
Extended gcd and Hermite normal form algorithms
via lattice basis reduction

George Havas
School of Information Technology

The University of Queensland
Queensland 4072, Australia

URL: http://www.it.uq.edu.au/personal/havas/

Bohdan S. Majewski
Department of Computer Science and Software Engineering

University of Newcastle
Callaghan, NSW 2308, Australia

URL: http://wwwcs.newcastle.edu.au/Staff/bohdan/

Keith R. Matthews
Department of Mathematics

The University of Queensland
Queensland 4072, Australia

URL: http://www.maths.uq.edu.au/∼krm/

Abstract

Extended gcd calculation has a long history and plays an important role in computational
number theory and linear algebra. Recent results have shown that finding optimal multipliers
in extended gcd calculations is difficult. We present an algorithm which uses lattice basis
reduction to produce small integer multipliers x1, . . . , xm for the equation d = gcd (d1, . . . , dm) =
x1d1 + · · · + xmdm, where d1, . . . , dm are given integers. The method generalises to produce
small unimodular transformation matrices for computing the Hermite normal form of an integer
matrix.

1 Introduction

Let d1, . . . , dm be integers and d = gcd (d1, . . . , dm). Then it is easy to find integer multipliers
x1, . . . , xm such that d = x1d1 + · · · + xmdm, but not so easy to find multiplier vectors X of small
Euclidean length ||X|| = (x2

1+· · ·+x2
m)1/2 (see [17, 22]). Such multipliers may be found by performing,

for example, Euclid’s algorithm on d1, d2, to get gcd (d1, d2) = g2, then on g2, d3 and so on. If the
corresponding sequence of integer row operations is performed on the identity matrix Im, the result

1

will be an m × m unimodular matrix P such that PD = [0, . . . , 0, d]T , where D = [d1, . . . , dm]T .
Such a P is implicit in a paper of Jacobi ([14, pages 26–28]). For some variations on this theme see
Kertzner [15], Ford–Havas [8] (who guarantee |xi| ≤ max (d1, . . . , dm)/2) and Majewski–Havas [18]
(the sorting gcd algorithm). Also see Brentjes [4, pages 22-24] for references to older work.

With a little matrix algebra, the equation PD = [0, . . . , 0, d]T tells us that rows p1, . . . , pm−1 of
P form a lattice basis for the (m− 1)-dimensional lattice Λ formed by the vectors X = (x1, . . . , xm)
with x1, . . . , xm ∈ Z , satisfying d1x1 +· · ·+dmxm = 0. In other words, every such X can be expressed
as an integer linear combination X = z1p1 + · · · + zm−1pm−1. The general multiplier vector is given
by

pm + z1p1 + · · ·+ zm−1pm−1, z1, . . . , zm−1 ∈ Z.

Lattice basis reduction can be used to find good multipliers. Such an approach dates back at least
to Rosser [21] and Ficken [7], who used it for some small examples. A particularly effective algorithm
for lattice basis reduction is due to Lenstra, Lenstra and Lovász [16]. For descriptions of the LLL
algorithm, see Section 2 and Grötschel et al [10, pages 139–150], Sims [25, pages 360–382], Cohen
[5, pages 83–104] or Pohst–Zassenhaus [20, pages 200–202]. Of importance in the LLL algorithm is a
parameter α, which is in the range (1

4
, 1]. The complexity of the algorithm increases with α, as does

the quality guarantee on the basis vectors.

One approach to the extended gcd problem, which is proposed by Babai [10, page 144] and Sims
[25, page 381], is to perform the LLL algorithm on p1, . . . , pm−1 to produce a lattice basis of short
vectors. We then size–reduce pm, by adding suitable multiples of these short vectors to pm, thereby
reducing its entries in practice to small size. We call this Algorithm 1. It has the drawback that an
initial unimodular transforming matrix P has to be calculated.

Another approach to the problem is to apply the LLL algorithm to the lattice L spanned by
the rows of the matrix C = [Im|γD], where γ is a positive integer. It is not difficult to show

that if γ > y
m−2

2 ||D||, with y = 4/(4α − 1), 1/4 < α ≤ 1, the reduced basis for C must have
c1m+1 = 0, . . . , cm−1m+1 = 0 and cmm+1 = ±γd. Then cm1, . . . , cmm will in practice be a small
multiplier vector of similar size to that produced by Algorithm 1. We call this Algorithm 2.

