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The unicity conjecture (Dujella 2009)

Let k > 2,k € N. Then the diophantine equation
x? — (kK* +1)y? = k?

has at most one positive solution (x,y) with y < k — 1. We call
such a solution an exceptional solution.

Example. k = 8 is the first k possessing an exceptional solution,
namely (x,y) = (18,2).

We have verified the conjecture for k < 250,



Cases for which the conjecture has been proved

The conjecture has been proved in the following cases:

Filipin, Fujita and Mignotte:

(a) k> 41 = p" or 2p”, p an odd prime: no exceptional solutions.
(b) k = p? or p?*! or 2p?*1 p an odd prime: no exceptional

solutions.
(c) k= 2p% p an odd prime: the exceptional solution is
(2p3l + plvpl).

Matthews and Robertson: k? +1 = p™q" or 2p™q",m,n > 1, p
and g distinct odd primes.



The D(—1) 4-tuples conjecture

This states that there do not exist four positive integers such that
the product of any two is one plus a square.



The unicity conjecture implies the D(—1) 4—tuples
conjecture (Dujella)
Assume the unicity conjecture and let a, b, c,d be a

D(—1)-quadruple with 0 < a< b< c < d. Then a=1 by
Dujella-Fuchs (J. London Math. Soc. 2005) and hence

b=r’4+1c=s>+1,d=1t>+1.
Now consider the equation (y? +1)(t2 +1) = x> +1, i.e,
x? — (12 +1)y? =12
By the conjecture, this diophantine equation has at most one
solution with 0 <y <t — 1.

But by assumption, it has at least two solutions with 0 < y < t,
namely, y = r and y = s, and hence we must have s =t — 1.

However this contradicts a gap property (Dujella-Fuchs, Lemma 9)
which implies that d > ¢?, because the inequality

d=1t>+1>c%=((t—1)°+1)?
does not hold for any t > 2.



Type 1 and Type 2 solutions

Dujella’s equation can be written as
x? —y? = (y* +1)k%.
We divide the exceptional solutions into two classes:

The Type 1 solutions are those for which y? + 1 divides x + y or
x — y, while Type 2 solutions are the remaining ones.

In the range k < 250, there are 23,862,782 Type 1 and 73,034
Type 2 exceptional solutions.



Characterisation of Type 1 solutions

Proposition. There is a 1-1 correspondence between the Type 1
solutions (x,y), with x = ey (mod y2+ 1),e = £1 and the integer
pairs (r,s) which satisfy 1 < r < s and

rs?=k+1
s =€ (mod r),

namely
X — €y s Xy + €
yf = —/—— =
y2+1 y2+1
where we take e = 1 if y = 1.

Example. k =8,(x,y) =(18,2),e = —1,(r,s) = (4,7).




Example 1: Type 1(a) exceptional solution

These are the (kn, Xn, y), where
Xn + knV/D = y(R+ 5\/5)”, n>1,

and R=2y>+1,S=2y,D=y?>+1andy>2.

Here
X, = (=1)"y  (mod y% +1)

and y divides x,.



Example 2: Type 1(b) exceptional solution

These are the (kn, xn, y), where
Xn+ kaVD = (y* + ey + 1+ (y + €)VD)(R+ SVD)",n > 1,

and where y > 1life=1and y >2if e = —1.

Here
Xp = (—=1)"ey (mod y? + 1),

and ged(x,,y) = 1.



Types 1(a) and 1(b) give all Type 1 solutions

Theorem. If (k,x,y) is a Type 1 solution, then
(i) either (a) y divides x and y > 1, or (b) gecd(x, y) = 1.
(ii) (k,x,y) is a Type 1(a) solution in case (a) and a Type 1(b)
solution in case (b).



