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Abstract

We present a test for determining whether a real quadratic irrational has a purely
periodic nearest square continued fraction expansion. This test is somewhat more
explicit than the standard test and simplifies the programming of the algorithm.
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1. Introduction

Simple tests have long been known for determining whether a real quadratic irrational ξ =
(P +

√
D)/Q,D > 0 and not a perfect square, has a purely periodic regular continued

fraction expansion, or nearest integer continued fraction expansion. Thus if ξ = (P −√
D)/Q, then ξ has a purely periodic regular continued fraction expansion if and only if

ξ > 1 and −1 < ξ < 0 (see, e.g., [P, pp. 73–74]). Also ξ has a purely periodic nearest
integer continued fraction expansion if and only if ξ > 2 and (1−

√
5)/2 < ξ ≤ (3−

√
5)/2

[MR].
No test for pure periodicity as simple as these is known for the nearest square contin-

ued fraction, defined in the next section. Instead, A. A. K. Ayyangar [A2, p. 27] gave a
definition of reduced quadratic irrational and showed that ξ has a purely periodic nearest
square continued fraction expansion if and only if ξ is reduced. In this paper, we give a
more explicit version of Ayyangar’s definition which is useful in detecting the start of a
period.
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2. The nearest square continued fraction algorithm

This continued fraction was introduced by A. A. K. Ayyangar in 1938 and 1941 [A1, A2].
Let ξ0 = P+

√
D

Q be a surd in standard form, i.e.,

(i) P,Q, and D are integers, Q 6= 0, D is not a perfect square,

(ii) (P 2 −D)/Q is an integer,

(iii) gcd (P,Q, (D − P 2)/Q) = 1.

Then with c = bξ0c, the integer part of ξ0, we can represent ξ0 in two ways (the positive
and negative representations of ξ0):

ξ0 = c+
Q′

P ′ +
√
D

= c+ 1− Q
′′

P ′′ +
√
D
,

where P ′+
√
D

Q′ > 1 and P
′′
+
√
D

Q′′
> 1 are also in standard form. We choose the partial

denominator a0 and numerator ε1 of the new continued fraction expansion as follows:

(a) a0 = c and ε1 = 1, if |Q′| < |Q′′ |, or |Q′| = |Q′′ | and Q < 0,

(b) a0 = c+ 1 and ε1 = −1, if |Q′| > |Q′′ |, or |Q′| = |Q′′ | and Q > 0.

The term nearest square arises on noting that P ′2 = D − QQ′ and P
′′2

= D + QQ
′′

and restating (a) and (b) using the following equivalence:

|Q′| ≥ |Q′′ | ⇐⇒ |QQ′| ≥ |QQ′′ | ⇐⇒ |P ′2 −D| ≥ |P ′′
2
−D|.

Then ξ0 = a0 + ε1
ξ1

, where |ε1| = 1, a0 is an integer and ξ1 = P1+
√
D

Q1
> 1. Also

P1 = P ′ or P
′′

and Q1 = Q′ or Q
′′
, according as ε1 = 1 or −1. We call ξ1 the successor

of ξ0. We proceed similarly with ξ1, and so on. Then the complete quotients ξn satisfy

ξn = an +
εn+1

ξn+1
and ξ0 = a0 +

ε1
a1

+
ε2
a2

+ · · ·+ εn
ξn
, (2.1)

with partial numerator εi+1 = ±1 and partial denominator ai ≥ 1 if i ≥ 1. This expansion
is called the nearest square continued fraction (NSCF) expansion.

Analogous relations to those for regular continued fractions also hold for Pn, Qn and
an:

Pn+1 + Pn = anQn, (2.2)

P 2
n+1 + εn+1QnQn+1 = D. (2.3)

Ayyangar [A2, Theorem II, p. 25] proved that the NSCF expansion is eventually peri-
odic, i.e., the complete quotients ξn eventually satisfy ξi = ξi+k for i ≥ i0 for some k ≥ 1.
Then εi+1 = εi+k+1 and ai = ai+k for all i ≥ i0.

