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The unicity conjecture (Dujella 2009)

Let k ≥ 2, k ∈ N. Then the diophantine equation

x2 − (k2 + 1)y2 = k2

has at most one positive solution (x , y) with y < k − 1. We call

such a solution an exceptional solution.

Example. k = 8 is the first k possessing an exceptional solution,
namely (x , y) = (18, 2).

We have verified the conjecture for k ≤ 250.



Cases for which the conjecture has been proved

The conjecture has been proved in the following cases:
Filipin, Fujita and Mignotte:

(a) k2 + 1 = pn or 2pn, p an odd prime: no exceptional solutions.

(b) k = p2i or p2i+1 or 2p2i+1, p an odd prime: no exceptional
solutions.

(c) k = 2p2i , p an odd prime: the exceptional solution is
(2p3i + pi , pi ).

Matthews and Robertson: k2 + 1 = pmqn or 2pmqn, m, n ≥ 1, p

and q distinct odd primes.



The D(−1) 4–tuples conjecture

This states that there do not exist four positive integers such that
the product of any two is one plus a square.



The unicity conjecture implies the D(−1) 4–tuples
conjecture (Dujella)

Assume the unicity conjecture and let a, b, c , d be a
D(−1)-quadruple with 0 < a < b < c < d . Then a = 1 by
Dujella-Fuchs (J. London Math. Soc. 2005) and hence

b = r2 + 1, c = s2 + 1, d = t2 + 1.

Now consider the equation (y2 + 1)(t2 + 1) = x2 + 1, i.e.,

x2 − (t2 + 1)y2 = t2.

By the conjecture, this diophantine equation has at most one
solution with 0 < y < t − 1.

But by assumption, it has at least two solutions with 0 < y < t,
namely, y = r and y = s, and hence we must have s = t − 1.

However this contradicts a gap property (Dujella-Fuchs, Lemma 9)
which implies that d > c2, because the inequality

d = t2 + 1 > c2 = ((t − 1)2 + 1)2

does not hold for any t > 2.



Type 1 and Type 2 solutions

Dujella’s equation can be written as

x2 − y2 = (y2 + 1)k2.

We divide the exceptional solutions into two classes:

The Type 1 solutions are those for which y2 + 1 divides x + y or
x − y , while Type 2 solutions are the remaining ones.

In the range k ≤ 250, there are 23, 862, 782 Type 1 and 73, 034
Type 2 exceptional solutions.



Characterisation of Type 1 solutions

Proposition. There is a 1–1 correspondence between the Type 1
solutions (x , y), with x ≡ ǫy (mod y2 + 1), ǫ = ±1 and the integer
pairs (r , s) which satisfy 1 < r < s and

r2 + s2 = k2 + 1

s ≡ ǫ (mod r),

namely

r =
x − ǫy

y2 + 1
, s =

xy + ǫ

y2 + 1
,

where we take ǫ = 1 if y = 1.

Example. k = 8, (x , y) = (18, 2), ǫ = −1, (r , s) = (4, 7).



Example 1: Type 1(a) exceptional solution

These are the (kn, xn, y), where

xn + kn

√
D = y(R + S

√
D)n, n ≥ 1,

and R = 2y2 + 1, S = 2y , D = y2 + 1 and y ≥ 2.

Here
xn ≡ (−1)ny (mod y2 + 1)

and y divides xn.



Example 2: Type 1(b) exceptional solution

These are the (kn, xn, y), where

xn + kn

√
D = (y2 + ǫy + 1 + (y + ǫ)

√
D)(R + S

√
D)n, n ≥ 1,

and where y ≥ 1 if ǫ = 1 and y ≥ 2 if ǫ = −1.

Here
xn ≡ (−1)nǫy (mod y2 + 1),

and gcd(xn, y) = 1.



Types 1(a) and 1(b) give all Type 1 solutions

Theorem. If (k , x , y) is a Type 1 solution, then

(i) either (a) y divides x and y > 1, or (b) gcd(x , y) = 1.

(ii) (k , x , y) is a Type 1(a) solution in case (a) and a Type 1(b)
solution in case (b).