Producing exceptional solutions

The following three functions each create an exceptional solution
(Ki, Xi, Y;) from an exceptional solution (k, x, y):

(i) g+(k,X,y) = (K1>X17 Y1)7 Y1 =k,
(i) g-(k,x,y) = g+(k,x, —y) = (K2, X2, Y2), Y2 = k,
(iii) gO(kaX’Y) = ng(YvXa k) = (K3’X37 Y3)7 Y3=y,
where
X1+ KivVk2+1=(x+yVk2+1)(2k* + 1+ 2k k2 4 1)
Xo+ KoV k2 +1=(x—yVk2+1)(2k? + 1+ 2k k2 +1)
Xo K/ 1= (x+ ko2 T D)@y + 142057 7).

(i) Taking norms gives X? — (Y? + 1)K? = Y2
(i) ged(Xi, Yi) = ged(x,y) and K > k for all i.



Generating the Type 1(a) solutions with gy

Proposition. Type 1(a) solutions (kn, Xn, ¥),
Xp + knV/D = y(R+ S\/B)”,y > 2,

where R =2y? 41,5 =2y, D = y? + 1, can be expressed in terms
of g+ and gp:

() (ki,x1,y) = g+(y,y,0),

(i) (knt1,%n+1,Y) = 8o(kn, Xn, ¥),n > 1.



Generating the Type 1(b) solutions with gy

Proposition. Type 1(b) solutions (kn, xn, y),

X+ kaVD = (y? + ey + 14 (y + €)Vy2 + 1)(R + SVD)",

where R=2y?>+1,S=2y,D=y?+1, and where y > 1 ife =1
and y > 2 if e = —1, can be expressed in terms of g, and gp:

(i) (kioxi,y) = gy, y* +ey + 1y +e),

(”) (kn—&-laXn—&-lu)’) = gO(kamY), n 2 1



Generating Type 2 exceptional solutions

Proposition.

(i) Suppose that (k,x,y) is an exceptional solution.
Then gy (k,x,y) and g_(k, x,y) are Type 2 exceptional
solutions.

(i) Suppose that (k,x, y) is a Type 2 exceptional solution.
Then go(k, x,y) is also Type 2 exceptional solution.



Jim White's forest of exceptional solutions

This is constructed recursively from the trivial solutions
(i) (t,1,0),t =2,
(i) (t, 2 —t+1,t—1),t>2,
(i) (t, 2+ t+1,t+1),t>1.
First apply g4 to each trivial solution, thereby producing a Type 1
exceptional solution. Then apply

g () & (—), & (\)

recursively to each exceptional solution. In each case, this
produces a tree of exceptional solutions (k, x, y) in which gecd(x,y)
is constant. The Type 1 solutions are coloured red.



Example: Root node type (t,t,0),t >=2

(9576848,5228967778,546)
(140866,1135698,8)
(37120,20267554,546)

(546,4402,8)

/‘\

# (175682,25298818,144)
(8,18,2) — (144,322,2) ‘— (2584,5778,2)
/4 N (9790,1400794,144)
4 (28928,868322,30)
(2,2,0) (30,242,8) \4(7742,62418,8)

(112,3362,30)
Figure: Tree fragment starting from (t,t,0) = (2,2,0).



Example: Root node type (t,t> —t+1,t —1),t > 2

(1175624141,4396834444509,3740)
(3740,78629,21) _» (6604838,138858767,21)
(665699,2489714349,3740)
(1204140,453962377,377)
(
(
(
(

(21,47,2) — (377,843,2)

/

(2,3,1) (208,4373,21)

6765,15127,2)
67104,25298297,377)

3636277,756354357,208)
367330,7722671,21)

(2059,428277,208)

Figure: Tree fragment starting from (t,t> —t+1,t — 1) = (2,3,1).



Example: Root node type (t, t? +t+1,t+1),t>1

(23359270,16281427947,697)
(697,8393,12) ~» (402865,4851137,12)
(40414,28168587,697)
(23661,1656439,70)
(
(
(
(

(12,17,1) — (70,99,1)

/

(1,3,2) (119,1433,12)

408,577,1)
4059,284159,70)
680930,81033531,119)
68783,828257,12)
(1178,140187,119)

Figure: Tree fragment with root node (t,t> + t+1,t +1) = (1,3,2).