Our main result is:
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Theorem 2.1. Let ξ = (P +
√
D)/Q be in standard form and let R = (D−P 2)/Q. Then

ξ has a purely periodic nearest square continued fraction expansion if and only if

(i) Q2 + 1
4
R2 ≤ D, 1

4
Q2 +R2 ≤ D,

(ii) ξ is the successor of 1/ξ,

(iii) ξ is not of the form p+q+
√
p2+q2

2q , p > 2q > 0.

3. Reduced NSCF quadratic surds

Ayyangar [A2, p. 27] gave the following definition of reduced quadratic surd. He first
defined a special surd ξv by the inequalities

Q2
v+1 + 1

4
Q2
v ≤ D, Q2

v + 1
4
Q2
v+1 ≤ D, (3.4)

then defined a semi-reduced surd to be the successor of a special surd. Finally a reduced
surd is defined to be the successor of a semi-reduced surd. Ayyangar [A2, p. 28] proved that
a semi–reduced surd is a special surd. Consequently a reduced surd is also semi–reduced.
That a quadratic surd has a purely periodic NSCF expansion if and only if it is reduced, is
proved in [A2, pp. 101–102]. To use the Ayyangar characterization to decide if a surd ξ is
reduced, one has to determine if there is a special surd whose second successor is ξ; doing
this can be combersome.

One example of a reduced surd is the successor of
√
D/Q > 1, where Q divides D

(see [A2, Theorem XII, p. 102]). Another example that figures prominently in [A2] is
p+q+
√
p2+q2

p , where p > 2q > 0.

Lemma 3.1. If two different semi–reduced surds have the same successor, they have the
form p±q+

√
D

2q , where p > 2q > 0.

Proof. This is [A2, Theorem IX, p. 99].

Lemma 3.2. ξ is semi–reduced if and only if ξ is reduced, or ξ = p+q+
√
p2+q2

2q , p > 2q > 0.

Proof. (a) Suppose ξ is semi–reduced and let η be its successor. Then η is reduced and has
a unique reduced predecessor χ, by [A2, Corollary 1, p. 101]. By Lemma 3.1, either ξ = χ,
or ξ and χ are equal to p±q+

√
D

2q , where p > 2q > 0. However by [A2, Theorem X, p. 100],
p+q+
√
p2+q2

2q has no semi–reduced predecessor and hence is not reduced, so χ = p−q+
√
D

2q

and hence ξ = p+q+
√
p2+q2

2q .
(b) If ξ is reduced, it is the successor of a semi–reduced surd χ and as previously

observed, this is special. Hence ξ is semi–reduced. If ξ = p+q+
√
p2+q2

2q , p > 2q > 0, in
view of the equation

p− q +
√
p2 + q2

p
= 1 +

p

q +
√
p2 + q2

= 2− 2q

p+ q +
√
p2 + q2

,
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as p > 2q > 0, we see ξ is the successor of the special surd p−q+
√
p2+q2

p and is hence
semi–reduced.

Corollary 3.1. ξ is reduced if and only if ξ is semi–reduced and not of the form ξ =
p+q+
√
p2+q2

2q , p > 2q > 0.

Ayyangar did not explicitly mention Lemma 3.2 or Corollary 3.1 in his paper [A2].

4. Some lemmas on successors

Lemma 4.3. ξ and −ξ have the same successor.

Proof. This follows from the fact that the positive–negative represention

P +
√
D

Q
= c+

Q′

P ′ +
√
D

= c+ 1− Q
′′

P ′′ +
√
D
,

implies the positive–negative represention

P +
√
D

−Q
= −c− 1 +

Q
′′

P ′′ +
√
D

= −c− Q′

P ′ +
√
D
.

Then the conditions defining the successor of ξ also define the same successor of −ξ.

Lemma 4.4. If ξ is the successor of a quadratic surd, then ξ is the successor of 1/ξ.

Proof. . Suppose ξ = P+
√
D

Q is the successor of P0+
√
D

Q0
. Then the successor equation

P0 +
√
D

Q0
= b+ ε

Q

P +
√
D

(4.5)

gives P0 + P = bQ0 and D − P 2 = εQQ0. We also have the positive–negative represen-
tation

P0 +
√
D

Q0
= a+

Q′

P ′ +
√
D

= a+ 1− Q
′′

P ′′ +
√
D
.

