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Abstract

We present a test for determining whether a real quadratic irrational has a purely
periodic nearest square continued fraction expansion. This test is somewhat more
explicit than the standard test and simplifies the programming of the algorithm.
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1. Introduction

Simple tests have long been known for determining whether a real quadratic irrational £ =
(P + VD) /Q,D > 0 and not a perfect square, has a purely periodic regular continued
fraction expansion, or nearest integer continued fraction expansion. Thus if £ = (P —
VD) /Q, then ¢ has a purely periodic regular continued fraction expansion if and only if
€>1land —1 < £ < 0 (see, e.g., [P, pp. 73-74]). Also ¢ has a purely periodic nearest
integer continued fraction expansion if and only if £ > 2and (1—-+/5)/2 < € < (3—+/5)/2
[MR].

No test for pure periodicity as simple as these is known for the nearest square contin-
ued fraction, defined in the next section. Instead, A. A. K. Ayyangar [A2, p. 27] gave a
definition of reduced quadratic irrational and showed that £ has a purely periodic nearest
square continued fraction expansion if and only if £ is reduced. In this paper, we give a
more explicit version of Ayyangar’s definition which is useful in detecting the start of a
period.
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2. The nearest square continued fraction algorithm

This continued fraction was introduced by A. A. K. Ayyangar in 1938 and 1941 [A1, A2].
Let &y = P+T\5 be a surd in standard form, i.e.,

(i) P,Q, and D are integers, () # 0, D is not a perfect square,
(ii) (P%? — D)/Q is an integer,
(i) ged (P,Q, (D - P?)/Q) =1.

Then with ¢ = | & |, the integer part of &y, we can represent &y in two ways (the positive
and negative representations of &p):

1

fo:C—’—L:c—i—l_Qi
P'++vD P"+D’
where £ /5)/5 > 1and £ 5,@ > 1 are also in standard form. We choose the partial

denominator a( and numerator €; of the new continued fraction expansion as follows:
Jor || =|Q"|and Q < 0,
(b) ap=c+1lande = —1,if |Q'| > |Q"|,or |Q'| = |Q"| and Q > 0.

(a) ap = cand ¢ = 1,if |Q'| < |Q”

The term nearest square arises on noting that P> = D — QQ’ and P =D+ QQ"
and restating (a) and (b) using the following equivalence:

” " 2 72
Q121Q| «= QQ21QQ| = |[P"=D|>|P" - D|.

Then &y = ag + 2—1, where |e;| = 1,ap is an integer and & = Pl%m > 1. Also

P, =P orP" and Q1 = Q or Q", according as e; = 1 or —1. We call & the successor
of &y. We proceed similarly with &1, and so on. Then the complete quotients &,, satisfy

. €n+1 . €1 €2 . €n
gn—an+§n+1 andéO—a0+’a—1‘+’a—2‘+ +’€—n" (2.1

with partial numerator €¢;11 = 41 and partial denominator a; > 1 if + > 1. This expansion
is called the nearest square continued fraction (NSCF) expansion.

Analogous relations to those for regular continued fractions also hold for P,, Q),, and
Gt

Pn+1 + Pn = anQn; (22)
Pg+1 + €n+1QnQn+1 =D. (2.3)

Ayyangar [A2, Theorem II, p. 25] proved that the NSCF expansion is eventually peri-
odic, i.e., the complete quotients &, eventually satisfy ; = &1, for ¢ > ig for some k& > 1.
Then €;11 = €;41+1 and a; = a;4 for all ¢ > 1.

Our main result is:
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Theorem 2.1. Let ¢ = (P ++/D)/Q be in standard form and let R = (D — P2)/Q. Then
& has a purely periodic nearest square continued fraction expansion if and only if

() @+ 1IR*<D, 1Q*+R*<D,
(ii) & is the successor of 1/&,

/m2 2
(iii) & is not of the form W,p > 2q > 0.

3. Reduced NSCF quadratic surds

Ayyangar [A2, p. 27] gave the following definition of reduced quadratic surd. He first
defined a special surd &, by the inequalities

QX +1Q?<D, Q*+:1Q%*,<D, (3.4)

then defined a semi-reduced surd to be the successor of a special surd. Finally a reduced
surd is defined to be the successor of a semi-reduced surd. Ayyangar [A2, p. 28] proved that
a semi—reduced surd is a special surd. Consequently a reduced surd is also semi—reduced.
That a quadratic surd has a purely periodic NSCF expansion if and only if it is reduced, is
proved in [A2, pp. 101-102]. To use the Ayyangar characterization to decide if a surd € is
reduced, one has to determine if there is a special surd whose second successor is £; doing
this can be combersome.

One example of a reduced surd is the successor of v/D /Q > 1, where @ divides D
(see [A2, Theorem XII, p. 102]). Another example that figures prominently in [A2] is

/2 2
p+q+++q’ where p > 2¢q > 0.

Lemma 3.1. If two different semi—reduced surds have the same successor, they have the

form %, where p > 2q > 0.

Proof. This is [A2, Theorem IX, p. 99]. ]

Lemma 3.2. £ is semi—reduced if and only if € is reduced, or £ = % ”quW, p>2q>0.

