MORE ON THE SERRET-HERMITE ALGORITHM

KEITH MATTHEWS

1. INTRODUCTION

A well-known correspondence $(r, s) \to x$ between positive solutions (r, s) of $r^2 + s^2 = n$ satisfying gcd(r, s) = 1 and x satisfying $x^2 \equiv -1 \pmod{n}, 1 < x < n$ is given by $xr \equiv s \pmod{n}$ in Theorem 3.1, p. 165 of Niven–Zuckerman–Montgomery. Note that x = n/2 implies n = 2, so we assume throughout that n > 2.

Euclid's algorithm sheds a more explicit light on the correspondence. The following result is a slight refinement of the Hermite–Serret construction which is one of the many ways of expressing a prime of the form 4n + 1 as a sum of two squares.

2. Euclid's Algorithm Notation

Let $r_0 > r_1 >$, where r_1 does not divide r_0 . Then we get *remainders* r_i and *quotients* q_i satisfying

$$\begin{aligned} r_0 &= r_1 q_1 + r_2, \quad 0 < r_2 < r_1 \\ r_1 &= r_2 q_2 + r_3, \quad 0 < r_3 < r_2 \\ \vdots \\ r_{l-2} &= r_{l-1} q_{l-1} + r_l, \quad 0 < r_l < r_{l-1} \\ r_{l-1} &= r_l q_l + r_{l+1}, \quad r_{l+1} = 0. \end{aligned}$$

Then $r_l = \gcd(r_0, r_1)$.

We also define sequences s_i and t_i by $s_0 = 1, s_1 = 0, t_0 = 0, t_1 = 1$ and

$$s_{k+1} = -q_k s_k + s_{k-1}$$

$$t_{k+1} = -q_k t_k + t_{k-1},$$

for $1 \leq k \leq l$. Then

(i) $l \ge 2;$ (ii) $q_k \ge 1$ for $1 \le k \le l$, with $q_l \ge 2;$ (iii) $r_k = s_k r_0 + t_k r_1$ for $0 \le k \le l + 1.$

Here are some other properties of the sequences r_i, s_i, t_i .

Date: 14th March 2013.

LEMMA 2.1. For $1 \le k \le l$,

- $|t_k|r_{k-1} + |t_{k-1}|r_k = r_0$ (1)
- $|s_k|r_{k+1} + |s_{k+1}|r_k = r_1$ (2)
- $s_{k-1}t_k s_k t_{k-1} = (-1)^{k+1}$ (3)
- $s_k = (-1)^k |s_k|, \ t_k = (-1)^{k+1} |t_k|$ (4)
- $|s_k||t_{k+1}| |s_{k+1}||t_k| = (-1)^k$ (5)
- $|s_k| \le r_1/2, |t_k| \le r_0/2$ if gcd(a, b) = 1(6)
- $|s_k| < |t_k|$ (7)
- $0 = |s_1| < |s_2| \le |s_3| < \dots < |s_{l+1}|$ (8)
- $1 = |t_1| < |t_2| < |t_3| < \dots < |t_{l+1}|$ (9)

Proposition 1. Suppose x satisfies $x^2 \equiv -1 \pmod{n}$ and 1 < x < n/2. then applying Euclid's algorithm to $r_0 = n, r_1 = x$ gives an algorithm of even length 2c and a decreasing sequence of remainders $r_0 > r_1 > \cdots > r_{c-1} >$ $\sqrt{n} > r_c > \cdots > r_{2c} = 1$. Then with $r = |t_c| = r_{c+1}, s = |t_{c+1}| = r_c, a = 1$ $|s_{c}|, b = |s_{c+1}|, we have$

- (i) $r^2 + s^2 = n$.
- (ii) $1 \le r < s, \gcd(r, s) = 1.$
- (iii) $xr \equiv (-1)^{c+1}s \pmod{n}$.
- (iv) x = ar + bs.
- (v) $br as = (-1)^{c+1}$.
- (vi) $0 \le a \le b$.
- (vii) $a \leq r/2, b \leq s/2.$ (viii) $x^2 + 1 = n(a^2 + b^2).$

Note that a and b can be determined using (iv) and (v) and the fact that $r = r_{c+1}, s = r_c$. So r, s, a, b can be found without calculating the s_i and t_i sequences.

In the opposite direction, if $r^2 + s^2 = n$, with 1 < r < s and gcd(r, s) = 1, we can apply Euclid's algorithm to the pair (s, r) to get the unique pair (a, b)satisfying $0 \le a \le b, a \le r/2, b \le s/2, br - as = \epsilon = \pm 1$. Then x = ar + bshas the property that $x^2 \equiv -1 \pmod{n}, 1 < x < n/2 \text{ and } xr \equiv \epsilon s \pmod{n}$.

We prove (i) and (vii) in a series of lemmas. The remaining items follow directly from Lemma 2.1. Also (viii) follows from (iv) and (v) and the identity

$$(ar+bs)^{2} + (br-as)^{2} = (r^{2}+s^{2})(a^{2}+b^{2})$$

and was pointed out by John Robertson.

LEMMA 2.2. (Aubry-Thue) Let gcd(a, b) = 1, a > b. Then the congruence $bx \equiv y \pmod{a}$ (10)

has a solution x, y satisfying

$$1 \le |x| < \sqrt{a}, 1 \le |y| \le \sqrt{a}.$$

 $\mathbf{2}$

Proof. The remainders r_0, r_1, \ldots, r_m in Euclid's algorithm applied to $r_0 = b, r_1 = a$, decrease strictly from a to 1. Hence there exists a $k \ge 1$, such that

$$r_{k-1} > \sqrt{a} \ge r_k.$$

Then the equation $a = |t_k|r_{k-1} + |t_{k-1}|r_k$ gives

$$a \ge |t_k| r_{k-1} > |t_k| \sqrt{a}.$$

Hence $|t_k| < \sqrt{a}$. Finally,

$$r_k = s_k a + t_k b,$$

 \mathbf{SO}

$$t_k b \equiv r_k \pmod{a}$$

and we can take $x = t_k, y = r_k$ in (10).

