The fact that the decimal expansion of a rational number is eventually periodic is a consequence of the pigeonhole principle.

We start by examining the process of long-division. To find the decimal expansion of $1 / 7$ we perform the following steps:

```
. \(1428571 \ldots\)
```

$7 \sqrt{ } 10$
7
30
28
20
$\frac{14}{60}$
56
40
35
50
49
10

We have thus performed the following calculations:
$10 \cdot 1=10=7 \cdot 1+3$
$10 \cdot 3=30=7 \cdot 4+2$
$10 \cdot 2=20=7 \cdot 2+6$
$10 \cdot 6=60=7 \cdot 8+4$
$10 \cdot 4=40=7 \cdot 5+5$
$10 \cdot 5=50=7 \cdot 7+1$.
After this the previous steps are replicated.

More generally, to find the decimal expansion of a / b, where $1 \leq a<b$ and $b>1$, we let $r_{0}=a$ and perform the steps;

$$
\begin{array}{ll}
10 \cdot r_{0}=b \cdot a_{1}+r_{1}, & 0 \leq r_{1}<b \\
10 \cdot r_{1}=b \cdot a_{2}+r_{2}, & 0 \leq r_{2}<b
\end{array}
$$

The a_{1}, a_{2}, \ldots are the digits of the decimal expansion of a / b. The remainders r_{0}, r_{1}, \ldots all lie in the range $0 \leq r_{i} \leq b-1$. So by applying the pigeonhole principle to the numbers r_{0}, \ldots, r_{b}, we will get $r_{i}=r_{j}$ for some i and j satisfying $0 \leq i<j \leq b$. Then
$a_{i+1}=a_{j+1}, r_{i+1}=r_{j+1}, a_{i+2}=a_{j+2}, \ldots$ and the decimal expansion is periodic.

EXAMPLES. $\frac{7}{12}=\cdot 58 \dot{3} ; \frac{3}{14}=\cdot 214285 \dot{7}$.

