CONTINUANTS AND SEMI-REGULAR CONTINUED FRACTIONS

ALAN OFFER

ABSTRACT. This note arose while studying Perron's proof of Satz 5.1, [2, p. 135]. Perron used inequalities involving the $B_{\nu,\lambda}$ and Keith Matthews challenged the author to supply a proof using only the B_{λ} . This resulted in a simpler proof of Lemma 6 below. A self-contained treatment of the continuants $A_{\nu,\lambda}$ and $B_{\nu,\lambda}$ is given for the convenience of the reader.

Let
$$A_{-1} = 1$$
, $A_0 = b_0$, $B_{-1} = 0$, $B_0 = 1$ and for $n \ge 1$,

$$(1) A_n = b_n A_{n-1} + a_n A_{n-2},$$

(2)
$$B_n = b_n B_{n-1} + a_n B_{n-2}.$$

Lemma 1. If $|a_n| = 1, b_n \ge 1, b_n + a_{n+1} \ge 1, n \ge 1$, then for $n \ge 0$,

(a)
$$B_n \ge 1$$
,

(b)
$$B_n + a_{n+1}B_{n-1} \ge 1$$
.

Proof. (Induction on $n \ge 0$.) (a) and (b) are true when n = 0, as $B_0 = 1$ and $B_0 + a_1 B_{-1} = B_0 = 1$. Now assume (a) and b) hold for all $k \le n$. Then

$$\begin{split} B_{n+1} + a_{n+2}B_n &= (b_{n+1}B_n + a_{n+1}B_{n-1}) + a_{n+2}B_n \\ &= B_n(b_{n+1} + a_{n+2}) + a_{n+1}B_{n-1} \\ &\geq B_n + a_{n+1}B_{n-1} \geq 1. \end{split}$$

Also

$$B_{n+1} = b_{n+1}B_n + a_{n+1}B_{n-1}$$

$$\geq B_n + a_{n+1}B_{n-1}$$

$$= (b_nB_{n-1} + a_nB_{n-2}) + a_{n+1}B_{n-1}$$

$$= (b_n + a_{n+1})B_{n-1} + a_nB_{n-2}$$

$$\geq B_{n-1} + a_nB_{n-2} \geq 1.$$

Remark. It follows from the above proof that

(3)
$$B_n \ge B_{n-1} + a_n B_{n-2} \ge B_{n-2} + a_{n-1} B_{n-3} \ge \cdots B_0 + a_1 B_{-1} = 1.$$

Hence, with a suitable recursive definition of the RHS below (see http://www.numbertheory.org/courses/MP313/lectures/lecture15/page5.html) we have

Lemma 2.

(4)
$$\frac{A_{\nu}}{B_{\nu}} = b_0 + \frac{a_1}{b_1} + \dots + \frac{a_n}{b_n}.$$

Date: December 6th, 2008.

The following result is due to Fritz Blumer [1, p. 12].

Lemma 3. If $|a_n| = 1, b_n \ge 1, b_n + a_{n+1} \ge 1, n \ge 1$, then for $n \ge 1$,

$$(5) b_n \ge 2 \implies B_n > B_{n-1}.$$

Proof. Suppose $b_n \geq 2, n \geq 1$. Then

$$B_n = b_n B_{n-1} + a_n B_{n-2}$$

$$\geq 2B_{n-1} + a_n B_{n-2}$$

$$= B_{n-1} + (B_{n-1} + a_n B_{n-2})$$

$$\geq B_{n-1} + 1 \text{ from Lemma 1 (b)}.$$

Perron ([2, p. 10]) defines $A_{\nu,\lambda}$ and $B_{\nu,\lambda}$ in terms of *continuants*, as follows:

(6)
$$A_{\nu,\lambda} = K \begin{pmatrix} a_{\lambda+1}, a_{\lambda+2}, \dots, a_{\lambda+\nu} \\ b_{\lambda}, b_{\lambda+1}, \dots, b_{\lambda+\nu} \end{pmatrix}, \nu \ge 1,$$