LEMMA 2.3. (Generalization of Hermite-Serret's algorithm) Let $x, n \in \mathbb{N}$, $n > 2, x < n/2, x^2 + 1 \equiv 0 \pmod{n}$. Perform Euclid's algorithm with $r_0 = n, r_1 = x$. Determine k by $r_{k-1} > \sqrt{n} \ge r_k$. Then

$$n = r_k^2 + t_k^2$$

Proof. In our proof of Thue's result, we saw that $r_k \equiv t_k x \pmod{n}$ with $1 \leq |t_k| < \sqrt{n}$. Then

$$r_k^2 + t_k^2 \equiv t_k^2 x^2 + t_k^2$$
$$\equiv t_k^2 (x^2 + 1) \pmod{n}$$
$$\equiv 0 \pmod{n}.$$

But $2 \le r_k^2 + t_k^2 < n + n = 2n$, so $r_k^2 + t_k^2 = n$.

LEMMA 2.4. Let *l* be the length of Euclid's algorithm under the conditions of Lemma 2.3. Then

(11)
$$|t_{l-i+1}| = r_i, \quad 0 \le i \le l+1.$$

Also l = 2c and $n = r_c^2 + r_{c+1}^2$, where c is determined by the inequalities $r_{c-1} > \sqrt{n} > r_c$.

Proof. We have $x^2 \equiv -1 \pmod{n}$. Also $1 = s_l n + t_l x$, where $|t_l| \leq n/2$. Hence

$$-x^2 \equiv t_l x \pmod{n}$$
$$-x \equiv t_l \pmod{n}.$$

Hence *n* divides $t_l + x$. But

$$|t_l + x| \le |t_l| + x < n/2 + n/2 = n.$$

Hence $t_l + x = 0$ and $t_l = -x$. However $t_l = (-1)^{l+1} |t_l|$, so $(-1)^{l+1} = -1$ and l = 2c.

Also $t_{l+1} = (-1)^l n = n$.

But we have equations

$$\begin{aligned} |t_{l+1}| &= q_l |t_l| + |t_{l-1}| \\ &\vdots \\ |t_3| &= q_2 |t_2| + |t_1| \\ |t_2| &= q_1 |t_1|. \end{aligned}$$

This is just Euclid's algorithm applied to $r_0 = n, r_1 = x$, as $|t_{l-1}| < |t_l|$ etc. Hence the sequences

$$|t_{l+1}|, |t_l|, \ldots, |t_1|$$

and

$$r_0, r_1, \ldots, r_l$$

are identical. i.e., $|t_{l-i+1}| = r_i$, $0 \le i \le l+1$.

Taking i = c, c + 1 in (11) gives $|t_{c+1}| = r_c, |t_c| = r_{c+1}$. Then from (1), $n = |t_{c+1}|r_c + |t_c|r_{c+1} = r_c^2 + r_{c+1}^2$. Hence $r_c < \sqrt{n}$. Also

$$r_{c-1} = q_c r_c + r_{c+1} \ge r_c + r_{c+1}$$

$$r_{c-1}^2 \ge (r_c + r_{c+1})^2 > r_c^2 + r_{c+1}^2 = n$$

Hence $r_{c-1} > \sqrt{n}$.

Finally we prove part (vii) of Proposition 1. In fact we prove

$$(12) |s_k| \le |t_k|/2,$$

if $1 \leq k \leq l$. This is true trivially for k = 1 and for k = 2 we have $s_2 = 1, t_2 = -q_n = -q_1$ and $q_1 \geq 2$. The result extends using (5), as for $k \geq 2$, we have an alternating sum whose terms decrease in absolute value as $|t_2| < |t_3| < \cdots < |t_k|$:

(13)
$$\frac{|s_k|}{|t_k|} = \frac{1}{|t_2|} - \frac{1}{|t_2||t_3|} + \dots + (-1)^k \frac{1}{|t_{k-1}||t_k|}$$

In particular, taking k = c and c + 1 in (12) gives

$$(14) a \le r/2, \quad b \le s/2.$$

Clearly we cannot have simultaneous equality in (14), as $br - as = \pm 1$. We now give cases where equality occurs in Proposition 1.

- (1) $r = 1 \iff x = s, n = 1 + s^2, s > 1$, in which case a = 0, b = 1.
- (2) $a = 0 \iff x = s, n = 1 + s^2, s > 1$, in which case b = 1 = r.
- (3) $a = b \iff x = 2s 1, n = 2s^2 2s + 1, s > 1$, in which case a = b = 1, r = s 1.
- (4) $b = s/2 \iff x = 2, n = 5$, in which case a = 0, b = 1, r = 1, s = 2.
- (5) $a = r/2 \iff x = 2b^2 + b + 2, n = 4b^2 + 4b + 5, b \ge 1$, in which case r = 2, a = 1, s = 2b + 1.

4

Example. n = 2465. The solutions of $x^2 \equiv -1 \pmod{2465}$ with $1 \le x < 2465/2$ are 157, 302, 1143, 1177.

x	a	b	r	s	c
157	1	3	16	47	3
302	1	6	8	49	4
1143	13	19	28	41	8
1177	11	21	23	44	8

See http://www.numbertheory.org/php/hermite_serret.html for a BC-math implementation of the algorithm in Proposition 1.