On a diophantine equation of Andrej Dujella

Keith Matthews

(joint work with John Robertson and Jim White published in Math. Glasnik, 48, number 2 (2013) 265-289.) The unicity conjecture (Dujella 2009)

Let $k \geq 2, k \in \mathbb{N}$. Then the diophantine equation

$$x^2 - (k^2 + 1)y^2 = k^2$$

has at most one positive solution (x, y) with y < k - 1. We call such a solution an *exceptional* solution.

Example. k = 8 is the first k possessing an exceptional solution, namely (x, y) = (18, 2).

We have verified the conjecture for $k \leq 2^{50}$.

Cases for which the conjecture has been proved

The conjecture has been proved in the following cases: Filipin, Fujita and Mignotte:

(a) k² + 1 = pⁿ or 2pⁿ, p an odd prime: no exceptional solutions.
(b) k = p²ⁱ or p²ⁱ⁺¹ or 2p²ⁱ⁺¹, p an odd prime: no exceptional solutions.

(c)
$$k = 2p^{2i}$$
, p an odd prime: the exceptional solution is $(2p^{3i} + p^i, p^i)$.

Matthews and Robertson: $k^2 + 1 = p^m q^n$ or $2p^m q^n$, $m, n \ge 1$, p and q distinct odd primes.

The D(-1) 4-tuples conjecture

This states that there do not exist four positive integers such that the product of any two is one plus a square.

The unicity conjecture implies the D(-1) 4-tuples conjecture (Dujella)

Assume the unicity conjecture and let a, b, c, d be a D(-1)-quadruple with 0 < a < b < c < d. Then a = 1 by Dujella-Fuchs (J. London Math. Soc. 2005) and hence

$$b = r^2 + 1, c = s^2 + 1, d = t^2 + 1.$$

Now consider the equation $(y^2 + 1)(t^2 + 1) = x^2 + 1$, i.e., $x^2 - (t^2 + 1)y^2 = t^2$.

By the conjecture, this diophantine equation has at most one solution with 0 < y < t - 1.

But by assumption, it has at least two solutions with 0 < y < t, namely, y = r and y = s, and hence we must have s = t - 1.

However this contradicts a gap property (Dujella-Fuchs, Lemma 9) which implies that $d > c^2$, because the inequality

$$d = t^2 + 1 > c^2 = ((t - 1)^2 + 1)^2$$

does not hold for any t > 2.

Dujella's equation can be written as

$$x^2 - y^2 = (y^2 + 1)k^2.$$

We divide the exceptional solutions into two classes:

The Type 1 solutions are those for which $y^2 + 1$ divides x + y or x - y, while Type 2 solutions are the remaining ones.

In the range $k \le 2^{50}$, there are 23,862,782 Type 1 and 73,034 Type 2 exceptional solutions.

Characterisation of Type 1 solutions

Proposition. There is a 1–1 correspondence between the Type 1 solutions (x, y), with $x \equiv \epsilon y \pmod{y^2 + 1}$, $\epsilon = \pm 1$ and the integer pairs (r, s) which satisfy 1 < r < s and

$$r^2 + s^2 = k^2 + 1$$

$$s \equiv \epsilon \pmod{r},$$

namely

$$r = rac{x - \epsilon y}{y^2 + 1}, \quad s = rac{xy + \epsilon}{y^2 + 1},$$

where we take $\epsilon = 1$ if y = 1.

Example. $k = 8, (x, y) = (18, 2), \epsilon = -1, (r, s) = (4, 7).$

Example 1: Type 1(a) exceptional solution

These are the (k_n, x_n, y) , where

$$x_n + k_n \sqrt{D} = y(R + S\sqrt{D})^n, n \ge 1,$$

and $R = 2y^2 + 1$, S = 2y, $D = y^2 + 1$ and $y \ge 2$. Here

$$x_n \equiv (-1)^n y \pmod{y^2+1}$$

and y divides x_n .

Example 2: Type 1(b) exceptional solution

These are the (k_n, x_n, y) , where

$$x_n + k_n\sqrt{D} = (y^2 + \epsilon y + 1 + (y + \epsilon)\sqrt{D})(R + S\sqrt{D})^n, n \ge 1,$$

and where $y \ge 1$ if $\epsilon = 1$ and $y \ge 2$ if $\epsilon = -1$.

