
SOLVING THE DIOPHANTINE EQUATION

ax2 + bxy + cy2 + dx+ ey + f = 0

KEITH MATTHEWS

1. Introduction

This note originates from studying the paper [11, pp. 38–40] where a new
method of solving the general quadratic diophantine equation

(1) ax2 + bxy + cy2 + dx+ ey + f = 0.

is given in the case where (1) represents an hyperbola. This was an improve-
ment on a classical method of Lagrange mentioned in [11, p. 39]. We use a
transformation due to Legendre [8]).

In our note, we give a variation of the method of [11] due to John Robert-
son, which uses a transformation of variables where the centre of the hyper-
bola becomes the origin.

The rest of the note is a standard treatment of the special cases that
correspond to an ellipse, parabola, or two straight lines, possibly coincident.

The output of parabola case was improved by Chi Chon Lei.
The underlying algorithm has been coded as BCMath program [3].
An earlier computer program for solving (1) due to Dario Alpern is avail-

able at [4]. This sometimes yields redundant families.

2. The cases

Let D = b2 − 4ac. We assume not all of a, b, c are zero.
Case 1. D = 0. We use completion of the square, as in Hua’s book [7,

p. 278]. We can assume a 6= 0 (by interchanging x and y, as one of a and c
is nonzero) and multiply (1) by 4a to get an equivalent equation:

(2) (2ax+ by)2 + 4adx+ 4aey + 4af = 0.

Let t = 2ax+ by. Then (2) becomes

(3) (t+ d)2 = uy + v.

where u = 2(bd− 2ae) and v = d2 − 4af .

(i) Assume u = 0. Then (3) becomes (t+ d)2 = v. Let h = gcd(2a, b).
If v = 0, then equation (3) becomes 2ax+ by+ d = 0 and we have

a line of integer solutions (2a/h)x+ (b/h)y = d/h for (1) if h divides
d, but no integer solution if h does not divide d.
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If v < 0 or v > 0 and v is nonsquare, there is no integer solution
of (1).

Next assume v = g2, g > 0. Then t+ d = ±g, i.e.,

2ax+ by = ±g − d

and we have the following possibilities:
(a) If h divides g − d, we have a line of integer solutions of (1):

(2a/h)x+ (b/h)y = (g − d)/h.

(b) If h divides g + d, we have a line of integer solutions of (1):

(2a/h)x+ (b/h)y = (−g − d)/h.

(c) Neither g−d nor g+d is divisible by h. Then there is no integer
solution of (1).

(ii) Assume u 6= 0. Then (3) gives rise to the congruence

(4) T 2 ≡ v (mod |u|),

where T = t+ d and t = 2ax+ by.
If there are no solutions of (4), then there are no integer solutions

of (1). Otherwise let T1, . . . , Tc be the solutions in the range−|u|/2 <
Ti ≤ |u|/2. Then

t = Ti − d+ uk, k an integer.

Then equation (3) gives

(5) y = r + sk + uk2,

where r = (T 2
i − v)/u and s = 2Ti. Also

2ax+ by = t = Ti − d+ ku,

or equivalently

(6) 2ax = Ti − d− br + (u− bs)k − buk2.

Now −bu/2a is an integer. For bu = 2b(bd− 2ae) = 2b2d− 4bae and
since b2 = 4ac, we see that −bu/2a = 2be− 4cd, an integer. Also

u− bs ≡ 0 (mod 2a)(7)

Ti − d− br ≡ 0 (mod 2a).(8)

Hence

(9) x =
Ti − d− br

2a
+
u− bs

2a
k − bu

2a
k2.

Conversely, if the congruences (7) and (8) hold for a solution Ti of
(4), then x given by (9) and y given by (5), with k arbitrary, will
give an integer solution of (1).

The solutions will either lie on a parabola or two parallel lines, or
a single line.
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Chi Chon Lei has observed that equations (9) and (5) can be
rewritten as

x = −bu
2a

(
k − 1

2b
+
Ti
u

)2

+
u2 − 4bdu+ 4b2v

8abu
,(10)

y = u

(
k +

Ti
u

)2

− v

u
.(11)

It can happen that there exists an N > 1 dividing |u| for which the
m solutions of congruence (4) which satisfy (7) and (8) break up into
arithmetic progressions of N integers with common difference |u|/N .

The advantage of writing the solutions in form (10) and (11) is
that it allows us to merge the families corresponding to the integers in
each arithmetic progression into one family, since everything outside
the brackets n (10) and (11) does not depend on Ti, and k can be
replaced by k/N in the general solution coreponding to any one of
the Ti in a progression.