Producing exceptional solutions

The following three functions each create an exceptional solution
(Ki , Xi , Yi ) from an exceptional solution (k , x , y):

(i) g+(k , x , y) = (K1, X1, Y1), Y1 = k ,

(ii) g
−
(k , x , y) = g+(k , x ,−y) = (K2, X2, Y2), Y2 = k ,

(iii) g0(k , x , y) = g+(y , x , k) = (K3, X3, Y3), Y3 = y ,

where

X1 + K1

√

k2 + 1 = (x + y
√

k2 + 1)(2k2 + 1 + 2k
√

k2 + 1)

X2 + K2

√

k2 + 1 = (x − y
√

k2 + 1)(2k2 + 1 + 2k
√

k2 + 1)

X3 + K3

√

y2 + 1 = (x + k
√

y2 + 1)(2y2 + 1 + 2y
√

y2 + 1).

(i) Taking norms gives X 2
i − (Y 2

i + 1)K 2
i = Y 2

i .

(ii) gcd(Xi , Yi ) = gcd(x , y) and Ki > k for all i .



Generating the Type 1(a) solutions with g0

Proposition. Type 1(a) solutions (kn, xn, y),

xn + kn

√
D = y(R + S

√
D)n, y ≥ 2,

where R = 2y2 + 1, S = 2y , D = y2 + 1, can be expressed in terms
of g+ and g0:

(i) (k1, x1, y) = g+(y , y , 0),

(ii) (kn+1, xn+1, y) = g0(kn, xn, y), n ≥ 1.



Generating the Type 1(b) solutions with g0

Proposition. Type 1(b) solutions (kn, xn, y),

xn + kn

√
D = (y2 + ǫy + 1 + (y + ǫ)

√

y2 + 1)(R + S
√

D)n,

where R = 2y2 + 1, S = 2y , D = y2 + 1, and where y ≥ 1 if ǫ = 1
and y ≥ 2 if ǫ = −1, can be expressed in terms of g+ and g0:

(i) (k1, x1, y) = g+(y , y2 + ǫy + 1, y + ǫ),

(ii) (kn+1, xn+1, y) = g0(kn, xn, y), n ≥ 1.



Generating Type 2 exceptional solutions

Proposition.

(i) Suppose that (k , x , y) is an exceptional solution.
Then g+(k , x , y) and g

−
(k , x , y) are Type 2 exceptional

solutions.

(ii) Suppose that (k , x , y) is a Type 2 exceptional solution.
Then g0(k , x , y) is also Type 2 exceptional solution.



Jim White’s forest of exceptional solutions

This is constructed recursively from the trivial solutions

(i) (t, t, 0), t ≥ 2,

(ii) (t, t2 − t + 1, t − 1), t ≥ 2,

(iii) (t, t2 + t + 1, t + 1), t ≥ 1.

First apply g+ to each trivial solution, thereby producing a Type 1
exceptional solution. Then apply

g+ (ր), g0 (−→), g
−

(ց)

recursively to each exceptional solution. In each case, this
produces a tree of exceptional solutions (k , x , y) in which gcd(x , y)
is constant. The Type 1 solutions are coloured red.



Example: Root node type (t, t, 0), t >= 2

(2,2,0)

(8,18,2) (144,322,2)

(546,4402,8)

(30,242,8)

(175682,25298818,144)
(2584,5778,2)
(9790,1409794,144)

(7742,62418,8)
(28928,868322,30)

(112,3362,30)

(9576848,5228967778,546)

(140866,1135698,8)
(37120,20267554,546)

Figure: Tree fragment starting from (t, t, 0) = (2, 2, 0).



Example: Root node type (t, t2 − t + 1, t − 1), t ≥ 2

(2,3,1)

(21,47,2) (377,843,2)

(3740,78629,21)

(208,4373,21)

(1204140,453962377,377)
(6765,15127,2)
(67104,25298297,377)

(367330,7722671,21)
(3636277,756354357,208)

(2059,428277,208)

(1175624141,4396834444509,3740)

(6604838,138858767,21)
(665699,2489714349,3740)

Figure: Tree fragment starting from (t, t2 − t + 1, t − 1) = (2, 3, 1).



Example: Root node type (t, t2 + t + 1, t + 1), t ≥ 1

(1,3,2)

(12,17,1) (70,99,1)

(697,8393,12)

(119,1433,12)

(23661,1656439,70)
(408,577,1)
(4059,284159,70)

(68783,828257,12)
(680930,81033531,119)

(1178,140187,119)

(23359270,16281427947,697)

(402865,4851137,12)
(40414,28168587,697)

Figure: Tree fragment with root node (t, t2 + t + 1, t + 1) = (1, 3, 2).



