PURELY PERIODIC NEAREST SQUARE CONTINUED FRACTIONS

Keith R. Matthews^{1*} and John P. Robertson^{2†}

¹Department of Mathematics, University of Queensland St. Lucia, Brisbane, Australia 4072 and Centre for Mathematics and its Applications, Australian National University Canberra, Australia 0200 ²Actuarial and Economic Services Division National Council on Compensation Insurance, Boca Raton, FL 33487, USA

Abstract

We present a test for determining whether a real quadratic irrational has a purely periodic nearest square continued fraction expansion. This test is somewhat more explicit than the standard test and simplifies the programming of the algorithm.

2010 Mathematics Subject Classification: Primary 11A55; Secondary 11Y65.

1. Introduction

Simple tests have long been known for determining whether a real quadratic irrational $\xi = (P + \sqrt{D})/Q$, D > 0 and not a perfect square, has a purely periodic regular continued fraction expansion, or nearest integer continued fraction expansion. Thus if $\overline{\xi} = (P - \sqrt{D})/Q$, then ξ has a purely periodic regular continued fraction expansion if and only if $\xi > 1$ and $-1 < \overline{\xi} < 0$ (see, e.g., [P, pp. 73–74]). Also ξ has a purely periodic nearest integer continued fraction expansion if and only if $\xi > 2$ and $(1 - \sqrt{5})/2 < \overline{\xi} \le (3 - \sqrt{5})/2$ [MR].

No test for pure periodicity as simple as these is known for the *nearest square* continued fraction, defined in the next section. Instead, A. A. K. Ayyangar [A2, p. 27] gave a definition of *reduced* quadratic irrational and showed that ξ has a purely periodic nearest square continued fraction expansion if and only if ξ is reduced. In this paper, we give a more explicit version of Ayyangar's definition which is useful in detecting the start of a period.

^{*}E-mail address: keithmatt@gmail.com; Website: http://www.numbertheory.org/keith.html

[†]E-mail address: jpr2718@gmail.com; Website: http://www.jpr2718.org/

2. The nearest square continued fraction algorithm

This continued fraction was introduced by A. A. K. Ayyangar in 1938 and 1941 [A1, A2]. Let $\xi_0 = \frac{P + \sqrt{D}}{Q}$ be a surd in standard form, i.e.,

- (i) P, Q, and D are integers, $Q \neq 0$, D is not a perfect square,
- (ii) $(P^2 D)/Q$ is an integer,
- (iii) $gcd(P, Q, (D P^2)/Q) = 1.$

Then with $c = \lfloor \xi_0 \rfloor$, the integer part of ξ_0 , we can represent ξ_0 in two ways (the *positive* and *negative* representations of ξ_0):

$$\xi_0 = c + \frac{Q'}{P' + \sqrt{D}} = c + 1 - \frac{Q''}{P'' + \sqrt{D}},$$

where $\frac{P'+\sqrt{D}}{Q'} > 1$ and $\frac{P''+\sqrt{D}}{Q''} > 1$ are also in standard form. We choose the partial denominator a_0 and numerator ϵ_1 of the new continued fraction expansion as follows:

- (a) $a_0 = c$ and $\epsilon_1 = 1$, if |Q'| < |Q''|, or |Q'| = |Q''| and Q < 0,
- (b) $a_0 = c + 1$ and $\epsilon_1 = -1$, if |Q'| > |Q''|, or |Q'| = |Q''| and Q > 0.

The term *nearest square* arises on noting that $P'^2 = D - QQ'$ and $P''^2 = D + QQ''$ and restating (a) and (b) using the following equivalence:

$$|Q'| \ge |Q''| \iff |QQ'| \ge |QQ''| \iff |P'^2 - D| \ge |P''^2 - D|.$$

Then $\xi_0 = a_0 + \frac{\epsilon_1}{\xi_1}$, where $|\epsilon_1| = 1, a_0$ is an integer and $\xi_1 = \frac{P_1 + \sqrt{D}}{Q_1} > 1$. Also $P_1 = P'$ or P'' and $Q_1 = Q'$ or Q'', according as $\epsilon_1 = 1$ or -1. We call ξ_1 the successor of ξ_0 . We proceed similarly with ξ_1 , and so on. Then the complete quotients ξ_n satisfy

$$\xi_n = a_n + \frac{\epsilon_{n+1}}{\xi_{n+1}} \text{ and } \xi_0 = a_0 + \frac{\epsilon_1}{a_1} + \frac{\epsilon_2}{a_2} + \dots + \frac{\epsilon_n}{|\xi_n|},$$
(2.1)

with partial numerator $\epsilon_{i+1} = \pm 1$ and partial denominator $a_i \ge 1$ if $i \ge 1$. This expansion is called the *nearest square* continued fraction (NSCF) expansion.