Example: Tree fragment of (k(t), x(t),y(t)) starting from
(t,t,0)

(1685443 4,32t +8t54+-6t3+1,2t2)

(2t22t34-t,t) — (8t*+4t2 8t59+8t3+t,t)

/

(t,t,0) (4t3—t,8t>—2t3+t,2t2)



Example: (k(t),x(t),y(t)) from (t, > +t+1,t+1)
(ke(t)xa(t)ya(t)

(4341213t +1,4t4H43 458243t +1,t) — (ka(t),x2(t),y2(t))

/

(6,2 +t+1,t41)  (k3(t)xs(t).ys(t))

ki(t) =64t7+128t5+176t5+160t*+104t3+48t2+15t+2

256t104+768t%+1408t8+1792t7+1712t04+12641°54+732t*+32413+109t2+25¢+3

X]_(t

y1(t) =4t3+4t2+3t+1

ko(t) =16t°+16t*4+20t3+12t2+5t+1

16
16t°+16t°+28t*+20t3+13t2+5t+1

ya(t
k3(t

16t°+32t* 43613 +24t24+9t+2

x3(t) =64t8+192t7+320t04-352t>+272t4+152t3+61t2+17t+3

)
)
)
)
x2(t)
)
)
) =
)

y3(t) =4t3+4t2+3t+1.



Example: (k(t),x(t),y(t)) from (t,t> —t+1,t—1)
(ke (t)xa(t),y1(t)
(4t3—4t243t—1,4t*—4t345t2-3t+1,t) — (ka(t),x2(t),y2(t))

/

(t,22—t+1,6—1)  (ka(t),x3(t),y3(t))

ki(t) =647 —128t°4176t>—160t*4-104t3 —48t%4+15t—2

x1(t) =256t10-768t9+1408t8 —1792t"+1712t° 12645 4+732t* 3243 +109t2 25t +3
y1(t) =4t3—41243t—1

ko(t) =16t°—16t*420t3—12t2+5t—1

xo(t) =16t9—16t54-28t*—20t3+13t>—5t+1

ya(t) =t

ks(t) =16t°—32t*+36t3—24t2+9t—2

x3(t) =64t8—192t7+320t0—352t5+272t4—152t3+61t>—17t+3

y3(t) =4t3—4t2+3t—1.



All exceptional solutions are in the forest

This follows from :
Lemma. Let & be the set of exceptional solutions (K, X, Y). Then
with T = RK — SX, where R=2Y2+1 and S =2Y,

(i) go maps & 1-1 onto {(K,X,Y)e &Y +1< T}.
(i) g+ maps & 1-1onto {(K,X,Y) e £0< T <Y —1}.
(iii) g— maps & 1-1 onto {(K,X,Y) e &| - (Y —-1) < T < 0}.
(iv) g+ maps {(t,t,0)|t > 2} 1-1 onto {(K,X,Y) € &|T =0}.
(v) gr maps {(t,t> —t+1,t —1)|t > 2} 1-1 onto

(K. X,Y) e & T=Y -1}
(vi) gy maps {(t,t>2+t+1,t +1)|t > 1} 1-1 onto

{(K.X,Y) €& T=Y+1}.



All exceptional solutions are in the forest

The following function h takes an exceptional solution (K, X, Y)
and either produces another exceptional solution (k, x,y) with
k < K, or else creates a trivial solution.

g K, X,Y) ifY+1<T
(K, X,Y)=qg (K, X,Y) f0O<T<Y+1,T#Y
g YK, X,Y) if—(Y-1)<T<0.

Repeated application of h will eventually lead to a trivial solution.



The exceptional solutions are polynomials in t

It is clear that the exceptional solutions have the form
(K(t),X(t), Y(t)), where the components are polynomials in t
with integer coefficients, arising from the three types of root
nodes:

(i) (t,t,0),t>2,
(i) (t,t>? —t+1,t—1),t>2,
(i) (t, 2 +t+1,t+1),t>1.