Example: Tree fragment of (k(t), x(t), y(t)) starting from
(t, t, 0)

(t,t,0)

(2t2
,2t3+t,t) (8t4+4t2

,8t5+8t3+t,t)

(16t5+4t3+t,32t7+8t5+6t3+t,2t2)

(4t3
−t,8t5

−2t3+t,2t2)



Example: (k(t), x(t), y(t)) from (t, t2 + t + 1, t + 1)

(t,t2+t+1,t+1)

(4t3+4t2+3t+1,4t4+4t3+5t2+3t+1,t) (k2(t),x2(t),y2(t))

(k1(t),x1(t),y1(t)

(k3(t),x3(t),y3(t))

k1(t) =64t7+128t6+176t5+160t4+104t3+48t2+15t+2

x1(t) =256t10+768t9+1408t8+1792t7+1712t6+1264t5+732t4+324t3+109t2+25t+3

y1(t) =4t3+4t2+3t+1

k2(t) =16t5+16t4+20t3+12t2+5t+1

x2(t) =16t6+16t5+28t4+20t3+13t2+5t+1

y2(t) =t

k3(t) =16t5+32t4+36t3+24t2+9t+2

x3(t) =64t8+192t7+320t6+352t5+272t4+152t3+61t2+17t+3

y3(t) =4t3+4t2+3t+1.



Example: (k(t), x(t), y(t)) from (t, t2 − t + 1, t − 1)

(t,t2
−t+1,t−1)

(4t3
−4t2+3t−1,4t4

−4t3+5t2
−3t+1,t) (k2(t),x2(t),y2(t))

(k1(t),x1(t),y1(t)

(k3(t),x3(t),y3(t))

k1(t) =64t7
−128t6+176t5

−160t4+104t3
−48t2+15t−2

x1(t) =256t10
−768t9+1408t8

−1792t7+1712t6
−1264t5+732t4

−324t3+109t2
−25t+3

y1(t) =4t3
−4t2+3t−1

k2(t) =16t5
−16t4+20t3

−12t2+5t−1

x2(t) =16t6
−16t5+28t4

−20t3+13t2
−5t+1

y2(t) =t

k3(t) =16t5
−32t4+36t3

−24t2+9t−2

x3(t) =64t8
−192t7+320t6

−352t5+272t4
−152t3+61t2

−17t+3

y3(t) =4t3
−4t2+3t−1.



All exceptional solutions are in the forest

This follows from :
Lemma. Let E be the set of exceptional solutions (K , X , Y ). Then
with T = RK − SX , where R = 2Y 2 + 1 and S = 2Y ,

(i) g0 maps E 1–1 onto {(K , X , Y ) ∈ E |Y + 1 < T}.
(ii) g+ maps E 1–1 onto {(K , X , Y ) ∈ E |0 < T < Y − 1}.
(iii) g

−
maps E 1–1 onto {(K , X , Y ) ∈ E | − (Y − 1) < T < 0}.

(iv) g+ maps {(t, t, 0)|t ≥ 2} 1–1 onto {(K , X , Y ) ∈ E |T = 0}.
(v) g+ maps {(t, t2 − t + 1, t − 1)|t ≥ 2} 1–1 onto

{(K , X , Y ) ∈ E |T = Y − 1}.
(vi) g+ maps {(t, t2 + t + 1, t + 1)|t ≥ 1} 1–1 onto

{(K , X , Y ) ∈ E |T = Y + 1}.



All exceptional solutions are in the forest

The following function h takes an exceptional solution (K , X , Y )
and either produces another exceptional solution (k , x , y) with
k < K , or else creates a trivial solution.

h(K , X , Y ) =











g−1
0 (K , X , Y ) if Y + 1 < T

g−1
+ (K , X , Y ) if 0 ≤ T ≤ Y + 1, T 6= Y

g−1
−

(K , X , Y ) if −(Y − 1) < T < 0.

Repeated application of h will eventually lead to a trivial solution.



The exceptional solutions are polynomials in t

It is clear that the exceptional solutions have the form
(K (t), X (t), Y (t)), where the components are polynomials in t

with integer coefficients, arising from the three types of root
nodes:

(i) (t, t, 0), t ≥ 2,

(ii) (t, t2 − t + 1, t − 1), t ≥ 2,

(iii) (t, t2 + t + 1, t + 1), t ≥ 1.