(6)
$$A_{\nu,\lambda} = K \begin{pmatrix} a_{\lambda+1}, a_{\lambda+2}, \dots, a_{\lambda+\nu} \\ b_{\lambda}, b_{\lambda+1}, \dots, b_{\lambda+\nu} \end{pmatrix}, \nu \ge 1,$$
(7)
$$B_{\nu,\lambda} = K \begin{pmatrix} a_{\lambda+2}, a_{\lambda+3}, \dots, a_{\lambda+\nu} \\ b_{\lambda+1}, b_{\lambda+2}, \dots, b_{\lambda+\nu} \end{pmatrix}, \nu \ge 2,$$

where $A_{-1,\lambda} = 1, B_{-1,\lambda} = 0, A_{0,\lambda} = b_{\lambda}, B_{0,\lambda} = 1, B_{1,\lambda} = b_{\lambda+1}.$

Thus $A_{\nu,0} = A_{\nu}$, $B_{\nu,0} = B_{\nu}$. Also From (6) and (7), we have

$$(9) B_{\nu,\lambda} = A_{\nu-1,\lambda+1}.$$

Expanding the determinant in (8) gives a recurrence relation connecting contin-

$$K\left(\begin{array}{c} a_1, a_2, \dots, a_{\nu} \\ b_0, b_1, b_2, \dots, b_{\nu} \end{array}\right) = b_0 K\left(\begin{array}{c} a_2, a_2, \dots, a_{\nu} \\ b_1, b_1, b_2, \dots, b_{\nu} \end{array}\right) + a_1 K\left(\begin{array}{c} a_3, a_2, \dots, a_{\nu} \\ b_2, b_1, b_2, \dots, b_{\nu} \end{array}\right).$$

From Lemma 4, we deduce from (6) and (7) that for $\nu \geq 3, \lambda \geq 0$

(10)
$$A_{\nu,\lambda} = b_{\lambda} A_{\nu-1,\lambda+1} + a_{\lambda+1} A_{\nu-2,\lambda+2},$$

(11)
$$B_{\nu,\lambda} = b_{\lambda+1} B_{\nu-1,\lambda+1} + a_{\lambda+2} B_{\nu-2,\lambda+2}.$$

In fact, equations (10) and (11) hold for $\nu \geq 1$.

Corollary 1. If $0 \le \lambda \le n$, then

$$(12) A_n = A_{\lambda-1} A_{n-\lambda,\lambda} + a_{\lambda} A_{\lambda-2} B_{n-\lambda,\lambda},$$

(13)
$$B_n = B_{\lambda - 1} A_{n - \lambda, \lambda} + a_{\lambda} B_{\lambda - 2} B_{n - \lambda, \lambda}.$$

Proof. (By conservation). Let $f(\lambda) = A_{\lambda-1}A_{n-\lambda,\lambda} + a_{\lambda}A_{\lambda-2}B_{n-\lambda,\lambda}$. Then $f(0) = A_{-1}A_{n,0} + a_0A_{-2}B_{n,0} = A_n$. Next we prove $f(\lambda) = f(\lambda+1)$ for $0 \le \lambda \le n$.

$$\begin{split} f(\lambda+1) &= A_{\lambda}A_{n-\lambda-1,\lambda+1} + a_{\lambda+1}A_{\lambda-1}B_{n-\lambda-1,\lambda+1} \\ &= (b_{\lambda}A_{\lambda-1} + a_{\lambda}A_{\lambda-2})A_{n-\lambda-1,\lambda+1} + a_{\lambda+1}A_{\lambda-1}B_{n-\lambda-1,\lambda+1} \\ &= A_{\lambda-1}(b_{\lambda}A_{n-\lambda-1,\lambda+1} + a_{\lambda+1}B_{n-\lambda-1,\lambda+1}) + a_{\lambda}A_{\lambda-2}A_{n-\lambda-1,\lambda+1} \\ &= A_{\lambda-1}(b_{\lambda}A_{n-\lambda-1,\lambda+1} + a_{\lambda+1}A_{n-\lambda-2,\lambda+2}) + a_{\lambda}A_{\lambda-2}B_{n-\lambda,\lambda} \\ &= A_{\lambda-1}A_{n-\lambda} + a_{\lambda}A_{\lambda-2}B_{n-\lambda} = f(\lambda). \end{split}$$

Hence
$$A_n = f(0) = f(1) = \cdots = f(n)$$
.