Here

$$x_n \equiv (-1)^n \epsilon y \pmod{y^2+1},$$

and $gcd(x_n, y) = 1$.

Types 1(a) and 1(b) give all Type 1 solutions

Theorem. If (k, x, y) is a Type 1 solution, then (i) either (a) y divides x and y > 1, or (b) gcd(x, y) = 1. (ii) (k, x, y) is a Type 1(a) solution in case (a) and a Type 1(b) solution in case (b).

Producing exceptional solutions

The following three functions each create an exceptional solution (K_i, X_i, Y_i) from an exceptional solution (k, x, y): (i) $g_+(k, x, y) = (K_1, X_1, Y_1), Y_1 = k$, (ii) $g_-(k, x, y) = g_+(k, x, -y) = (K_2, X_2, Y_2), Y_2 = k$, (iii) $g_0(k, x, y) = g_+(y, x, k) = (K_3, X_3, Y_3), Y_3 = y$, where

$$\begin{aligned} X_1 + K_1\sqrt{k^2 + 1} &= (x + y\sqrt{k^2 + 1})(2k^2 + 1 + 2k\sqrt{k^2 + 1})\\ X_2 + K_2\sqrt{k^2 + 1} &= (x - y\sqrt{k^2 + 1})(2k^2 + 1 + 2k\sqrt{k^2 + 1})\\ X_3 + K_3\sqrt{y^2 + 1} &= (x + k\sqrt{y^2 + 1})(2y^2 + 1 + 2y\sqrt{y^2 + 1}). \end{aligned}$$

(i) Taking norms gives
$$X_i^2 - (Y_i^2 + 1)K_i^2 = Y_i^2$$
.
(ii) $gcd(X_i, Y_i) = gcd(x, y)$ and $K_i > k$ for all *i*.

Generating the Type 1(a) solutions with g_0

Proposition. Type 1(a) solutions (k_n, x_n, y) ,

$$x_n + k_n \sqrt{D} = y(R + S\sqrt{D})^n, y \ge 2,$$

where $R = 2y^2 + 1$, S = 2y, $D = y^2 + 1$, can be expressed in terms of g_+ and g_0 :

(i)
$$(k_1, x_1, y) = g_+(y, y, 0)$$
,
(ii) $(k_{n+1}, x_{n+1}, y) = g_0(k_n, x_n, y), n \ge 1$.

Generating the Type 1(b) solutions with g_0

Proposition. Type 1(b) solutions (k_n, x_n, y) ,

$$x_n + k_n \sqrt{D} = (y^2 + \epsilon y + 1 + (y + \epsilon)\sqrt{y^2 + 1})(R + S\sqrt{D})^n,$$

where $R = 2y^2 + 1$, S = 2y, $D = y^2 + 1$, and where $y \ge 1$ if $\epsilon = 1$ and $y \ge 2$ if $\epsilon = -1$, can be expressed in terms of g_+ and g_0 : (i) $(k_1, x_1, y) = g_+(y, y^2 + \epsilon y + 1, y + \epsilon)$, (ii) $(k_{n+1}, x_{n+1}, y) = g_0(k_n, x_n, y)$, $n \ge 1$.

Generating Type 2 exceptional solutions

Proposition.

- (i) Suppose that (k, x, y) is an exceptional solution. Then $g_+(k, x, y)$ and $g_-(k, x, y)$ are Type 2 exceptional solutions.
- (ii) Suppose that (k, x, y) is a Type 2 exceptional solution. Then $g_0(k, x, y)$ is also Type 2 exceptional solution.

Jim White's forest of exceptional solutions

This is constructed recursively from the trivial solutions

(i)
$$(t, t, 0), t \ge 2$$
,
(ii) $(t, t^2 - t + 1, t - 1), t \ge 2$,
(iii) $(t, t^2 + t + 1, t + 1), t \ge 1$.

First apply g_+ to each trivial solution, thereby producing a Type 1 exceptional solution. Then apply

$$g_+$$
 (\nearrow), g_0 (\longrightarrow), g_- (\searrow)

recursively to each exceptional solution. In each case, this produces a tree of exceptional solutions (k, x, y) in which gcd(x, y) is constant. The Type 1 solutions are coloured red.