Algorithm 2 works for the following reasons. L consists of the vectors

(X, a) = (x1, . . . , xm, γ(d1x1 + · · ·+ dmxm)),

where x1, . . . , xm ∈ Z. Hence X ∈ Λ⇔ (X, 0) ∈ L. Also, if (X, a) ∈ L and X does not belong to Λ,
then a 6= 0 and

||(X, a)||2 ≥ γ2. (1)

Further, the lemma of [20, page 200] implies that if b1, . . . , bm−1 form a reduced basis for L, then

||bj|| ≤ y
m−1

2 max (||X1||, . . . , ||Xm−1||), (2)

if X1, . . . , Xm−1 are linearly independent vectors in L.

But the m− 1 vectors X1, . . . , Xm−1

(−d2, d1, 0, . . . , 0, 0), (−d3, 0, d1, 0, . . . , 0, 0), . . . , (−dm, 0, , 0, . . . , d1, 0)

are linearly independent vectors in L and we have ||Xi|| ≤ ||D|| and hence

max (||X1||, . . . , ||Xm−1||) ≤ ||D||. (3)
2

Hence if γ > y
m−2

2 ||D||, it follows from inequalities (1)–(3) that the first m− 1 rows of a reduced
basis for L have the form (bj1, . . . , bjm, 0).

The last vector of the reduced basis then has the form (bm1, . . . , bmm, γg) for some g, and the
equations

PD =

[
0
g

]
, D = P−1

[
0
g

]
,

(where P is a unimodular matrix) imply d|g and g|d, respectively, and hence g = ±d.

Experimentally one finds that if γ is large, Algorithm 2 seems to settle down to the same sequence
of row operations. It is not difficult to identify these operations and perform them instead on the
matrix [Im|D]. This is justified in Section 3.

Our limiting algorithm is called Algorithm 3 and is described explicitly in Section 4.

In Section 5, we show that with 3/8 < α ≤ 1 the smallest multiplier for 3 numbers is one of the
9 values b3 + ε1b1 + ε2b2, |εi| ≤ 1, where multiplier b3 and lattice basis b1, b2 for Λ are produced by
Algorithm 3. (Computer evidence suggests that the result is true for 1/4 < α ≤ 1.) We also derive
an upper estimate in the general case of m numbers for the length of the multiplier produced by
Algorithm 3 with 1/4 < α ≤ 1.

In Section 6, we describe a LLL based Hermite normal form algorithm which we also arrive at by
limiting considerations.

The paper finishes with some examples which show how well the algorithms perform in practice.

2 The LLL algorithm

In order to analyse Algorithm 2 as γ →∞, we need to briefly outline the LLL algorithm.

Let C be an m × n matrix of integers, with linearly independent rows c1, . . . , cm. The Gram–
Schmidt basis is denoted by c∗1, . . . , c

∗
m, where

c∗1 = c1, c∗k = ck −
k−1∑
j=1

µkjc
∗
j , µkj =

ck · c∗j
c∗j · c∗j

.

We say c1, . . . , cm is reduced if |µkj| ≤ 1/2 for 1 ≤ j < k ≤ m and

c∗k · c∗k ≥ (α− µ2
k k−1)c∗k−1 · c∗k−1 (C2)

for 1 < k ≤ m. (Here 1/4 < α ≤ 1.) We say ck is size–reduced if |µkj| ≤ 1/2 for 1 ≤ j < k.

The inductive step is as follows:

Do a partial size–reduction by ck ← ck − dµk k−1cck−1, where dθc is the nearest integer symbol,
with dθc = θ − 1

2
, if θ is a half–integer. If inequality (C2) holds, size–reduce ck completely by

performing ck ← ck − dµkjccj for j = k − 2, . . . , 1 and increment k. Otherwise swap ck and ck−1 and
decrement k.

3

3 Analysis of Algorithm 2

Here we justify our earlier assertion that if γ is sufficiently large and the LLL algorithm is performed
on [Im|γD], then the sequence of operations is independent of γ.

Let cim+1 = γai and let C = [B|γA], where initially B = Im, A = D.

Let us assume that a1 = 0, . . . , ak−2 = 0 and examine the inductive step of LLL.

First, from the equation

c∗r = cr −
r−1∑
j=1

µrjc
∗
j , (4)

we have c∗1m+1 = 0, . . . , c∗k−2m+1 = 0. Also from equation (4), with r = k − 1, we have c∗k−1m+1 =
γak−1.