Analogous relations to those for regular continued fractions also hold for P_n, Q_n and a_n :

$$P_{n+1} + P_n = a_n Q_n, (2.2)$$

$$P_{n+1}^2 + \epsilon_{n+1}Q_nQ_{n+1} = D. (2.3)$$

Ayyangar [A2, Theorem II, p. 25] proved that the NSCF expansion is eventually periodic, i.e., the complete quotients ξ_n eventually satisfy $\xi_i = \xi_{i+k}$ for $i \ge i_0$ for some $k \ge 1$. Then $\epsilon_{i+1} = \epsilon_{i+k+1}$ and $a_i = a_{i+k}$ for all $i \ge i_0$.

Our main result is:

Theorem 2.1. Let $\xi = (P + \sqrt{D})/Q$ be in standard form and let $R = (D - P^2)/Q$. Then ξ has a purely periodic nearest square continued fraction expansion if and only if

- (i) $Q^2 + \frac{1}{4}R^2 \le D$, $\frac{1}{4}Q^2 + R^2 \le D$,
- (ii) ξ is the successor of $1/\xi$,

(iii) ξ is not of the form $\frac{p+q+\sqrt{p^2+q^2}}{2q}$, p > 2q > 0.

3. Reduced NSCF quadratic surds

Ayyangar [A2, p. 27] gave the following definition of reduced quadratic surd. He first defined a *special* surd ξ_v by the inequalities

$$Q_{v+1}^2 + \frac{1}{4}Q_v^2 \le D, \quad Q_v^2 + \frac{1}{4}Q_{v+1}^2 \le D, \tag{3.4}$$

then defined a *semi-reduced* surd to be the successor of a special surd. Finally a *reduced* surd is defined to be the successor of a semi-reduced surd. Ayyangar [A2, p. 28] proved that a semi-reduced surd is a special surd. Consequently a reduced surd is also semi-reduced. That a quadratic surd has a purely periodic NSCF expansion if and only if it is reduced, is proved in [A2, pp. 101–102]. To use the Ayyangar characterization to decide if a surd ξ is reduced, one has to determine if there is a special surd whose second successor is ξ ; doing this can be combersome.

One example of a reduced surd is the successor of $\sqrt{D}/Q > 1$, where Q divides D (see [A2, Theorem XII, p. 102]). Another example that figures prominently in [A2] is $\frac{p+q+\sqrt{p^2+q^2}}{p}$, where p > 2q > 0.

Lemma 3.1. If two different semi–reduced surds have the same successor, they have the form $\frac{p\pm q+\sqrt{D}}{2q}$, where p > 2q > 0.

Proof. This is [A2, Theorem IX, p. 99].

Lemma 3.2. ξ is semi–reduced if and only if ξ is reduced, or $\xi = \frac{p+q+\sqrt{p^2+q^2}}{2q}, p > 2q > 0.$

Proof. (a) Suppose ξ is semi–reduced and let η be its successor. Then η is reduced and has a unique reduced predecessor χ , by [A2, Corollary 1, p. 101]. By Lemma 3.1, either $\xi = \chi$, or ξ and χ are equal to $\frac{p \pm q + \sqrt{D}}{2q}$, where p > 2q > 0. However by [A2, Theorem X, p. 100], $\frac{p + q + \sqrt{p^2 + q^2}}{2q}$ has no semi–reduced predecessor and hence is not reduced, so $\chi = \frac{p - q + \sqrt{D}}{2q}$ and hence $\xi = \frac{p + q + \sqrt{p^2 + q^2}}{2q}$.

and hence $\xi = \frac{p+q+\sqrt{p^2+q^2}}{2q}$. (b) If ξ is reduced, it is the successor of a semi-reduced surd χ and as previously observed, this is special. Hence ξ is semi-reduced. If $\xi = \frac{p+q+\sqrt{p^2+q^2}}{2q}$, p > 2q > 0, in view of the equation

$$\frac{p-q+\sqrt{p^2+q^2}}{p} = 1 + \frac{p}{q+\sqrt{p^2+q^2}} = 2 - \frac{2q}{p+q+\sqrt{p^2+q^2}}$$

as p > 2q > 0, we see ξ is the successor of the special surd $\frac{p-q+\sqrt{p^2+q^2}}{p}$ and is hence semi-reduced.