Example: Root node type $(t, t, 0), t \ge 2$

Figure: Tree fragment starting from (t, t, 0) = (2, 2, 0).

Example: Root node type $(t, t^2 - t + 1, t - 1), t \ge 2$

Figure: Tree fragment starting from $(t, t^2 - t + 1, t - 1) = (2, 3, 1)$.

Example: Root node type $(t, t^2 + t + 1, t + 1), t \ge 1$

Figure: Tree fragment with root node $(t, t^2 + t + 1, t + 1) = (1, 3, 2)$.

Example: Tree fragment of (k(t), x(t), y(t)) starting from (t, t, 0)

$$(16t^{5}+4t^{3}+t,32t^{7}+8t^{5}+6t^{3}+t,2t^{2})$$

$$(2t^{2},2t^{3}+t,t) \rightarrow (8t^{4}+4t^{2},8t^{5}+8t^{3}+t,t)$$

$$(t,t,0) \qquad (4t^{3}-t,8t^{5}-2t^{3}+t,2t^{2})$$

Example: (k(t), x(t), y(t)) from $(t, t^2 + t + 1, t + 1)$ $(k_1(t),x_1(t),y_1(t))$ $(4t^3+4t^2+3t+1,4t^4+4t^3+5t^2+3t+1,t) \rightarrow (k_2(t),x_2(t),y_2(t))$ $(t,t^2+t+1,t+1)$ $(k_3(t),x_3(t),y_3(t))$ $k_1(t) = 64t^7 + 128t^6 + 176t^5 + 160t^4 + 104t^3 + 48t^2 + 15t + 2$ $x_1(t) = 256t^{10} + 768t^9 + 1408t^8 + 1792t^7 + 1712t^6 + 1264t^5 + 732t^4 + 324t^3 + 109t^2 + 25t + 3$ $y_1(t) = 4t^3 + 4t^2 + 3t + 1$ $k_2(t) = 16t^5 + 16t^4 + 20t^3 + 12t^2 + 5t + 1$ $x_2(t) = 16t^6 + 16t^5 + 28t^4 + 20t^3 + 13t^2 + 5t + 1$ $v_2(t) = t$ $k_3(t) = 16t^5 + 32t^4 + 36t^3 + 24t^2 + 9t + 2$ $x_3(t) = 64t^8 + 192t^7 + 320t^6 + 352t^5 + 272t^4 + 152t^3 + 61t^2 + 17t + 3$ $y_3(t) = 4t^3 + 4t^2 + 3t + 1.$

Example: (k(t), x(t), y(t)) from $(t, t^2 - t + 1, t - 1)$ $(k_1(t), x_1(t), y_1(t))$ $(4t^3-4t^2+3t-1,4t^4-4t^3+5t^2-3t+1,t) \rightarrow (k_2(t),x_2(t),y_2(t))$ $(t,t^2-t+1,t-1)$ $(k_3(t),x_3(t),y_3(t))$ $k_1(t) = 64t^7 - 128t^6 + 176t^5 - 160t^4 + 104t^3 - 48t^2 + 15t - 2$ $x_1(t) = 256t^{10} - 768t^9 + 1408t^8 - 1792t^7 + 1712t^6 - 1264t^5 + 732t^4 - 324t^3 + 109t^2 - 25t + 3$ $v_1(t) = 4t^3 - 4t^2 + 3t - 1$ $k_2(t) = 16t^5 - 16t^4 + 20t^3 - 12t^2 + 5t - 1$ $x_2(t) = 16t^6 - 16t^5 + 28t^4 - 20t^3 + 13t^2 - 5t + 1$ $y_2(t) = t$ $k_3(t) = 16t^5 - 32t^4 + 36t^3 - 24t^2 + 9t - 2$

$$x_{3}(t) = 64t^{8} - 192t^{7} + 320t^{6} - 352t^{5} + 272t^{4} - 152t^{3} + 61t^{2} - 17t + 3$$