Further

µkj =
ck · c∗j
c∗j · c∗j

=

∑m
q=1 ckqc

∗
jq + γakc

∗
j m+1∑m

q=1(c∗jq)
2 + (c∗j m+1)2

. (5)

So, c∗1m+1 = 0, . . . , c∗k−2m+1 = 0 and equation (5) give

µkj =

∑m
q=1 ckqc

∗
jq∑m

q=1(c∗jq)
2

for j = 1, . . . , k − 2,

the Gram–Schmidt coefficient for C with the last column ignored.

Next

µk k−1 =

∑m
q=1 ckqc

∗
k−1 q + γ2akak−1∑m

q=1(c∗k−1 q)
2 + γ2a2

k−1

≈ ak
ak−1

as γ →∞.

Then if t = dak/ak−1c, dµk k−1c = t if ak/ak−1 is not an odd multiple of 1/2, or t or t+ 1 otherwise,
as γ →∞. Then t or t+ 1 times row k − 1 is subtracted from row k.

We now discuss the possible interchange of rows k − 1 and k. This takes place if the inequality
(C2) fails to hold. (We note that α − µ2

k k−1 > 0 if α > 1
4
.) If ak−1 = 0 = ak, then condition (C2)

becomes the standard LLL condition involving µk k−1.

If ak−1 = 0 but ak 6= 0, then c∗km+1 = γak and condition (C2) will be satisfied for γ large and no
interchange of rows takes place.

If ak−1 6= 0, then from

c∗k = ck −
k−2∑
j=1

µkjc
∗
j − µk k−1c

∗
k−1,

we see that, with c∗j m+1 = 0, j = 1, . . . , k − 2 and with the limiting form of µk k−1 ≈ ak/ak−1 above,
c∗km+1 ≈ 0. Consequently (C2) will not be satisfied for γ large, if α > 1

4
, and an interchange of rows

takes place.

The µkj will, for large γ, be rational functions of γ and, if not constant, will tend to a limit
strictly monotonically, thereby resulting in a limiting sequence of row operations. For large γ the
LLL algorithm will perform a version of the least–remainder gcd algorithm (LRA) on a1 = d1, a2 = d2,
until it arrives at a1 = 0, a2 = g2 = gcd (d1, d2), with (b21, b22) being the shortest multiplier vector

4

for gcd (d1, d2). It then eventually performs a version of the LRA on a2 = g2, a3 = d3, punctuated
by updating of the first three rows of B, till it arrives at a1 = 0, a2 = 0, a3 = g3 = gcd (g2, d3), with
(b31, b32, b33) being a short multiplier vector for gcd (d1, d2, d3); and so on.

4 Algorithm 3

We are thus led to the final LLL based extended gcd algorithm given by pseudocode in Figure 1. Our
implementation is a modification of de Weger’s LLL algorithm [9, pages 329–332], with the added
simplification that no initial construction of the Gram–Schmidt basis is necessary, as we start with
the identity matrix Im. De Weger works in terms of integers and writes |b∗i |2 = Di/Di−1, D0 = 1 and
λij = Djµij.

5 Multiplier estimates

REMARK. Even when m = 3, our LLL based gcd algorithm does not always produce the shortest
multiplier: in the example 4, 6, 9, LLL (for all 1

4
< α ≤ 1) produces the multiplier b3 = (−2, 0, 1),

whereas the shortest is b3 + b2 + b1 = (1, 1,−1).

After much numerical experiment we were led to the following result:

THEOREM. If B is a unimodular 3× 3 integer matrix such that the first 2 rows b1, b2 form a LLL–
reduced basis for the lattice Λ with 3/8 < α ≤ 1, while b3 is size–reduced and is a multiplier vector
for d1, d2, d3, then the smallest multiplier is one of nine vectors b3 + ε1b1 + ε2b2, where εi = −1, 0, 1
for i = 1, 2. (Computer evidence strongly suggests that the theorem is true if 1/4 < α.)

PROOF.

b3 = b∗3 + µ32b
∗
2 + µ31b

∗
1, b2 = b∗2 + µ21b

∗
1, where |µij| ≤

1

2
.

Then if x, y ∈ Z, recalling that b3 + xb1 + yb2 is the general multiplier, we have the following
expression for the square of its length:

f(x, y) = ||b3 + xb1 + yb2||2 = ||b∗3 + (x+ µ31 + yµ21))b∗1 + (y + µ32)b∗2||2

= ||b∗3||2 + (x+ µ31 + yµ21)2||b∗1||2 + (y + µ32)2||b∗2||2.