Corollary 3.1. ξ is reduced if and only if ξ is semi-reduced and not of the form $\xi = \frac{p+q+\sqrt{p^2+q^2}}{2q}, p > 2q > 0.$

Ayyangar did not explicitly mention Lemma 3.2 or Corollary 3.1 in his paper [A2].

4. Some lemmas on successors

Lemma 4.3. ξ and $-\xi$ have the same successor.

Proof. This follows from the fact that the positive-negative represention

$$\frac{P + \sqrt{D}}{Q} = c + \frac{Q'}{P' + \sqrt{D}} = c + 1 - \frac{Q''}{P'' + \sqrt{D}}$$

implies the positive-negative represention

$$\frac{P + \sqrt{D}}{-Q} = -c - 1 + \frac{Q''}{P'' + \sqrt{D}} = -c - \frac{Q'}{P' + \sqrt{D}}.$$

Then the conditions defining the successor of ξ also define the same successor of $-\xi$. \Box

Lemma 4.4. If ξ is the successor of a quadratic surd, then ξ is the successor of $1/\xi$. *Proof.* . Suppose $\xi = \frac{P + \sqrt{D}}{Q}$ is the successor of $\frac{P_0 + \sqrt{D}}{Q_0}$. Then the successor equation $\frac{P_0 + \sqrt{D}}{Q_0} = b + \epsilon \frac{Q}{P + \sqrt{D}}$ (4.5)

gives $P_0 + P = bQ_0$ and $D - P^2 = \epsilon QQ_0$. We also have the positive-negative representation

$$\frac{P_0 + \sqrt{D}}{Q_0} = a + \frac{Q'}{P' + \sqrt{D}} = a + 1 - \frac{Q''}{P'' + \sqrt{D}}$$

Then

$$\epsilon/\xi = \frac{\epsilon Q}{P + \sqrt{D}} = \frac{\epsilon Q(\sqrt{D} - P)}{D - P^2} = \frac{\epsilon Q(\sqrt{D} - P)}{\epsilon Q Q_0}$$

$$= \frac{-P + \sqrt{D}}{Q_0}$$

$$= \frac{P_0 - bQ_0 + \sqrt{D}}{Q_0}$$

$$= -b + \frac{P_0 + \sqrt{D}}{Q_0}$$

$$= -b + a + \frac{Q'}{P' + \sqrt{D}} = -b + a + 1 - \frac{Q''}{P'' + \sqrt{D}}$$
(4.6)

and this positive–negative representation implies that the successor of ϵ/ξ is ξ . If $\epsilon = -1$, Lemma 4.3 implies that the successor of $1/\xi$ is also ξ .

Lemma 4.5. Let $\xi = \frac{P+\sqrt{D}}{Q}$ and $R = (D - P^2)/Q$. Then ξ is semi-reduced if and only if

(i) Q² + ¹/₄R² ≤ D, ¹/₄Q² + R² ≤ D,
(ii) ξ is the successor of 1/ξ.

Proof. (a) Suppose $\xi = \frac{P+\sqrt{D}}{Q}$ is semi-reduced. Then ξ is the successor of a special surd $\xi_0 = \frac{P_0+\sqrt{D}}{Q_0}$. Then with ϵ as in (4.5), as before, we have $R = (D - P^2)/Q = \epsilon Q_0$ and inequalities $Q_0^2 + \frac{1}{4}Q^2 \le D, \frac{1}{4}Q^2 + Q_0^2 \le D$ become

$$R^2 + \frac{1}{4}Q^2 \le D, \quad \frac{1}{4}Q^2 + R^2 \le D.$$

Also by Lemma 4.4, ξ is the successor of $1/\xi$. (b) Suppose (i) and (ii) hold. Then as $1/\xi = \frac{-P + \sqrt{D}}{R}$, (i) and (ii) imply $1/\xi$ is special and that ξ is semi-reduced.

