
MORE ON THE SERRET–HERMITE ALGORITHM

KEITH MATTHEWS

1. Introduction

A well–known correspondence (r, s)→ x between positive solutions (r, s)
of r2+s2 = n satisfying gcd(r, s) = 1 and x satisfying x2 ≡ −1 (mod n), 1 <
x < n is given by xr ≡ s (mod n) in Theorem 3.1, p. 165 of Niven–
Zuckerman–Montgomery. Note that x = n/2 implies n = 2, so we assume
throughout that n > 2.

Euclid’s algorithm sheds a more explicit light on the correspondence. The
following result is a slight refinement of the Hermite–Serret construction
which is one of the many ways of expressing a prime of the form 4n + 1 as
a sum of two squares.

2. Euclid’s algorithm notation

Let r0 > r1 >, where r1 does not divide r0. Then we get remainders ri
and quotients qi satisfyiing

r0 = r1q1 + r2, 0 < r2 < r1

r1 = r2q2 + r3, 0 < r3 < r2

...
rl−2 = rl−1ql−1 + rl, 0 < rl < rl−1

rl−1 = rlql + rl+1, rl+1 = 0.

Then rl = gcd(r0, r1).
We also define sequences si and ti by s0 = 1, s1 = 0, t0 = 0, t1 = 1 and

sk+1 = −qksk + sk−1

tk+1 = −qktk + tk−1,

for 1 ≤ k ≤ l. Then
(i) l ≥ 2;
(ii) qk ≥ 1 for 1 ≤ k ≤ l, with ql ≥ 2;

(iii) rk = skr0 + tkr1 for 0 ≤ k ≤ l + 1.
Here are some other properties of the sequences ri, si, ti.

Date: 14th March 2013.

1



2 KEITH MATTHEWS

LEMMA 2.1. For 1 ≤ k ≤ l,
|tk|rk−1 + |tk−1|rk = r0(1)

|sk|rk+1 + |sk+1|rk = r1(2)

sk−1tk − sktk−1 = (−1)k+1(3)

sk = (−1)k|sk|, tk = (−1)k+1|tk|(4)

|sk||tk+1| − |sk+1||tk| = (−1)k(5)

|sk| ≤ r1/2, |tk| ≤ r0/2 if gcd(a, b) = 1(6)

|sk| < |tk|(7)

0 = |s1| < |s2| ≤ |s3| < · · · < |sl+1|(8)

1 = |t1| < |t2| < |t3| < · · · < |tl+1|(9)

Proposition 1. Suppose x satisfies x2 ≡ −1 (mod n) and 1 < x < n/2.
then applying Euclid’s algorithm to r0 = n, r1 = x gives an algorithm of even
length 2c and a decreasing sequence of remainders r0 > r1 > · · · > rc−1 >√
n > rc > · · · > r2c = 1. Then with r = |tc| = rc+1, s = |tc+1| = rc, a =
|sc|, b = |sc+1|, we have

(i) r2 + s2 = n.
(ii) 1 ≤ r < s, gcd(r, s) = 1.

(iii) xr ≡ (−1)c+1s (mod n).
(iv) x = ar + bs.
(v) br − as = (−1)c+1.

(vi) 0 ≤ a ≤ b.
(vii) a ≤ r/2, b ≤ s/2.
(viii) x2 + 1 = n(a2 + b2).

Note that a and b can be determined using (iv) and (v) and the fact that
r = rc+1, s = rc. So r, s, a, b can be found without calculating the si and ti
sequences.

In the opposite direction, if r2 + s2 = n, with 1 < r < s and gcd(r, s) = 1,
we can apply Euclid’s algorithm to the pair (s, r) to get the unique pair (a, b)
satisfying 0 ≤ a ≤ b, a ≤ r/2, b ≤ s/2, br − as = ε = ±1. Then x = ar + bs
has the property that x2 ≡ −1 (mod n), 1 < x < n/2 and xr ≡ εs (mod n).

We prove (i) and (vii) in a series of lemmas. The remaining items follow
directly from Lemma 2.1. Also (viii) follows from (iv) and (v) and the
identity

(ar + bs)2 + (br − as)2 = (r2 + s2)(a2 + b2)
and was pointed out by John Robertson.

LEMMA 2.2. (Aubry-Thue) Let gcd(a, b) = 1, a > b. Then the congruence

(10) bx ≡ y (mod a)

has a solution x, y satisfying

1 ≤ |x| <
√
a, 1 ≤ |y| ≤

√
a.



MORE ON THE SERRET–HERMITE ALGORITHM 3

Proof. The remainders r0, r1, , . . . , rm in Euclid’s algorithm applied to r0 =
b, r1 = a, decrease strictly from a to 1. Hence there exists a k ≥ 1, such that

rk−1 >
√
a ≥ rk.