Then

ε/ξ =
εQ

P +
√
D

=
εQ(
√
D − P )

D − P 2
=
εQ(
√
D − P )

εQQ0

=
−P +

√
D

Q0
(4.6)

=
P0 − bQ0 +

√
D

Q0

= −b+
P0 +

√
D

Q0

= −b+ a+
Q′

P ′ +
√
D

= −b+ a+ 1− Q
′′

P ′′ +
√
D

and this positive–negative representation implies that the successor of ε/ξ is ξ. If ε = −1,
Lemma 4.3 implies that the successor of 1/ξ is also ξ.
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Lemma 4.5. Let ξ = P+
√
D

Q and R = (D − P 2)/Q. Then ξ is semi–reduced if and only if

(i) Q2 + 1
4
R2 ≤ D, 1

4
Q2 +R2 ≤ D,

(ii) ξ is the successor of 1/ξ.

Proof. (a) Suppose ξ = P+
√
D

Q is semi–reduced. Then ξ is the successor of a special surd

ξ0 = P0+
√
D

Q0
. Then with ε as in (4.5), as before, we have R = (D − P 2)/Q = εQ0 and

inequalities Q2
0 + 1

4
Q2 ≤ D, 1

4
Q2 +Q2

0 ≤ D become

R2 + 1
4
Q2 ≤ D, 1

4
Q2 +R2 ≤ D.

Also by Lemma 4.4, ξ is the successor of 1/ξ.
(b) Suppose (i) and (ii) hold. Then as 1/ξ = −P+

√
D

R , (i) and (ii) imply 1/ξ is special and
that ξ is semi–reduced.

Our Theorem then follows from Corollary 3.1 and Lemma 4.5.

We also mention the following useful result.

Lemma 4.6. If ξ is semi–reduced, then ξ or ξ − 1 is also reduced in the regular continued
fraction sense.

Proof. By [A2, Theorem V, p. 30], we have ξ > 1+
√

5
2 > 1 and by [A2, Theorem III, p.

27], −1 < ξ < 1. So if −1 < ξ < 0, ξ is RCF–reduced. If 0 < ξ, let ξ = P+
√
D

Q . Then

0 < P−
√
D

Q and as 0 < Q <
√
D by [A2, Theorem 1(iv), p. 22], we deduce

2 <
2
√
D

Q
<
P +

√
D

Q
= ξ.

Hence 1 < ξ − 1 and as −1 < ξ − 1 < 0, it follows that ξ − 1 is RCF–reduced.

We conclude with an example of Ayyangar [A2, Theorem XIII, p. 103]. His proof of
case (b), when p > 2q, involved a complicated discussion of inequalities.

Example Let ξ = P+
√
D

Q = p+q+
√
p2+q2

p , p > 0, q > 0. Then

(a) ξ is not reduced if p < 2q,

(b) ξ is reduced if p ≥ 2q,

Proof. Here P = p+ q,Q = p,R = (D − P 2)/Q = −2q and

Q2 + 1
4
R2 = p2 + q2 = D and 1

4
Q2 +R2 = 1

4
p2 + 4q2.

Hence

1
4
Q2 +R2 ≤ D ⇐⇒ 1

4
p2 + 4q2 ≤ p2 + q2

⇐⇒ 3q2 ≤ 3p2/4
⇐⇒ 2q ≤ p.
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Consequently if p < 2q, ξ is not reduced. However if p ≥ 2q, then 1
4
Q2 + R2 ≤ D.

Also the positive–negative representation

1/ξ =
−P +

√
D

R
=
−p− q +

√
p2 + q2

−2q

= 0 +
p

p+ q +
√
p2 + q2

= 1− p

p− q +
√
p2 + q2

,

shows that ξ is the successor of 1/ξ. Hence conditions (i) and (ii) of our Theorem
are satisfied, so ξ is semi–reduced. Also condition (iii) is satisfied. For assume ξ =
P+Q+

√
P 2+Q2

2Q , P > 2Q > 0. Then

p+ q = P +Q, p = 2Q, p2 + q2 = P 2 +Q2.

Hence

P 2 +Q2 = 4Q2 + q2

P 2 = 3Q2 + q2 = 3Q2 + (P −Q)2

= 4Q2 + P 2 − 2PQ

2PQ = 4Q2

P = 2Q.

This contradiction completes the demonstration that ξ is reduced if p ≥ 2q > 0.
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