Lemma 5. If $|a_n| = 1, b_n \ge 1, b_n + a_{n+1} \ge 1, n \ge 1$, then for $1 \le \mu \le \lambda$,

$$(14) B_{\mu,\lambda-\mu} \ge B_{\mu-1,\lambda-\mu+1}.$$

Proof. ([2, p. 135].) From (11), we have

(15)
$$B_{\nu+1,\lambda-\nu-1} - B_{\nu,\lambda-\nu} = (b_{\lambda-\nu} - 1)B_{\nu,\lambda-\nu} + a_{\lambda-\nu+1}B_{\nu-1,\lambda-\nu+1}.$$

We prove (14) by induction on μ . First $B_{1,\lambda-1} = b_{\lambda}$, $B_{0,\lambda} = 1$. So we assume (14) holds for $\mu = 1, \ldots, \nu < \lambda$, Then

$$B_{\nu,\lambda-\nu} \ge B_{\nu-1,\lambda-\nu+1} \ge \cdots \ge B_{0,\lambda} = 1.$$

Then (15) implies

$$B_{\nu+1,\lambda-\nu-1} - B_{\nu,\lambda-\nu} \ge (b_{\lambda-\nu} - 1 + a_{\lambda-\nu+1})B_{\nu-1,\lambda-\nu+1} \ge 0.$$

Hence the induction goes through.

Corollary 2.

(16)
$$B_{\lambda} = B_{\lambda,0} \ge B_{\lambda-1,1} \ge B_{\lambda-2,2} \ge \cdots \ge B_{0,\lambda} = 1.$$

Hence, for $0 \le \nu \le n$,

(17)
$$\frac{A_{\nu,n-\nu}}{B_{\nu,n-\nu}} = b_{n-\nu} + \frac{a_{n-\nu+1}}{|b_{n-\nu+1}|} + \dots + \frac{a_n}{|b_n|}.$$

Perron (Satz 5.1, [2, p. 135]) proved the following results using continuants.

Theorem 1. (Tietze, [3]). Suppose $a_{\lambda} = \pm 1, b_{\lambda} \geq 1$ and $b_{\lambda} + a_{\lambda+1} \geq 1$ for $\lambda \geq 1$.

- (i) $B_{\lambda} \to \infty$,
- (ii) A_{λ}/B_{λ} converges as $\lambda \to \infty$.

Remark. Perron proved (i) by showing

Lemma 6. (a)
$$a_{\lambda+1} = 1 \Longrightarrow B_{\lambda+\nu} \ge \lambda + 1$$
, (b) $a_{\lambda+1} = -1 \Longrightarrow B_{\lambda} \ge \lambda + 1$.

Proof. (Alan Offer) We use induction on $\lambda \geq 0$. When $\lambda = 0$, (a) is true, as Lemma 1 (a) implies $B_{\nu} \geq 1$ for $\nu \geq 1$. Also (b) is true as $B_0 = 1$. So let $\lambda > 0$ and suppose that (a) and (b) hold for all $\lambda' < \lambda$. We first show that (a) holds. Suppose $a_{\lambda+1} = 1$. Then for all $\nu \geq 1$, (3) implies

$$(18) B_{\lambda+\nu} \ge B_{\lambda} + B_{\lambda-1}.$$

Now if $a_{\lambda} = 1$, then $B_{\lambda} \ge \lambda$ by (a), while if $a_{\lambda} = -1$, then $B_{\lambda-1} \ge \lambda$ by (b). Either way, (18) implies $B_{\lambda+\nu} \ge \lambda + 1$ if $\nu \ge 1$. This completes the inductive step for (a).