$$y_{3}(t) = 4t^{3} - 4t^{2} + 3t - 1.$$

All exceptional solutions are in the forest

This follows from : Lemma. Let \mathscr{E} be the set of exceptional solutions (K, X, Y). Then with T = RK - SX, where $R = 2Y^2 + 1$ and S = 2Y, (i) g_0 maps \mathscr{E} 1–1 onto $\{(K, X, Y) \in \mathscr{E} | Y + 1 < T\}$. (ii) g_+ maps \mathscr{E} 1–1 onto $\{(K, X, Y) \in \mathscr{E} | 0 < T < Y - 1\}$. (iii) g_{-} maps \mathscr{E} 1–1 onto $\{(K, X, Y) \in \mathscr{E} | -(Y - 1) < T < 0\}$. (iv) g_+ maps $\{(t, t, 0) | t \ge 2\}$ 1–1 onto $\{(K, X, Y) \in \mathscr{E} | T = 0\}$. (v) g_+ maps { $(t, t^2 - t + 1, t - 1) | t \ge 2$ } 1–1 onto $\{(K, X, Y) \in \mathscr{E} | T = Y - 1\}.$ (vi) g_+ maps { $(t, t^2 + t + 1, t + 1) | t > 1$ } 1–1 onto $\{(K, X, Y) \in \mathscr{E} | T = Y + 1\}.$

All exceptional solutions are in the forest

The following function h takes an exceptional solution (K, X, Y) and either produces another exceptional solution (k, x, y) with k < K, or else creates a trivial solution.

$$h(K, X, Y) = \begin{cases} g_0^{-1}(K, X, Y) & \text{if } Y + 1 < T \\ g_+^{-1}(K, X, Y) & \text{if } 0 \le T \le Y + 1, T \ne Y \\ g_-^{-1}(K, X, Y) & \text{if } -(Y - 1) < T < 0. \end{cases}$$

Repeated application of h will eventually lead to a trivial solution.

It is clear that the exceptional solutions have the form (K(t), X(t), Y(t)), where the components are polynomials in t with integer coefficients, arising from the three types of root nodes:

(i) $(t, t, 0), t \ge 2$, (ii) $(t, t^2 - t + 1, t - 1), t \ge 2$, (iii) $(t, t^2 + t + 1, t + 1), t \ge 1$.

Expressing x, y, k in terms of d, a, b, p, q

Theorem. Suppose (x, y) is a positive solution of Dujella's equation $x^2 - (k^2 + 1)y^2 = k^2$. Let d = gcd(x + k, x - k) and define positive integers *a* and *b* by

$$a = \gcd((x+k)/d, k^2+1), \quad b = \gcd((x-k)/d, k^2+1).$$

Then

$$(x+k)/da = p^2$$
, $(x-k)/db = q^2$,

where p and q are integers. Also

(i)
$$x = d(ap^2 + bq^2)/2$$
, $y = dpq$,
(ii) $ap^2 - bq^2 = 2k/d$, $gcd(p,q) = 1$,
(iii) $ab = k^2 + 1$, $gcd(a, b) = 1$,
(v) $k \text{ odd} \implies d \text{ even.}$

Restrictions on a, b and d for an exceptional solution

Proposition. If (k, x, y) is an exceptional solution and $d = \gcd(x + k, x - k)$, then (i) $d \neq k, d \neq 2k$, (ii) a > 2, b > 2.

p and q are small for an exceptional solution

Proposition. For an exceptional solution (k, x, y), p and q satisfy the following inequalities:

$$p^2 < (k^2+1)/da, \quad q^2 < (k-1)^2/db.$$

Hence p < k and q < k.

Proof. If (k, x, y) is an exceptional solution, then y < k - 1, so $x < k^2 - k + 1$. Hence

$$p^2 = (x+k)/da < (k^2+1)/da,$$

 $q^2 = (x-k)/db < (k-1)^2/db.$

Connections with continued fractions

Proposition. Consider the equation

$$ap^2 - bq^2 = \pm 2k/d,$$

where a < b, $D = ab = k^2 + 1$, gcd(a, b) = 1 = gcd(p, q) and d divides 2k. Let $(P_m + \sqrt{D})/Q_m$ denote the *m*-th complete quotient in the continued fraction expansion of $\sqrt{D}/a = \sqrt{b/a}$, with $P_0 = 0$ and $Q_0 = a$.