For example, in the equation 9x2− 12xy+ 4y2 + 3x+ 2y− 12 = 0,
we have u = −144, v = 441 and the m = 8 solutions are

3, 27, 21, 45,−27,−51,−45,−69.

With N = 2 and |u|/N = 72, these can be grouped into 4 arithmetic
progressions, with common difference 72:

{3,−69}, {27,−45}, {21,−51}, {45,−27},

and we end up with the 4 solution families of Example 4 below.
Chi Chon Lei provided an even more spectacular example with

the equation x2− 20xy+ 100y2− 8x− 16y+ 12 = 0, where an initial
32 families of solutions are converted to two families:

x = 15n2 + 17n+ 6, y =
n

2
(3n+ 1),(12)

x = 15n2 + 7n+ 2, y =
n

2
(3n− 1).(13)

Here u = 384, v = 16, N = 16 and we have two arithmetic progres-
sions with common difference |u|/N = 24:

−172,−148,−124,−100,−76,−52,−28,−4, 20, 44, 68, 92, 116, 140, 164, 188,

−188,−164,−140,−116,−92,−68,−44,−20, 4, 28, 52, 76, 100, 124, 148, 172.

Case 2. D 6= 0. We multiply (1) by D2 and translate the origin to (α, β),
where

α = 2cd− be, β = 2ae− bd,
using the transformation of Legendre ([8, p. 105])

Dx = X + α,Dy = Y + β,
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to get the equation

(14) aX2 + bXY + cY 2 = k,

where

k = −D(ae2 − bed+ cd2 + fD).

Let g = gcd(a, b, c). Clearly g divides D and hence k, so we replace
(a, b, c, k) by (a/g, b/g, c/g, k/g) in (14). (Pointed out by Sander Verdon-
schot 26/08/2022.)

(a) Assume k = 0 and D not a square. Then the only integer solution
of (14) is (X,Y ) = (0, 0) and so Dx = α and Dy = β. Hence if D|α
and D|β, we have the unique solution (x, y) = (α/D, β/D), whereas
if D does not divide α or D does not divide β, there is no integer
solution of (1).

(b) Assume D < 0 and k 6= 0. Then (1) describes an ellipse. We use
the recent algorithm of Matthews ([10]) to find all integer solutions
(Xi, Yi) of aX2 + bXY + cY 2 = k. If D divides Xi +α and D divides
Yi + β, we get a corrresponding integer solution of (1):

(x, y) = ((Xi + α)/D, (Yi + β)/D).

(c) Assume D = g2, g > 0.
(i) Assume a 6= 0. Then on multiplying by 4a, equation (14) be-

comes

(2aX + (b+ g)Y )(2aX + (b− g)Y ) = 4ak.

Let g1 = gcd(2a, b+ g), g2 = gcd(2a, b− g).
Sander Verdonschot has pointed out (29/08/2022) that g1g2 di-
vides 4ak; in fact g1g2 divides 4aD.
For g1|2a and g2|b−g, so g1g2|2a(b−g). Similarly g1g2|2a(b+g).
Hence

g1g2||2a(b− g) + 2a(b+ g) = 4ab,

and consequently g1g2|4ab2. We also have

g1g2|(b+ g)(b− g) = b2 − g2 = b2 − (b2 − 4ac) = 4ac,

so g1g2|16a2c. Hence g1g2|(4ab2 − 16a2c) = 4aD.
Hence we now have to solve(

2a

g1
X +

(b+ g)

g1
Y

)(
2a

g2
X +

(b− g)

g2
Y

)
=

4ak

g1g2
.

We consider the cases k = 0 and k 6= 0 separately:
First the case k = 0. We get two equations 2aX + (b± g)Y = 0.
Using Dx = X + α and Dy = Y + β, these in turn give two
equations

2aDx+ (b+ g)Dy = 2aα+ (b+ g)β(15)

2aDx+ (b− g)Dy = 2aα+ (b− g)β.(16)
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If Dg1 does not divide 2aα + (b + g)β, then equation (15) does
not lead to a solution for (x, y).
If Dg1 divides 2aα + (b + g)β, then we get the line of integer
solutions:

(2a/g1)x+ ((b+ g)/g1)y = (2aα+ (b+ g)β)/Dg1.

Similarly for (16).
Secondly, consider the case k 6= 0. We are dealing with an
equation of the form

(A1X +B1Y )(A2X +B2Y ) = 4ak/(g1g2),

where A1 = 2a/g1, A2 = 2a/g2, B1 = (b+g)/g1, B2 = (b−g)/g2.
We have to examine all divisors di of 4ak/(g1g2) and test for
integer solutions (X,Y ) of

A1X +B1Y = di(17)

A2X +B2Y = 4ak/(g1g2di).(18)

If there are no integer solutions of the system of equations (17)
and (18) for any i, then there are no integer solutions of (1).
However if there is an i such that (17) and (18) have integer
solutions (X,Y ), then each such solution, we have to check if D
divides X+α and Y +β, in which case we get an integer solution
of (1):

(x, y) = ((X + α)/D, (Y + β)/D).