Our Theorem then follows from Corollary 3.1 and Lemma 4.5.

We also mention the following useful result.

Lemma 4.6. If ξ is semi–reduced, then ξ or $\xi - 1$ is also reduced in the regular continued fraction sense.

Proof. By [A2, Theorem V, p. 30], we have $\xi > \frac{1+\sqrt{5}}{2} > 1$ and by [A2, Theorem III, p. 27], $-1 < \overline{\xi} < 1$. So if $-1 < \overline{\xi} < 0$, ξ is RCF–reduced. If $0 < \overline{\xi}$, let $\xi = \frac{P+\sqrt{D}}{Q}$. Then $0 < \frac{P-\sqrt{D}}{Q}$ and as $0 < Q < \sqrt{D}$ by [A2, Theorem 1(iv), p. 22], we deduce

$$2 < \frac{2\sqrt{D}}{Q} < \frac{P + \sqrt{D}}{Q} = \xi.$$

Hence $1 < \xi - 1$ and as $-1 < \overline{\xi - 1} < 0$, it follows that $\xi - 1$ is RCF–reduced. \Box

We conclude with an example of Ayyangar [A2, Theorem XIII, p. 103]. His proof of case (b), when p > 2q, involved a complicated discussion of inequalities.

Example Let $\xi = \frac{P+\sqrt{D}}{Q} = \frac{p+q+\sqrt{p^2+q^2}}{p}, p > 0, q > 0$. Then

- (a) ξ is not reduced if p < 2q,
- (b) ξ is reduced if $p \ge 2q$,

Proof. Here $P = p + q, Q = p, R = (D - P^2)/Q = -2q$ and

$$Q^{2} + \frac{1}{4}R^{2} = p^{2} + q^{2} = D$$
 and $\frac{1}{4}Q^{2} + R^{2} = \frac{1}{4}p^{2} + 4q^{2}$.

Hence

$$\frac{1}{4}Q^2 + R^2 \le D \iff \frac{1}{4}p^2 + 4q^2 \le p^2 + q^2$$
$$\iff 3q^2 \le 3p^2/4$$
$$\iff 2q \le p.$$

Consequently if p < 2q, ξ is not reduced. However if $p \ge 2q$, then $\frac{1}{4}Q^2 + R^2 \le D$. Also the positive-negative representation

$$1/\xi = \frac{-P + \sqrt{D}}{R} = \frac{-p - q + \sqrt{p^2 + q^2}}{-2q}$$
$$= 0 + \frac{p}{p + q + \sqrt{p^2 + q^2}} = 1 - \frac{p}{p - q + \sqrt{p^2 + q^2}},$$

shows that ξ is the successor of $1/\xi$. Hence conditions (i) and (ii) of our Theorem are satisfied, so ξ is semi-reduced. Also condition (iii) is satisfied. For assume $\xi = \frac{P+Q+\sqrt{P^2+Q^2}}{2Q}, P > 2Q > 0$. Then

$$p + q = P + Q$$
, $p = 2Q$, $p^2 + q^2 = P^2 + Q^2$

Hence

$$P^{2} + Q^{2} = 4Q^{2} + q^{2}$$

$$P^{2} = 3Q^{2} + q^{2} = 3Q^{2} + (P - Q)^{2}$$

$$= 4Q^{2} + P^{2} - 2PQ$$

$$2PQ = 4Q^{2}$$

$$P = 2Q.$$

This contradiction completes the demonstration that ξ is reduced if $p \ge 2q > 0$. \Box

Acknowledgment. We thank the referee for comments that improved the presentation of the paper.

References

- [A1] A. A. K. Ayyangar, A new continued fraction, Current Sci. 6 (1938), 602–604.
- [A2] A. A. K. Ayyangar, *Theory of the nearest square continued fraction*, J. Mysore Univ. Sect. A. 1 (1940), 21–32, (1941), 97–117.
- [MR] K. R. Matthews and J. P. Robertson, On the definition of nearest-integer reduced quadratic surd, http://www.numbertheory.org/pdfs/nicf-reduced.pdf.
- [P] O. Perron, Die Lehre von den Kettenbrüchen, Band 1, Teubner, Stuttgart, 1954.