Then the equation a = |tk|rk−1 + |tk−1|rk gives

a ≥ |tk|rk−1 > |tk|
√
a.

Hence |tk| <
√
a. Finally,

rk = ska+ tkb,

so
tkb ≡ rk (mod a)

and we can take x = tk, y = rk in (10). �

LEMMA 2.3. (Generalization of Hermite-Serret’s algorithm) Let x, n ∈
N, n > 2, x < n/2, x2 + 1 ≡ 0 (mod n). Perform Euclid’s algorithm with
r0 = n, r1 = x. Determine k by rk−1 >

√
n ≥ rk. Then

n = r2k + t2k.

Proof. In our proof of Thue’s result, we saw that rk ≡ tkx (mod n) with
1 ≤ |tk| <

√
n. Then

r2k + t2k ≡ t2kx2 + t2k

≡ t2k(x2 + 1) (mod n)

≡ 0 (mod n).

But 2 ≤ r2k + t2k < n+ n = 2n, so r2k + t2k = n. �

LEMMA 2.4. Let l be the length of Euclid’s algorithm under the conditions
of Lemma 2.3. Then

(11) |tl−i+1| = ri, 0 ≤ i ≤ l + 1.

Also l = 2c and n = r2c + r2c+1, where c is determined by the inequalities
rc−1 >

√
n > rc.

Proof. We have x2 ≡ −1 (mod n). Also 1 = sln + tlx, where |tl| ≤ n/2.
Hence

−x2 ≡ tlx (mod n)

−x ≡ tl (mod n).

Hence n divides tl + x. But

|tl + x| ≤ |tl|+ x < n/2 + n/2 = n.

Hence tl + x = 0 and tl = −x. However tl = (−1)l+1|tl|, so (−1)l+1 = −1
and l = 2c.

Also tl+1 = (−1)ln = n.



4 KEITH MATTHEWS

But we have equations

|tl+1| = ql|tl|+ |tl−1|
...

|t3| = q2|t2|+ |t1|
|t2| = q1|t1|.

This is just Euclid’s algorithm applied to r0 = n, r1 = x, as |tl−1| < |tl| etc.
Hence the sequences

|tl+1|, |tl|, . . . , |t1|
and

r0, r1, . . . , rl

are identical. i.e., |tl−i+1| = ri, 0 ≤ i ≤ l + 1.
Taking i = c, c + 1 in (11) gives |tc+1| = rc, |tc| = rc+1. Then from (1),

n = |tc+1|rc + |tc|rc+1 = r2c + r2c+1. Hence rc <
√
n. Also

rc−1 = qcrc + rc+1 ≥ rc + rc+1

r2c−1 ≥ (rc + rc+1)2 > r2c + r2c+1 = n.

Hence rc−1 >
√
n. �

Finally we prove part (vii) of Proposition 1. In fact we prove

(12) |sk| ≤ |tk|/2,

if 1 ≤ k ≤ l. This is true trivially for k = 1 and for k = 2 we have
s2 = 1, t2 = −qn = −q1 and q1 ≥ 2. The result extends using (5), as for
k ≥ 2, we have an alternating sum whose terms decrease in absolute value
as |t2| < |t3| < · · · < |tk|:

(13)
|sk|
|tk|

=
1
|t2|
− 1
|t2||t3|

+ · · ·+ (−1)k 1
|tk−1||tk|

.

In particular, taking k = c and c+ 1 in (12) gives

(14) a ≤ r/2, b ≤ s/2.

Clearly we cannot have simultaneous equality in (14), as br − as = ±1.
We now give cases where equality occurs in Proposition 1.
(1) r = 1 ⇐⇒ x = s, n = 1 + s2, s > 1, in which case a = 0, b = 1.
(2) a = 0 ⇐⇒ x = s, n = 1 + s2, s > 1, in which case b = 1 = r.
(3) a = b ⇐⇒ x = 2s − 1, n = 2s2 − 2s + 1, s > 1, in which case

a = b = 1, r = s− 1.
(4) b = s/2 ⇐⇒ x = 2, n = 5, in which case a = 0, b = 1, r = 1, s = 2.
(5) a = r/2 ⇐⇒ x = 2b2 + b+ 2, n = 4b2 + 4b+ 5, b ≥ 1, in which case

r = 2, a = 1, s = 2b+ 1.



MORE ON THE SERRET–HERMITE ALGORITHM 5

Example. n = 2465. The solutions of x2 ≡ −1 (mod 2465) with 1 ≤ x <
2465/2 are 157, 302, 1143, 1177.

x a b r s c
157 1 3 16 47 3
302 1 6 8 49 4
1143 13 19 28 41 8
1177 11 21 23 44 8

See http://www.numbertheory.org/php/hermite_serret.html for a BC-
math implementation of the algorithm in Proposition 1.