(ii) Assume a = 0. Then (14) becomes Y (bX + cY ) = k. Again we
consider the cases k 6= 0 and k = 0 separately. Let h = gcd(b, c).
First assume k 6= 0. If h does not divide k, then (1) has no
integer solutions.
If h divides k, we get the equation

Y ((b/h)X + (c/h)Y ) = k/h.

We then have to examine all divisors di of k/h and solve the
system

Y = di

(b/h)X + (c/h)Y = k/(hdi)

in integers.
Secondly, assume k = 0. Then (3) becomes Y (bX + cY ) = 0,
i.e.,

(Dy + β)(bDx+ cDy + bα+ cβ) = 0.

.
If D divides β, we get one family of integer solutions of (1),
namely y = β/D, with x arbitrary. Let g′ = gcd(b, c) and t =
bα+ cβ.



6 KEITH MATTHEWS

If g′D does not divide t, there are no integer solutions of (1).
If g′D divides t, we get a line of integer solutions of (1):

(b/g′)x+ (c/g′)y + t/Dg′ = 0.

(d) Assume D > 0 and nonsquare and k 6= 0. Then (1) describes an
hyperbola. This case is discussed in detail at [13].

3. Examples

(1) x2 − 15y2 = 61. [7, p. 285]. Ans. x+ y
√
15 = ±(11± 2

√
15)(4 +

√
15)n.

(2) 3x2 − 8xy + 7y2 − 4x+ 2y − 109 = 0. Exercise (a), [7, p. 286].

Ans. D = −20, (2, 5), (2,−3), (14, 9), (−10,−7).
(3) 3xy + 2y2 − 4x− 3y − 12 = 0. Exercise (b), [7, p. 286].

Ans. D = 9,

(5, 2), (−3, 6), (−1, 4),(−13, 20), (−13, 1),
(−1,−1), (−3, 0), (5,−8),(2,−4), (24,−36).

(4) 9x2 − 12xy + 4y2 + 3x+ 2y − 12 = 0. Exercise (c), [7, p. 286].

Ans. D = 0. Four families:

x = 2− 2t− 24t2, x = 0 + 14t− 24t2, x = 1 + 10t− 24t2, x= −3− 22t− 24t2,

y = 3 + 3t− 36t2, y= −2 + 27t− 36t2, y = 0 + 21t− 36t2, y= −2− 27t− 36t2.

(5) x2 − 8xy − 17y2 + 72y − 75 = 0. Exercise (d), [7, p. 286].

Ans. D = 132. Two families: With F +G
√
33 = −(23 + 4

√
33)n and

11x = 70F + 297G+ 48, 11x = −62F − 231G+ 48,

11y = F + 66G+ 12, 11y = F − 66G+ 12,

with representatives (−2, 1) and (10, 1), respectively.

(6) x2 + 8xy + y2 + 2x− 4y + 1 = 0. Art. 221, [6, p. 220–221].

Ans. D = 60. One solution is (−1, 0) with general solution

(x, y)t = ((−1)mUm(−8, 2)t + (3,−2)t)/5,m ∈ Z,

where U =

(
0 −1
1 8.

)
. A solution was given by Gauss, namely

5x = 2t+ 3

5y = −8t+ 30u− 2,

where t2 − 15u2 = 1 and t ≡ 1 (mod 5).

(7) x2 + 2xy + y2 + x+ y − 6 = 0.

Ans. D = −31. Six solutions: (31, 10), (−31,−10), (−17,−19), (17, 19), (46,−10), (−46, 10).
Note. Faisant does not list four of these solutions.

(8) 3x2 − 22xy + 25y2 = 81. Exercise III.6, [5, p. 115].

Ans. D = 184. Five families of solutions:

x = −658F − 4463G, x = −2F − 47G, x = −156F + 1059G

y = −111F − 753G, y = F − 17G, y = −111F + 753G,

x = 54F + 369G, x = −12F + 93G,

y = 9F + 63G, y = −9F + 63G,
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with F + G
√
46 = ±(24335 + 1794

√
46)m. Note. Faisant has an incorrect answer

(−111,−156) instead of (−156,−111).
(9) 2x2 + 8xy − y2 − 4x+ 10y − 7 = 0. Ans. (−1, 1).
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