Using de Weger’s notation, working in integers, we write

µij =
λij
Dj

, ||b∗1||2 = D1, ||b∗2||2 =
D2

D1

, ||b∗3||2 =
D3

D2

=
1

D2

,

where
2|λij| ≤ Dj. (6)

(D3 = 1 here, as D3 = (detB)2 = 1. See [16, equation (1.25)]. Also D2 = ||D||2/ gcd(d1, d2, d3)2,
though this is not used.)

Then

f(x, y) =
1

D2

+
(xD1 + yλ21 + λ31)2

D1

+
(D2y + λ32)2

D1D2

. (7)

5

INPUT: Positive integers d1, . . . , dm;
B := Im;
Di := 1, i = 0, . . . ,m;
ai := di, i = 1, . . . ,m;
m1 := 3; n1 := 4; / ∗ α = m1/n1 ∗ /
k := 2;
while k ≤ m {

Reduce1 (k, k − 1);
if ak−1 6= 0 or {ak−1 = 0 and ak = 0

and n1(Dk−2Dk + λ2
k k−1) < m1D

2
k−1} {

Swap(k);
if k > 2
k := k − 1;

}
else {

Reduce1 (k, i), i = k − 2, . . . , 1;
k := k + 1;
}

}
if am < 0 {

am := −am;
bm := −bm;

}

OUTPUT: am = gcd (d1, . . . , dm); small multipliers bm1, . . . , bm,m;

Reduce1 (k, i) Swap(k)
if ai 6= 0 ak ↔ ak−1;

q :=
⌈
ak
ai

⌋
; bk ↔bk−1;

else { for j = 1, . . . , k − 2
if 2|λki| > Di λkj ↔ λk−1 j ;

q := dλki/Dic; for i = k + 1, . . . ,m {
else q := 0; λi k−1 := (λi k−1λk k−1 + λikDk−2)/Dk−1;

} λik := (λi k−1Dk − λikλk k−1)/Dk−1;
if q 6= 0 { Dk−1 := (Dk−2Dk + λ2

k k−1)/Dk−1;
ak := ak − qai; }
bk :=bk − qbi;
λki := λki − qDi;
for j = 1, . . . , i− 1

λkj := λkj − qλij ;
}

Figure 1: Pseudocode for Algorithm 3

6

The LLL condition (C2) with k = 2 and 1/4 < α ≤ 1 gives

||b∗2||2 ≥ ||b1||2(α− µ2
21)

D2

D1

≥ D1(α− λ2
21

D2
1

)

D2 ≥ αD2
1 − λ2

21 ≥ (α− 1

4
)D2

1. (8)

Assume f(x, y) ≤ f(0, 0). Then we prove |x|, |y| ≤ 1.

From equation (7), we successively deduce

(xD1 + yλ21 + λ31)2

D1

+
(D2y + λ32)2

D1D2

≤ λ2
31

D1

+
λ2

32

D1D2

(9)

(D2y + λ32)2

D1D2

≤ λ2
31

D1

+
λ2

32

D1D2

(D2y + λ32)2 ≤ λ2
31D2 + λ2

32

(y +
λ32

D2

)2 ≤ λ2
31

D2

+
λ2

32

D2
2

≤ D2
1

4D2

+
1

4
<

8D2

4D2

+
1

4
=

9

4
, (10)

with the last inequality following from inequality (8) with α > 3/8.

Hence |y + λ32

D2
| < 3

2
and |y| < 3

2
+ |λ32|

D2
≤ 2. Hence |y| ≤ 1.

Expanding (9) gives
(xD1 + yλ21 + λ31)2 +D2y

2 + 2λ32y ≤ λ2
31.

But

D2y
2 + 2λ32y =

{
0 if y = 0,
D2 ± 2λ32 ≥ 0 if y = ±1.

Hence

|xD1 + yλ21 + λ31| ≤ |λ31|

|x+ y
λ21

D1

+
λ31

D1

| ≤ |λ31|
D1

≤ 1

2

|x| ≤ 1

2
+ |yλ21

D1

+
λ31

D1

| ≤ 3

2
,

which implies |x| ≤ 1.

REMARK. One can be more specific about the optimum multipliers given the signs of λ21, λ31, λ32:

7

λ21 λ31 λ32 Optimum multiplier
+ + + b3, b3 − b2

+ − − b3, b3 + b2

− + − b3, b3 + b2

− − + b3, b3 − b2

− − − b3, b3 − b2, b3 + b1 + b2

+ + − b3, b3 − b2, b3 − b1 + b2

− + + b3, b3 + b2, b3 − b1 − b2

+ − + b3, b3 + b2, b3 + b1 − b2

COROLLARY. Our LLL extended gcd algorithm is the basis of a practical polynomial–time algorithm
for finding an optimal solution to the extended gcd problem for 3 numbers.