(i) If $d \ge 2$, then p/q is a convergent A_m/B_m of $\sqrt{b/a}$ and

$$Q_{m+1}=2k/d.$$

(ii) If d = 1, then $p/q = (A_m + eA_{m-1})/(B_m + eB_{m-1})$, where $e = \pm 1$. Also

$$|Q_m - Q_{m+1} + 2eP_{m+1}| = 2k.$$

Some properties of the continued fraction of $\sqrt{b/a}$

Proposition. Suppose 1 < a < b, gcd(a, b) = 1, $ab = k^2 + 1$. Then the continued fraction of $\sqrt{b/a}$ is periodic:

$$\sqrt{b/a} = [a_0, \overline{a_1, \dots, a_{l-1}, 2a_0}]$$

and the period-length / is odd. Also

(i)
$$A_{l-1}/B_{l-1} = k/a$$
.
(ii) $A_{l-2}/B_{l-2} = (b - ka_0)/(k - aa_0)$.
(iii) $A_l/B_l = (b + ka_0)/(k + aa_0)$.

A parity conjecture

If $ap^2 - bq^2 = 2k$ has a primitive solution (p, q), where $D = ab = k^2 + 1$, k even, gcd(a, b) = 1 and 2 < a < b, then all Q_i are odd. Equivalently, using the identity

$$Q_i Q_{i-1} = D - P_i^2,$$

and the fact that if k is even, then D is odd, the conjecture is equivalent to the P_i being even. This in turn is equivalent to all partial quotients a_i being even, by virtue of the identity

$$P_{i+1} = a_i Q_i - P_i.$$

The unicity conjecture restated in terms of a family of diophantine equations

Conjecture. Consider the family of equations

$$ap^2 - bq^2 = \pm 2k/d, \qquad (1)$$

where d divides 2k (with d even if k is odd and $d \neq k, d \neq 2k$) and where $gcd(a, b) = 1, D = ab = k^2 + 1, 2 < a < b$.

(i) Then there is at most one (a, b, d) for which solubility occurs with gcd(p, q) = 1.

(ii) In the case of solubility, there is exactly one solution (p, q) with dpq < k - 1.

Example: k = 8

Here $D = k^2 + 1 = 65$ and only (a, b, d) = (5, 13, 2) give solubility of $ap^2 - bq^2 = \pm 2k/d$ with 2 < a < b, ab = 65, gcd(a, b) = 1.

т	a _m	$(P_m + \sqrt{D})/Q_m$	A_m/B_m
0	1	$(0+\sqrt{65})/5$	1/1
1	1	$(5 + \sqrt{65})/8$	2/1
2	1	$(3 + \sqrt{65})/7$	3/2
3	1	$(4 + \sqrt{65})/7$	5/3
4	1	$(3 + \sqrt{65})/8$	8/5
5	2	$(5+\sqrt{65})/5$	21/13
6	1	$(5+\sqrt{65})/8$	29/18

$$5A_0^2 - 13B_0^2 = (-1)^1 Q_1 = -8 = -2k/d$$

$$5A_3^2 - 13B_3^2 = (-1)^4 Q_4 = 8 = 2k/d.$$

Example k = 8 continued

Then $(p_0, q_0) = (A_0, B_0) = (1, 1)$ is the smallest primitive solution of $5p^2 - 13q^2 = -8$, while $(p_1, q_1) = (A_3, B_3) = (5, 3)$ is the smallest primitive solution of $5p^2 - 13q^2 = 8$.

Also (p_0, q_0) gives the unique exceptional solution of $x^2 - 65y^2 = 64$:

$$(x_0, y_0) = (d(ap_0^2 + bq_0^2)/2, dp_0q_0) = (18, 2).$$

k = 12

Here $D = k^2 + 1 = 145$ and only (a, b, d) = (5, 29, 1) give solubility of $ap^2 - bq^2 = \pm 2k/d$ with 2 < a < b, ab = 145, gcd(a, b) = 1.