Expressing x, y, k in terms of d,a, b, p, g

Theorem. Suppose (x,y) is a positive solution of Dujella’s
equation x? — (k? +1)y? = k2. Let d = gcd(x + k,x — k) and
define positive integers a and b by

a=gcd((x + k)/d,k* +1), b=gcd((x — k)/d, k> + 1).
Then
(x+K)/da=p?, (x—k)/db= P,
where p and g are integers. Also
(i) x = d(ap® + bq?)/2, y = dpg,
(i) ap® — bg> = 2k/d, ged(p,q) =1,
(iii) ab=k?>+1, gcd(a,b)=1
(v) k odd = d even.



Restrictions on a, b and d for an exceptional solution

Proposition. If (k,x,y) is an exceptional solution and
d = ged(x + k, x — k), then

(i) d # k,d # 2k,

(i) a>2,b>2.



p and g are small for an exceptional solution

Proposition. For an exceptional solution (k, x,y), p and g satisfy
the following inequalities:

2 < (k*+1)/da, ¢*< (k—1)?/db.

Hence p < k and g < k.

Proof. If (k,x,y) is an exceptional solution, then y < k — 1, so
x < k? — k + 1. Hence

= (x + k)/da < (k* +1)/da,
q° = (x — k)/db < (k — 1)?/db.



Connections with continued fractions
Proposition. Consider the equation
ap® — bg® = +£2k/d,

where a < b, D = ab= k?® + 1, ged(a, b) = 1 = ged(p, g) and d
divides 2k. Let (P, + v'D)/Qn denote the m—th complete

quotient in the continued fraction expansion of v/D/a = \/b/a,
with Pp = 0 and Qg = a.

(i) If d > 2, then p/q is a convergent Ap,/B, of \/b/a and
Qms1 = 2k/d.

(i) f d =1, then p/q = (Am + €Am—1)/(Bm + eBm_1), where
e ==+£1. Also

|Qm - Qm+1 + 26‘Pm+]_’ = 2k.



Some properties of the continued fraction of \/b/a

Proposition. Suppose 1 < a < b,gcd(a, b) = 1,ab = k?> + 1. Then
the continued fraction of /b/a is periodic:

vb/a=1lao,a1,...,a/-1,2ap).

and the period—length [ is odd. Also
(i) A—1/Bj—1 = k/a.

(i) Aj—2/Bi—2 = (b — kag)/(k — aap).

(iii) A;/By = (b+ kao)/(k + aap).




A parity conjecture

If ap? — bg® = 2k has a primitive solution (p, q), where
D = ab= k?®+1, k even, gcd(a, b) =1 and 2 < a < b, then all Q;
are odd. Equivalently, using the identity

QiQi_1=D— P?,

and the fact that if k is even, then D is odd, the conjecture is
equivalent to the P; being even. This in turn is equivalent to all
partial quotients a; being even, by virtue of the identity

Pit1=aiQ; — P;.



The unicity conjecture restated in terms of a family of
diophantine equations

Conjecture. Consider the family of equations

ap® — bg® = £2k/d, (1)
where d divides 2k (with d even if k is odd and d # k, d # 2k)
and where gcd(a, b) =1,D = ab=k?> + 1,2 < a < b.

(i) Then there is at most one (a, b, d) for which solubility occurs
with ged(p, q) = 1.

(i) In the case of solubility, there is exactly one solution (p, g) with
dpg < k —1.



Example: k =8

Here D = k? + 1 = 65 and only (a, b, d) = (5,13, 2) give solubility
of ap? — bg? = +2k/d with 2 < a < b,ab = 65,gcd(a, b) = 1.

mi am ( +\/7)/Qm Am/Bm
01 (0+\F)/5 1/1
1|1 (5+65)/8 2/1
2|1  (3+65)7 3/2
3|1 (4+65)/7 5/3
411 (3++65)/8 8/5
5|2 (5+65)/5 21/13
6|1 (5+65)/8 29/18

5A2 — 1383 = (-1)'Q; = -8 = —2k/d
5A2 —13B5 = (—1)*Qs = 8 = 2k/d.