PROOF. Apply Algorithm 3 with α = 1/2 and then check which of the nine possibilities is optimal.

THEOREM. Let B be a unimodular m × m integer matrix such that the first m − 1 rows form a
LLL–reduced basis for the lattice Λ with 1/4 < α ≤ 1, while bm is size–reduced and is a multiplier
vector for d1, . . . , dm. Then with y = 4/(4α− 1), we have

||bm||2 ≤ 1 +
m− 1

4
· ym−2||D||2.

PROOF.

bm = b∗m +
m−1∑
j=1

µmjb
∗
j .

The vector DT is orthogonal to b1, . . . , bm−1 and we see from BD = [0, . . . , d]T that b∗m = dDT

||D||2 . Then

bm =
dDT

||D||2
+

m−1∑
j=1

µmjb
∗
j , |µmj| ≤

1

2
, (j = 1, . . . ,m− 1).

But ||b∗i || ≤ ||bi||. Hence

||bm||2 =
d2

||D||2
+

1

4

m−1∑
j=1

||b∗j ||2 ≤ 1 +
1

4

m−1∑
j=1

||bj||2. (11)

Now the lemma of [20, page 200] implies that as b1, . . . , bm−1 form a reduced basis for Λ, then for
1 ≤ j ≤ m− 1,

||bj|| ≤ y
m−2

2 max (||X1||, . . . , ||Xm−1||),
if X1, . . . , Xm−1 are linearly independent vectors in Λ.

But the m− 1 vectors X1, . . . , Xm−1

(−d2, d1, 0, . . . , 0), (−d3, 0, d1, 0, . . . , 0), . . . , (−dm, 0, , 0, . . . , d1)

are linearly independent vectors in Λ and we have ||Xi|| ≤ ||D|| and hence max (||X1||, . . . , ||Xm−1||) ≤
||D||.

Hence ||bj|| ≤ y
m−2

2 ||D|| for j = 1, . . . ,m− 1 and inequality (11) gives

||bm||2 ≤ 1 +
1

4
(m− 1)ym−2||D||2,

as required.
8

6 A LLL based Hermite normal form algorithm

An m× n integer matrix B is said to be in Hermite normal form if

(i) the first r rows of B are nonzero;

(ii) for 1 ≤ i ≤ r, if biji is the first nonzero entry in row i of B, then j1 < j2 < · · · < jr;

(iii) biji > 0 for 1 ≤ i ≤ r;

(iv) if 1 ≤ k < i ≤ r, then 0 ≤ bkji < biji .

Let G be an m × n integer matrix. Then there are various algorithms for finding a unimodular
matrix P such that PG = B is in row Hermite normal form. These include those of Kannan–Bachem
[25, pages 349–357] and Havas–Majewski [11], which attempt to reduce coefficient explosion during
their execution.

By considering the limiting behaviour of the LLL algorithm on the matrix

G(γ) = [Im|γnG1|γn−1|G2| · · · |γGn]

(where Gi is the ith column of G) as γ →∞, we are led to the following LLL based Hermite normal
form algorithm in Figure 2, generalizing the earlier gcd case where n = 1. (We have omitted swap(k)

as it is unchanged, but with a new interpretation of ai.) It is an easy generalization of the argument
in Section 1 to show that for large γ, on LLL reducing G(γ), the last n columns form a matrix whose
rows, starting from the bottom, are in row echelon form, corresponding to the indices j1, . . . , jr.

We remark that if a row of G has to be multiplied by −1, there is a necessary adjustment for the
λij. Hence the function Minus(i).

Let C denote the submatrix of B formed by the r nonzero rows and write P =

[
Q
R

]
, where Q

and R have r and m− r rows, respectively. Then QB = C and RB = 0 and the rows of R will form
a Z basis of short vectors for the sublattice N(G) of Zm formed by the vectors X satisfying XG = 0.
The rows of Q are size–reduced with respect to the short lattice basis vectors for N(G).

We give examples in the next section.

7 Examples

We have applied the methods described here to numerous examples, all with excellent performance.
Note that there are many papers which study explicit input sets for the extended gcd problem and
a number of these are listed in the references of [4] and [17]. We illustrate algorithm performance
with a small selection of interesting examples and make some performance comparisons.