т	a _m	$(P_m + \sqrt{D})/Q_m$	A_m/B_m
0	2	$(0+\sqrt{145})/5$	2/1
1	2	$(10 + \sqrt{145})/9$	5/2
2	2	$(8 + \sqrt{145})/9$	12/5
3	4	$(10+\sqrt{145})/5$	53/22
4	2	$(10+\sqrt{145})/9$	118/49

From the first period,

$$5(A_0 - A_{-1})^2 - 29(B_0 - B_{-1})^2 = (-1)^0(Q_0 - Q_1 - 2P_1) = -24 = -2k$$

$$5(A_2 + A_1)^2 - 29(B_2 + B_1)^2 = (-1)^2(Q_2 - Q_3 + 2P_3) = 24 = 2k.$$

Example k = 12 continued

Then $(p_0, q_0) = (A_0 - A_{-1}, B_0 - B_{-1}) = (1, 1)$ is the smallest primitive solution of $5p^2 - 29q^2 = -24$, while $(p_1, q_1) = (A_2 + A_1, B_2 + B_1) = (17, 7)$ is the smallest primitive solution of $5p^2 - 29q^2 = 24$.

Also (p_0, q_0) gives the unique exceptional solution of $x^2 - 145y^2 = 144$:

$$(x_0, y_0) = (d(ap_0^2 + bq_0^2)/2, dp_0q_0) = (17, 1).$$

An example from the forest

$$(k, x, y) = g_+(t, t^2 + t + 1, t + 1), t \ge 1$$
. Then
 $k = 4t^3 + 4t^2 + 3t + 1, \quad x = 4t^4 + 4t^3 + 5t^2 + 3t + 1, y = t.$

$$d = \begin{cases} 1 & \text{if } t \text{ is odd} \\ 2 & \text{if } t \text{ is even}, \end{cases}$$
$$a = \begin{cases} (4t^4 + 8t^3 + 9t^2 + 6t + 2)/2 & \text{if } t \text{ is even} \\ 4t^4 + 8t^3 + 9t^2 + 6t + 2 & \text{if } t \text{ is odd}, \end{cases}$$
$$b = \begin{cases} 8t^2 + 2 & \text{if } t \text{ is even} \\ 4t^2 + 1 & \text{if } t \text{ is odd}. \end{cases}$$

Forest example continued

(i) If t is even,

$$\sqrt{b/a} = [0, t/2, \overline{1, 1, t - 1, 1, 1, t - 1, 1, 1, t}]$$
, period length 9.
 $p/q = A_1/B_1$, where $A_1 = 1, B_1 = t/2$.

(ii) If t is odd,

$$\sqrt{b/a} = [0, t+1, \overline{2t, 2t, 2t+2}]$$
, period length 3.

 $p/q = (A_1 - A_0)/(B_1 - B_0)$, where $A_1 - A_0 = 1, B_1 - B_0 = t$.

t	1	2	3	4	5
k	12	55	154	333	616

An example from deeper in the forest

$$(k, x, y) = g_{-}g_{-}g_{-}g_{+}(t, t, 0), t \ge 2$$
. Then
 $(k, x, y) = (16t^{5} - 12t^{3} + t, 128t^{9} - 160t^{7} + 56t^{5} - 4t^{3} + t, 8t^{4} - 4t^{2})$
 $(d, a, b) = (2t, 16t^{4} - 4t^{2} + 1, 16t^{6} - 20t^{4} + 5t^{2} + 1)$
 $(p, q) = (2t^{2} - 1, 2t).$

Also

$$\sqrt{b/a} = [t - 1, \overline{1, 2t - 2, 1, 2t - 1, 2t - 1, 1, 2t - 2, 1, 2t - 2}],$$

period length 9 and $Q_4 = 2k/d = 16t^4 - 12t^2 + 1$, $p/q = A_3/B_3$.

t	2	3	4	5	6
k	418	3567	15620	48505	121830

Some exact arithmetic BCmath programs

See

(i) http://www.numbertheory.org/php/dujella_test.html for a BCmath program which tests the unicity conjecture for a range of k using the continued fraction of $\sqrt{b/a}$.

(ii) http://www.numbertheory.org/php/exceptionalforest.html for a BCmath program which enables one to guess the continued fraction corresponding to an exceptional node (k(t), x(t), y(t)).

(iii) http://www.numbertheory.org/php/dujella_minus.html for a BCmath program which tests the unicity conjecture by considering the equivalent diophantine equation $X^2 - (k^2 + 1)y^2 = -k^2$.