Proof. (a) Suppose £ is semi-reduced and let 7 be its successor. Then 7 is reduced and has
a unique reduced predecessor , by [A2, Corollary 1, p. 101]. By Lemma 3.1, either £ =
or £ and x are equal to %, where p > 2q > 0. However by [A2, Theorem X, p. 100],
% qu2+q2 has no semi-reduced predecessor and hence is not reduced, so xy = p*%‘/ﬁ
and hence £ = p+q+27 ”quJFqZ.

(b) If £ is reduced, it is the successor of a semi-reduced surd y and as previously

.. . . . p+q+‘ /p2+q2 .

observed, this is special. Hence £ is semi-reduced. If £ = — g P> 2qg > 0, in
view of the equation

p*q+\/p2+q2:1+$:2_ 2q
p q+Vp*+ ¢ p+a+Vp*+q®
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_ /021 g2 .
as p > 2q > 0, we see ¢ is the successor of the special surd % and is hence
semi-reduced. O

Corollary 3.1. & is reduced if and only if £ is semi—reduced and not of the form £ =

Ayyangar did not explicitly mention Lemma 3.2 or Corollary 3.1 in his paper [A2].

4. Some lemmas on successors

Lemma 4.3. & and —& have the same successor.

Proof. This follows from the fact that the positive—negative represention

P+VD Q Q"
— =t ——==ct+1 - ——
Q P +vD P"+vD
implies the positive—negative represention
P+VD Q" Q
=—c—1+— = —Cc— .
-Q P"++D P +vD

Then the conditions defining the successor of £ also define the same successor of —¢. [

Lemma 4.4. If £ is the successor of a quadratic surd, then & is the successor of 1/&.

Proof. . Suppose £ = % is the successor of 130570‘/5. Then the successor equation
Po++vD
fo+tvb b+ €L (4.5)
Qo P++vD

gives Py + P = bQp and D — P? = eQQy. We also have the positive-negative represen-
tation

Py ++vD Q' Q"
— =4t —F==at+l- .
Qo P'++vD P"+vD
Then
e Q@ __QWD-P)_«QWD-P)
P++VD D — p? €QQo
—-P D
— i (4.6)
Qo
_ Py —bQo + VD
Qo
P
— _b + M
Qo
Q/ Q//
=-b+a+—"—==-b+a+1— ———=
P'++D P"++D
and this positive—negative representation implies that the successor of €/£ is €. If e = —1,

Lemma 4.3 implies that the successor of 1/¢ is also . O
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Lemma 4.5. Let £ = P+T‘/5 and R = (D — P%)/Q. Then ¢ is semi—reduced if and only if

) Q@ +iR*<D, 1Q*+R*<D,
(il) & is the successor of 1 /€.

S

Proof. (a) Suppose & = £ +Q is semi—reduced. Then £ is the successor of a special surd

& = Po%@' Then with € as in (4.5), as before, we have R = (D — P?)/Q = Qo and
inequalities Q3 + 1Q? < D, 1Q? + Q3 < D become

R*+1Q*<D, 1Q*+R*<D.

Also by Lemma 4.4, £ is the successor of 1/£.
(b) Suppose (i) and (ii) hold. Then as 1/§ = =P E‘/ﬁ, (i) and (ii) imply 1/¢ is special and
that £ is semi-reduced. O

Our Theorem then follows from Corollary 3.1 and Lemma 4.5.

We also mention the following useful result.

Lemma 4.6. If ¢ is semi—reduced, then £ or & — 1 is also reduced in the regular continued
fraction sense.

Proof. By [A2, Theorem V, p. 30], we have ¢ > 1*—2‘/5 > 1 and by [A2, Theorem III, p.
27], -1 < £ < 1. Soif —1 < £ < 0, € is RCF-reduced. If 0 < £, let £ = %. Then
0< P%m and as 0 < Q < v/D by [A2, Theorem 1(iv), p. 22], we deduce

2D _P+VD _
Q Q

Hencel < £ —landas —1 < £ —1 < 0, it follows that £ — 1 is RCF-reduced. O

2

€.

We conclude with an example of Ayyangar [A2, Theorem XIII, p. 103]. His proof of
case (b), when p > 2¢, involved a complicated discussion of inequalities.

Example Let £ = PJB/E = p+q+\1{]m,p > 0,q > 0. Then
(a) £ isnotreduced if p < 2gq,
(b) £isreducedif p > 2q,
Proof. Here P =p+q,Q = p,R = (D — P?)/Q = —2q and
Q2+§R2 =p? + ¢ :DandiQ2—i-R2 = %p2+4q2.
Hence
QP +R <D = W+ <p’ + ¢
= 3¢° < 3p?/4
<~ 29 <p.
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Consequently if p < 2q, ¢ is not reduced. However if p > 2¢, then iQQ + R?> < D.
Also the positive—negative representation

~P+vVD _ —p—qt+ P+
B -2

1/e=—5 .

—0+

p p
—1— ,
p+a+Vr®+q? pP—q+Vr+q

shows that £ is the successor of 1/£. Hence conditions (i) and (ii) of our Theorem
are satisfied, so & is semi-reduced. Also condition (iii) is satisfied. For assume ¢ =
PRty @ p > 9Q > 0. Then

p+qg=P+Q, p=2Q, p*+¢="P*+Q

Hence
P2+Q2:4Q2+q2
P?=3Q% +¢* =3Q> + (P - Q)°
=4Q% + P?> - 2PQ
2PQ = 4Q?
P =2Q.
This contradiction completes the demonstration that £ is reduced if p > 2g > 0. O
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