Note also that there are many parameters which can affect the performance of LLL lattice basis
reduction algorithms (also observed by many others, including [23]). Foremost is the value of α.
Smaller values of α tend to give faster execution times but worse multipliers, however this is by no
means uniform. Also, the order of input may have an effect.

9

INPUT: An m× n integer matrix G;
B := Im;
A := G;
Di := 1, i = 0, . . . ,m;
m1 := 3; n1 := 4; / ∗ α = m1/n1 ∗ /
k := 2;
while k ≤ m {

Reduce2 (k, k − 1);
if {col1 ≤ col2 and col1 ≤ n} or {col1 = col2 = n+ 1 and n1(Dk−2Dk + λ2

k k−1) < m1D
2
k−1} {

Swap(k);
if k > 2
k := k − 1;

}
else {

Reduce2 (k, i), i = k − 2, . . . , 1;
k := k + 1;
}

}
OUTPUT: A, the Hermite normal form of G; B the corresponding transformation matrix;

Reduce2(k, i) Minus(j)
col1 := least j such that ai,j 6= 0; for r = 1, . . . ,m
if ai,col1 < 0 { for s = 1, . . . , r − 1

Minus(i); if r = j or s = j
bi := −bi; λrs := −λrs;

}
else

col1 := n+ 1;
col2 := least j such that ak,j 6= 0;
if ak,col2 < 0 {

Minus(k);
bk = −bk;

}
else

col2 := n+ 1;
if col1 ≤ n

q :=
⌊
ak,col1
ai,col1

⌋
;

else {
if 2|λki| > Di

q := dλki/Dic;
else q := 0;

}
if q 6= 0 {

ak :=ak − qai;
bk :=bk − qbi;
λki := λki − qDi;
for j = 1, . . . , i− 1

λkj := λkj − qλij ;
}

Figure 2: A LLL based Hermite normal form algorithm
10

(a) As input to an extended gcd algorithm, take d1, d2, d3, d4 to be 116085838, 181081878, 314252913,
10346840.

Algorithm 3 produces a final matrix

B =


−103 146 −58 362
−603 13 220 −144

15 −1208 678 381
−88 352 −167 −101

 .

The multiplier vector (−88, 352,−167,−101) is the unique multiplier vector of least length. In
fact, LLL-based methods give this optimal multiplier vector for all α ∈ (1/4, 1].

Earlier algorithms which aim to improve on the multipliers do not fare particularly well. Blank-
inship’s algorithm ([1]) gives the multiplier vector (0, 355043097104056, 1, −6213672077130712).
The algorithm due to Bradley ([3]) gives (27237259, −17460943, 1, 0). (This shows that Bradley’s
definition of minimal is not useful.)

(b) Take d1, . . . , d10 to be 763836, 1066557, 113192, 1785102, 1470060, 3077752, 114793, 3126753,
1997137, 2603018.

Algorithm 3 gives the following multiplier vectors for various values of α. We also give the
length–squared for each vector.

α multiplier vector x ||x||2
1/4 7 −1 −5 −1 −1 0 −4 0 0 0 93
1/3 −1 0 6 −1 −1 1 0 2 −3 0 53
1/2 −3 0 3 0 −1 1 0 1 −4 2 41
2/3 1 −3 2 −1 5 0 1 1 −2 −1 47
3/4 1 −3 2 −1 5 0 1 1 −2 −1 47
1 −1 0 1 −3 1 3 3 −2 −2 2 42

The unique shortest multiplier vector is (3,−1, 1, 2,−1,−2,−2,−2, 2, 2) with length–squared 36.
Other methods give the following results —
Jacobi: (−14, 5,−2, 3,−1, 2,−4, 0,−2, 0), length–squared 259;
recursive gcd: (1936732230,−1387029291,−1, 0, 0, 0, 0, 0, 0, 0, 0);
Kannan-Bachem: (44537655090,−31896527153, 0, 0, 0, 0, 0, 0, 0,−1);
Blankinship: (3485238369, 1,−23518892995, 0, 0, 0, 0, 0, 0, 0);
Bradley: (−135282, 96885,−1, 0, 0, 0, 0, 0, 0, 0).

(c) The following example involving Fibonacci and Lucas numbers (see [13]) has theoretical signifi-
cance. Take d1, . . . , dm to be the Fibonacci numbers

(i) Fn, Fn+1, . . . , F2n, n odd, n ≥ 5;

(ii) Fn, Fn+1, . . . , F2n−1, n even, n ≥ 4.