Example kK = 8 continued

Then (po, go) = (Ao, Bo) = (1,1) is the smallest primitive solution
of 5p? — 13¢? = —8, while (p1, 1) = (A3, B3) = (5,3) is the
smallest primitive solution of 5p? — 13¢® = 8.

Also (po, qo) gives the unique exceptional solution of
x? — 65y? = 64:

(x0,y0) = (d(ap§ + bgg)/2, dpogo) = (18, 2).



k=12

Here D = k? + 1 = 145 and only (a, b,d) = (5,29, 1) give
solubility of ap? — bq? = +2k/d with 2 < a < b, ab = 145,
ged(a, b) = 1.

(Pm+vD)/Qm Am/Bm
(0++145)/5  2/1
(10 + V145)/9  5/2
(8 ++/145)/9  12/5
(10 ++/145)/5  53/22
(10 +\/145)/9 118/49

)
3

»rw N~ O3

N BN NN

From the first period,

5(Ag — A_1)? —29(By — B_1)? = (-1)°(Qo — @ — 2P1) = —24 = —2k
5(Az + A1)? — 29(Bz + B1)? = (—1)*(Q2 — Q3 + 2P3) = 24 = 2k.



Example kK = 12 continued

Then (po7 qo) = (AO —A_1,By — B_l) = (1, 1) is the smallest
primitive solution of 5p? — 29g° = —24, while

(p1,q1) = (A2 + A1, Bo + B1) = (17,7) is the smallest primitive
solution of 5p? — 29¢® = 24.

Also (po, qo) gives the unique exceptional solution of
x? — 145y? = 144:

(x0,y0) = (d(ap§ + bg3)/2, dpoqo) = (17,1).



An example from the forest

(k,x,y) =g (t,t> +t+1,t+1),t > 1. Then

k=4t34+4t2+3t+1, x=4t"+4t34+5t2+3t+1,y =t

)1 if tis odd
)2 iftis even,
S (4t* + 8t3 +9t% + 6t +2)/2 if t is even
| 4t* + 883 + 912 + 6t + 2 if ¢ is odd,
=

8t2 4+ 2 if tis even
4t2 +1 if tis odd.



Forest example continued

(i) If tis even,

Vvb/a=10,t/2,1,1,t —1,1,1,t—1,1,1,t], period length 9.

p/q = A1/B1, where Ay =1,B; = t/2.
(i) If t is odd,

VvV b/a=][0,t+1,2t,2t,2t + 2], period length 3.

p/q = (Al — Ao)/(Bl — Bo), where A1 — Ag = 1, Bi—By=t.

t| 1 2 3 4 5
12 55 154 333 616




An example from deeper in the forest

(k,x,y) = g-g-g-g+(t,t,0),t > 2. Then

(k,x,y) = (16t> — 12t3 4 t,128t° — 160t” + 561> — 4t> + t,8t* — 4t2)
(d,a, b) = (2t,16t* — 4t2 + 1,16t% — 20t* + 5¢% + 1)
(p.q) = (2> —1,2t).

Also

Vvb/la=[t—1,1,2t —2,1,2t — 1,2t —1,1,2t — 2,1,2t — 2],

period length 9 and Q4 = 2k/d = 16t* — 122 +1,p/q = A3/Bs.

t| 2 3 4 5 6
418 3567 15620 48505 121830




Some exact arithmetic BCmath programs

See

(i) http://www.numbertheory.org/php/dujella_test.html for a
BCmath program which tests the unicity conjecture for a range of k
using the continued fraction of \/b/a.

(ii) http://www.numbertheory.org/php/exceptionalforest.html
for a BCmath program which enables one to guess the continued fraction
corresponding to an exceptional node (k(t), x(t), y(t)).

(i) http://www.numbertheory.org/php/dujella_minus.html for a
BCmath program which tests the unicity conjecture by considering the
equivalent diophantine equation X? — (k? + 1)y? = —k2.


http://www.numbertheory.org/php/dujella_test.html
http://www.numbertheory.org/php/exceptionalforest.html
http://www.numbertheory.org/php/dujella_minus.html