For (b), we suppose $a_{\lambda+1}=-1$. Then $b_{\lambda}\geq 2$ and Lemma 3 gives $B_{\lambda}>B_{\lambda-1}$.

If $a_{\lambda} = -1$, (b) implies $B_{\lambda-1} \geq \lambda$ and hence $B_{\lambda} \geq \lambda + 1$.

Now assume $a_{\lambda} = 1$. Then $B_{\lambda} \geq 2B_{\lambda-1} + B_{\lambda-2}$. If $\lambda = 1$, then

$$B_{\lambda} = B_1 \ge 2B_0 + B_{-1} = 2 = \lambda + 1.$$

So we can assume $\lambda \geq 2$.

If $a_{\lambda-1}=-1$, then (b) implies $B_{\lambda-2}\geq \lambda-1$ and so

$$B_{\lambda} \geq 2B_{\lambda-1} + \lambda - 1 \geq \lambda + 1.$$

If $a_{\lambda-1}=1$, then $\lambda\geq 2$ implies $B_{\lambda-2}\geq 1$. Also (a) with λ replaced by $\lambda-2$ and $\nu=1$, gives $B_{\lambda-1}\geq \lambda-1$. Hence

$$B_{\lambda} \ge 2B_{\lambda-1} + B_{\lambda-2}$$

$$\ge 2(\lambda - 1) + \lambda - 1 = 2\lambda - 1 \ge \lambda + 1.$$

Finally, (ii) follows from (i) and the inequality

(19)
$$\left| \frac{A_{\lambda+\nu}}{B_{\lambda+\nu}} - \frac{A_{\lambda}}{B_{\lambda}} \right| \le \frac{1}{B_{\lambda}},$$

which is proved below.

Lemma 7. For $\lambda \geq 0, \nu \geq 1$, let

(20)
$$D_{\lambda,\nu} = A_{\lambda+\nu}B_{\lambda} - A_{\lambda}B_{\lambda+\nu}.$$

Then

(21)
$$D_{\lambda,\nu} = (-1)^{\lambda} a_1 a_2 \cdots a_{\lambda+1} B_{\nu-1,\lambda+1},$$

Proof. Perron ([2, p. 14]) derives (21) from (12) and (13).

$$\begin{split} D_{\lambda,\nu} &= A_{\lambda+\nu} B_{\lambda} - A_{\lambda} B_{\lambda+\nu} \\ &= (A_{\lambda} A_{\nu-1,\lambda+1} + a_{\lambda+1} A_{\lambda-1} B_{\nu-1,\lambda+1}) B_{\lambda} \\ &- A_{\lambda} (B_{\lambda} A_{\nu-1,\lambda+1} + a_{\lambda+1} B_{\lambda-1} B_{\nu-1,\lambda+1}) \\ &= a_{\lambda+1} B_{\nu-1,\lambda+1} (A_{\lambda-1} B_{\lambda} - A_{\lambda} B_{\lambda-1}) \\ &= (-1)^{\lambda} a_1 \cdots a_{\lambda+1} B_{\nu-1,\lambda+1}. \end{split}$$

Hence from (21) and (16),

$$|D_{\lambda,\nu}| = B_{\nu-1,\lambda+1} \le B_{\lambda+\nu},$$

which gives inequality (19).

References

- F. Blumer, Über die verschiedenen Kettenbruchentwicklungen beliebiger reeller Zahlen und die periodischen Kettenbruchentwicklungen quadratischer Irrationalitäten, Acta Arith. 3, 1938, 3-63.
- 2. O. Perron, Kettenbrüche, Band 1, Teubner, 1954.
- H. Tietze, Über Kriterien für Konvergenz und Irrationalität unendlichen Kettenbrüche, Math. Ann., 70, 1911, 236-265.