Expressing x , y , k in terms of d , a, b, p, q

Theorem. Suppose (x , y) is a positive solution of Dujella’s
equation x2 − (k2 + 1)y2 = k2. Let d = gcd(x + k , x − k) and
define positive integers a and b by

a = gcd((x + k)/d , k2 + 1), b = gcd((x − k)/d , k2 + 1).

Then
(x + k)/da = p2, (x − k)/db = q2,

where p and q are integers. Also

(i) x = d(ap2 + bq2)/2, y = dpq,

(ii) ap2 − bq2 = 2k/d , gcd(p, q) = 1,

(iii) ab = k2 + 1, gcd(a, b) = 1,

(v) k odd =⇒ d even.



Restrictions on a, b and d for an exceptional solution

Proposition. If (k , x , y) is an exceptional solution and
d = gcd(x + k , x − k), then

(i) d 6= k , d 6= 2k ,

(ii) a > 2, b > 2.



p and q are small for an exceptional solution

Proposition. For an exceptional solution (k , x , y), p and q satisfy
the following inequalities:

p2 < (k2 + 1)/da, q2 < (k − 1)2/db.

Hence p < k and q < k .

Proof. If (k , x , y) is an exceptional solution, then y < k − 1, so
x < k2 − k + 1. Hence

p2 = (x + k)/da < (k2 + 1)/da,

q2 = (x − k)/db < (k − 1)2/db.



Connections with continued fractions

Proposition. Consider the equation

ap2 − bq2 = ±2k/d ,

where a < b, D = ab = k2 + 1, gcd(a, b) = 1 = gcd(p, q) and d

divides 2k . Let (Pm +
√

D)/Qm denote the m–th complete
quotient in the continued fraction expansion of

√
D/a =

√

b/a,
with P0 = 0 and Q0 = a.

(i) If d ≥ 2, then p/q is a convergent Am/Bm of
√

b/a and

Qm+1 = 2k/d .

(ii) If d = 1, then p/q = (Am + eAm−1)/(Bm + eBm−1), where
e = ±1. Also

|Qm − Qm+1 + 2ePm+1| = 2k .



Some properties of the continued fraction of
√

b/a

Proposition. Suppose 1 < a < b, gcd(a, b) = 1, ab = k2 + 1. Then
the continued fraction of

√

b/a is periodic:

√

b/a = [a0, a1, . . . , al−1, 2a0].

and the period–length l is odd. Also

(i) Al−1/Bl−1 = k/a.

(ii) Al−2/Bl−2 = (b − ka0)/(k − aa0).

(iii) Al/Bl = (b + ka0)/(k + aa0).



A parity conjecture

If ap2 − bq2 = 2k has a primitive solution (p, q), where
D = ab = k2 + 1, k even, gcd(a, b) = 1 and 2 < a < b, then all Qi

are odd. Equivalently, using the identity

QiQi−1 = D − P2
i ,

and the fact that if k is even, then D is odd, the conjecture is
equivalent to the Pi being even. This in turn is equivalent to all
partial quotients ai being even, by virtue of the identity

Pi+1 = aiQi − Pi .



The unicity conjecture restated in terms of a family of
diophantine equations

Conjecture. Consider the family of equations

ap2 − bq2 = ±2k/d , (1)

where d divides 2k (with d even if k is odd and d 6= k , d 6= 2k)
and where gcd(a, b) = 1, D = ab = k2 + 1, 2 < a < b.

(i) Then there is at most one (a, b, d) for which solubility occurs
with gcd(p, q) = 1.

(ii) In the case of solubility, there is exactly one solution (p, q) with
dpq < k − 1.



Example: k = 8
Here D = k2 + 1 = 65 and only (a, b, d) = (5, 13, 2) give solubility
of ap2 − bq2 = ±2k/d with 2 < a < b, ab = 65, gcd(a, b) = 1.

m am (Pm +
√

D)/Qm Am/Bm

0 1 (0 +
√

65)/5 1/1

1 1 (5 +
√

65)/8 2/1

2 1 (3 +
√

65)/7 3/2

3 1 (4 +
√

65)/7 5/3

4 1 (3 +
√

65)/8 8/5

5 2 (5 +
√

65)/5 21/13

6 1 (5 +
√

65)/8 29/18

5A2
0 − 13B2

0 = (−1)1Q1 = −8 = −2k/d

5A2
3 − 13B2

3 = (−1)4Q4 = 8 = 2k/d .