Using the identity FmLn = Fm+n+(−1)nFm−n, it can be shown that the following are multipliers:

(i) −Ln−3, Ln−4, . . . ,−L2, L1,−1, 1, 0, 0, n odd;

11

(ii) Ln−3,−Ln−4, . . . ,−L2, (L1 + 1),−1, 0, 0, n even,

where L1, L2, . . . denote the Lucas numbers 1, 3, 4, 7, . . .

These multipliers are the unique vectors of least length. (This is a special case of a more general
result of the third author [19], where Fn, . . . , Fn+m is treated.) The length–squared of the multipliers
is L2n−5+1 in both cases. (In practice, the LLL-based algorithms compute these minimal multipliers.)

These results give bounds for extended gcd multipliers in terms of Euclidean norms. Since, with
φ = 1+

√
5

2
, L2n−5 + 1 ∼ φ2n−5 ∼ φ−5

√
5F2n it follows that a general upper bound for the Euclidean

norm of the multiplier vector in terms of the initial numbers di must be at least O(
√

max{di}). Also,

the length of the vector (Fn, Fn+1, . . . , F2n) is of the same order of magnitude as F2n, so a general
upper bound for the length of the multipliers in terms of the Euclidean length of the input, l say, is
at least O(

√
l).

A range of random type extended gcd examples is presented in [12].

For a Hermite normal form example, take G = [gij] to be the 10 × 10 matrix defined by gij =
i3 ∗ j2 + i+ j:

G =



3 7 13 21 31 43 57 73 91 111
11 36 77 134 207 296 401 522 659 812
31 113 249 439 683 981 1333 1739 2199 2713
69 262 583 1032 1609 2314 3147 4108 5197 6414

131 507 1133 2009 3135 4511 6137 8013 10139 12515
223 872 1953 3466 5411 7788 10597 13838 17511 21616
351 1381 3097 5499 8587 12361 16821 21967 27799 34317
521 2058 4619 8204 12813 18446 25103 32784 41489 51218
739 2927 6573 11677 18239 26259 35737 46673 59067 72919

1011 4012 9013 16014 25015 36016 49017 64018 81019 100020


.

Then the Hermite normal form B of G has three nonzero rows given by

 1 0 7 22 45 76 115 162 217 280
0 1 4 9 16 25 36 49 64 81
0 0 12 36 72 120 180 252 336 432

 .
The unimodular matrix provided by the Kannan–Bachem algorithm is



−48 47 −12 0 0 0 0 0 0 0
−8 10 −5 1 0 0 0 0 0 0
−62 57 −12 −1 0 0 0 0 0 0
982 −2620 2295 −658 1 0 0 0 0 0

1684 −4495 3940 −1130 0 1 0 0 0 0
2662 −7108 6233 −1788 0 0 1 0 0 0
3962 −10582 9282 −2663 0 0 0 1 0 0
5630 −15040 13195 −3786 0 0 0 0 1 0
7712 −20605 18080 −5188 0 0 0 0 0 1
−3 8 −7 2 0 0 0 0 0 0


whereas that supplied by our algorithm is

12



−10 −8 −5 1 2 3 5 3 0 −4
−2 −1 0 1 −1 0 1 0 1 −1
−15 −11 −4 0 4 5 4 3 1 −5

1 −1 −1 0 2 −1 0 0 0 0
0 1 −1 −1 1 −1 2 −1 0 0
1 0 −1 −1 −1 2 0 1 −1 0
1 0 −2 1 −1 1 −1 1 1 −1
−1 0 1 0 1 1 −1 −2 0 1

1 −1 0 −1 1 0 0 −1 2 −1
1 −2 1 1 −2 0 2 −1 0 0


.

An interesting family of matrices arises in the work of Daberkow [6]. In some ideal class group
work matrices arise with k rows and 10 columns for k ranging from 100 to 150 in steps of 10. We
designate the matrix with k rows by Mk. The maximal magnitude entry in Mk is of the order
11(k−90)/10. Daberkow needs to compute both the Hermite normal form and a transforming matrix.
We tabulate the maximal magnitude entry in the tranforming matrix (which includes many entries
of this size) for our algorithm using α = 1 in comparison with that of Kannan–Bachem.

