−An−1An−2 + Bn−2(An−1Pn + An−2Qn))

= 2(Bn−2An−1Pn + An−2(−An−1 + QnBn−2))

= 2(Bn−2An−1Pn + An−2(−PnBn−1)) by (v)

= 2(Bn−2An−1 − An−2Bn−1)Pn

= 2(−1)nPn by (ii).

There is a similar proof for (4), or alternatively one can use

(T2 + U2

√
D) = (T1 + U1

√
D)(Qn +

√
D)/Pn

and take norms of both sides.
Finally, let g = gcd(T1, U1) = gcd(An−1 −An−2, Bn−1 −Bn−2). Then

An−2 ≡ An−1 (mod g) and Bn−1 ≡ Bn−2 (mod g),

so g divides An−2Bn−1 − An−1Bn−2. By (ii):

An−2Bn−1 − An−1Bn−2 = (−1)n−1,

so g divides 1 and hence g = 1.
The proof that gcd(T2, U2) = 1 is similar. �
Examples for Lemma 1 and Theorems 1 and 2 can be drawn from

Table 1, which gives the continued fraction expansion of
√

58. Here
` = 7 and n = 4. Lemma 1 then says that 232 − 58 · 32 = (−1)4 · 7
and 152 − 58 · 22 = (−1)3 · 7, both of which can be verified by direct
computation. Theorem 1 says that 58 = 72 + 32. Equation (3) says
that (23− 15)2 − 58(3− 2)2 = (−1)4 · 2 · 3, or 82 − 58 · 12 = 6, and (4)
says that (23 + 15)2 − 58(3 + 2)2 = (−1)3 · 2 · 3, or 382 − 58 · 52 = −6.

For primes p > 0 it is well known that x2 − py2 represents −1 (and
so the lemma and theorems above apply) if and only if p = 2 or p ≡ 1
(mod 4) [5, p. 357]. The fifteen smallest composite D so that x2−Dy2

represents −1 are D = 10, 26, 50, 58, 65, 74, 82, 85, 106, 122, 125, 130,
145, 170, and 185.

An apparently open problem is to characterize those D that are a
sum of two relatively prime squares but x2 − Dy2 does not represent
−1. Such D include 34, 146, 178, 194, 205, 221, 305, 377, 386, and 410.
Grytczuk, Luca, and Wojtowicz [2] prove that x2 − Dy2 = −1 has a
solution if and only if there is a primitive Pythagorean triple (A, B, C)
and positive integers a, b so that D = a2 + b2 and |aA − bB| = 1. In
this case, x = |aB + bA| and y = C give a solution.
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