Example k = 8 continued

Then (p0, q0) = (A0, B0) = (1, 1) is the smallest primitive solution
of 5p2 − 13q2 = −8, while (p1, q1) = (A3, B3) = (5, 3) is the
smallest primitive solution of 5p2 − 13q2 = 8.

Also (p0, q0) gives the unique exceptional solution of
x2 − 65y2 = 64:

(x0, y0) = (d(ap2
0 + bq2

0)/2, dp0q0) = (18, 2).



k = 12

Here D = k2 + 1 = 145 and only (a, b, d) = (5, 29, 1) give
solubility of ap2 − bq2 = ±2k/d with 2 < a < b, ab = 145,
gcd(a, b) = 1.

m am (Pm +
√

D)/Qm Am/Bm

0 2 (0 +
√

145)/5 2/1

1 2 (10 +
√

145)/9 5/2

2 2 (8 +
√

145)/9 12/5

3 4 (10 +
√

145)/5 53/22

4 2 (10 +
√

145)/9 118/49

From the first period,

5(A0 − A
−1)

2 − 29(B0 − B
−1)

2 = (−1)0(Q0 − Q1 − 2P1) = −24 = −2k

5(A2 + A1)
2 − 29(B2 + B1)

2 = (−1)2(Q2 − Q3 + 2P3) = 24 = 2k .



Example k = 12 continued

Then (p0, q0) = (A0 − A
−1, B0 − B

−1) = (1, 1) is the smallest
primitive solution of 5p2 − 29q2 = −24, while
(p1, q1) = (A2 + A1, B2 + B1) = (17, 7) is the smallest primitive
solution of 5p2 − 29q2 = 24.

Also (p0, q0) gives the unique exceptional solution of
x2 − 145y2 = 144:

(x0, y0) = (d(ap2
0 + bq2

0)/2, dp0q0) = (17, 1).



An example from the forest

(k , x , y) = g+(t, t2 + t + 1, t + 1), t ≥ 1. Then

k = 4t3 + 4t2 + 3t + 1, x = 4t4 + 4t3 + 5t2 + 3t + 1, y = t.

d =

{

1 if t is odd

2 if t is even,

a =

{

(4t4 + 8t3 + 9t2 + 6t + 2)/2 if t is even

4t4 + 8t3 + 9t2 + 6t + 2 if t is odd,

b =

{

8t2 + 2 if t is even

4t2 + 1 if t is odd.



Forest example continued

(i) If t is even,

√

b/a = [0, t/2, 1, 1, t − 1, 1, 1, t − 1, 1, 1, t], period length 9.

p/q = A1/B1, where A1 = 1, B1 = t/2.

(ii) If t is odd,

√

b/a = [0, t + 1, 2t, 2t, 2t + 2], period length 3.

p/q = (A1 − A0)/(B1 − B0), where A1 − A0 = 1, B1 − B0 = t.

t 1 2 3 4 5

k 12 55 154 333 616



An example from deeper in the forest

(k , x , y) = g
−
g
−
g
−
g+(t, t, 0), t ≥ 2. Then

(k , x , y) = (16t5 − 12t3 + t, 128t9 − 160t7 + 56t5 − 4t3 + t, 8t4 − 4t2)

(d , a, b) = (2t, 16t4 − 4t2 + 1, 16t6 − 20t4 + 5t2 + 1)

(p, q) = (2t2 − 1, 2t).

Also

√

b/a = [t − 1, 1, 2t − 2, 1, 2t − 1, 2t − 1, 1, 2t − 2, 1, 2t − 2],

period length 9 and Q4 = 2k/d = 16t4 − 12t2 + 1, p/q = A3/B3.

t 2 3 4 5 6

k 418 3567 15620 48505 121830



Some exact arithmetic BCmath programs

See
(i) http://www.numbertheory.org/php/dujella_test.html for a
BCmath program which tests the unicity conjecture for a range of k

using the continued fraction of
√

b/a.

(ii) http://www.numbertheory.org/php/exceptionalforest.html
for a BCmath program which enables one to guess the continued fraction
corresponding to an exceptional node (k(t), x(t), y(t)).

(iii) http://www.numbertheory.org/php/dujella_minus.html for a

BCmath program which tests the unicity conjecture by considering the

equivalent diophantine equation X 2 − (k2 + 1)y2 = −k2.

http://www.numbertheory.org/php/dujella_test.html
http://www.numbertheory.org/php/exceptionalforest.html
http://www.numbertheory.org/php/dujella_minus.html