Kannan–Bachem LLL HNF
M100 77710953119323250210825968427763925730604 2
M110 19688024435949960842280085386879376037295267254 2
M120 32807912677637850341882990335 4
M130 258209178730643422634648900270488370181908068255159901037863837761499488802313834227 5
M140 8877061573605684598479855792299 9
M150 143547860664185870781020896285 9

8 Conclusions

We have presented new algorithms for extended gcd calculation which compute good multipliers. We
have provided analyses of their performance. We have given examples which show them dramatically
outperforming earlier methods. Related algorithms which compute the Hermite normal form of an
integer are presented with examples showing excellent performance.

REMARK. Implementations of these algorithms are available in the third author’s number theory
calculator program CALC at http://www.maths.uq.edu.au/~krm/. Variants of these algorithms
are available in GAP ([24]) and Magma ([2]).

Acknowledgments

The first two authors were supported by the Australian Research Council. We are grateful to Jean-
Pierre Seifert for helpful discussions.

13

References

[1] W.A. Blankinship, A new version of the Euclidean algorithm, Amer. Math. Mon. 70 (1963)
742–745.

[2] W. Bosma and J. Cannon, Handbook of Magma functions, Department of Pure Mathematics,
Sydney University, 1996.

[3] G.H. Bradley, Algorithm and bound for the greatest common divisor of n integers , Communica-
tions of the ACM 13 (1970) 433–436.

[4] A.J. Brentjes, Multi–dimensional continued fraction algorithms , Mathematisch Centrum, Ams-
terdam 1981.

[5] H. Cohen, A Course in Computational Number Theory , Graduate Text 138, Springer 1993.

[6] M. Daberkow, Ueber die Bestimmung der ganzen Elemente in Radikalerweiterungen algebrais-
cher Zahlkoerper, Dissertation, Tech. Univ. Berlin, Berlin 1995.

[7] F.A. Ficken, Rosser’s generalization of the Euclid algorithm, Duke Math. J. 10 (1943) 355–379.

[8] D. Ford and G. Havas, A new algorithm and refined bounds for extended gcd computation,
Algorithmic Number Theory, Lecture Notes in Computer Science 1122, 145–150, Springer 1996

[9] B.M.M de Weger, Solving exponential Diophantine equations using lattice basis reduction, J.
Number Theory 26 (1987) 325–367.

[10] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion, Springer–Verlag, Berlin 1988.

[11] G. Havas and B.S. Majewski, Hermite normal form computation for integer matrices , Congressus
Numerantium 105 (1994) 87–96.

[12] G. Havas and B.S. Majewski, Extended gcd calculation, Congressus Numerantium 111 (1995)
104–114.

[13] V.E. Hoggatt Jr., Fibonacci and Lucas Numbers , Houghton Mifflin Company, Boston 1969.

[14] C.G.J. Jacobi, Über die Auflösung der Gleichung α1x1 + α2x2 + · · · + αnxn = f · u, J. Reine
Angew. Math. 69 (1868) 1–28.

[15] S. Kertzner, The linear diophantine equation, Amer. Math. Monthly 88 (1981) 200–203.

[16] A.K. Lenstra, H.W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients ,
Math. Ann. 261 (1982) 515–534.

[17] B.S. Majewski and G. Havas, The complexity of greatest common divisor computations , Algo-
rithmic Number Theory, Lecture Notes in Computer Science 877, 184–193, Springer 1994.

[18] B.S. Majewski and George Havas, A solution to the extended gcd problem, ISSAC’95 (Proc.
1995 International Symposium on Symbolic and Algebraic Computation), ACM Press (1995)
248–253.

[19] K.R. Matthews, Minimal multipliers for consecutive Fibonacci numbers , Acta Arith. (1996) 75,
205–218.

14

[20] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory , Cambridge University
Press, 1989.

[21] Barkley Rosser, A Note on the Linear Diophantine Equation, Amer. Math. Monthly 48 (1941)
662–666.

[22] C. Rössner and J.–P. Seifert, The Complexity of Approximate Optima for Greatest Common
Divisor Computations , Algorithmic Number Theory, Lecture Notes in Computer Science 1122,
307–322, Springer 1996

[23] C.P. Schnorr and M. Euchner, Lattice basis reduction: improved practical algorithms and solving
subset sum problems , Lecture Notes in Computer Science 529, 68–85, 1991.

[24] M. Schönert et al., GAP – Groups, Algorithms and Programming, Lehrstuhl D für Mathematik,
RWTH, Aachen, 1996.

[25] C.C. Sims, Computing with finitely presented groups , Cambridge University Press, 1994.

15

