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Some properties of the continued fraction expansion of (m/h) e1'?

BY K. R. MATTHEWS AND R. F. C. WALTERS

University of Queensland, Australia

{Received 2 January 1969)

Introduction. Continued fractions of the form

L J*=c
are called Hurwitzian if bv ...,bh are positive integers, fx{x),...,fk(x) are polynomials
with rational coefficients which take positive integral values for x = 0,1, 2,..., and
at least one of the polynomials is not constant, f-^x), ...,fk(x) are said to form a
quasi-period.

The expansions

e = [2, l,2a;+2,l~r and e1'* = |~1, (2x+l)q- 1,1| ,
L Jz=o L Jx=o

where q is apositive integer, <? > 1, are well-known examples. (See Perron(4), Davis(l),
or Walters (5).)

If m and n are coprime positive integers, it follows from a theorem of A. Hurwitz
(see Perron (4)) that {mjn)eliq also has a Hurwitzian continued fraction with a quasi-
period consisting of linear progressions, apart from constants.

In this paper we prove the existence of a quasi-period containing exactly mn linear
progressions as above, and a necessary and sufficient condition for each of these
progressions to have the form 2qx + b is also derived.

The proofs are based on matrix methods developed by Kolden(2) and Walters (5).

Notation. Let {Ar} be a sequence of non-singular matrices with real number elements,
and let N , .

00

Then we write £ ~ n Ar if each of the sequences PNIQ.N
 an<i I!'NISN converges to £, as

r=0

N -> 00. Continued fractions and matrices are connected by the relation

[ao,a1,...]~ n U^, where Ua=L A.
Any non-empty product Ubi Ubi... Ubr, bt > 0, is denoted by P. Kolden proved that any
matrix M with non-negative integer elements and determinant + 1 (apart from Uo and
the identity matrix) has one of the forms P, U0P, PU0, U0PU0. The factorization is
unique. (See (2) pages 159-161.)

5-2
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The following facts are used frequently:

(i) PU0P = P, U0PU0P = U0P, MP = P or U0P, MU0P = P or U0P. (These follow
from UaU0Ub = Ua+b.)

(ii)If
\q s)

then p ^ r and q ^ s.
Lemma 6 of WaltersJ(5) is used twice. It implies, under conditions satisfied here, that

A0 n AT ~ ft (^o^r^o-1)-
r = l r = l

Our investigation is based on a result of Lehmer (3).

LEMMA 1.

Proof. An easy induction shows the matrix product is

/ Ad{q) Bd{q)
i y B d { - q ) (-*

AM-i $*£

The lemma follows, since (d + k — l) !/(rf— 1)! is divisible by dii k ^ 1, while

{d + k) !/(d- 1)! is divisible by d if k ^ 0.

DEFINITION. Polynomials in x are defined by

(Fd(x) Rd(x)\= <* /{2(dx + r)-l}q+l {2(dx + r)-l}q
\Gd(x) 8d(x)J r-i\{2(te + r)-l}q {2(dx + r)-l}q-

Then by Lemma 1 the coefficients of Gd(x) and Rd{x) are divisible by d.

LEMMA 2. Let d = raw. Then

where the matrices are unimodular with integer elements, positive unless m = n = q = 1.

Proof. We have e1^ ~ ft

by Theorem 1 and Lemma 2 of (5).
The regrouping Lemma 3 of (5) gives

e l ' 8~ So[Gd(x) Sd(x)f
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Consequently, by Lemma 1 of (5),

™eV«~(m °\ TT iFd(X) Rd{X)\

Our Lemma 2 then follows from the equation

(Fd(x) (mln)Bd(x)\ (m O\/Fd(x) Ba(x)\(m oy1

\(nlm)Gd(x) 8d(x) ) \o n)\Qd(x) Sd(x))\0 nj >"' [)

either by direct comparison of convergents or by using Lemma 6 of (5).
The factorization of the matrices occurring in Lemma 2 must now be examined.

Our method is based essentially on the proof of Hurwitz's theorem presented in
Perron (4), pages 110-123.

LEMMA 3. Let A = I 1 2J have non-negative integer elements, with a1az =f= 0,
\a3 aj

A = axa± — a2a3 4= 0 and either a1 ^ a2 or a3 ^ o4. Then A may be factorized uniquely as

(p r\
where B is of type P or U0P and C = I I,

with p and s positive integers, and r an integer.

l£B = ( * 2 ) , then detB = A/|A|,p = (a1;a3), bx = ax\p, b3 = a3fp,ps = [A| and

— s<r^p. (See Perron[(4) page 111 for the proof of a similar result.)
The matrix Ax denned by

0 n}\Gd(x) Sd(x))\l 0/

is evidently of type A for integers x > 0, and we can obtain the following factorization:

LEMMA 4. Ax = (ff\ „ ( ^ (~/"> R*{x)) BOCV
x \{njm)Gd(x) Sd(x) ) °

where B0G1 is the factorization of I II I.

Proof A -I™ °\(F^X) R^\(m O r 7 m °\(l l
Froo}.Ax-y j ^ )[ ) [ j ^

)Rd(x)\(m 0\/l 1\
)(o n)(l OJ' ^ equated).

LEMMA 5. Matrices Bt and Ct+1 = I -"+ 1 t+11 are defined by the recurrence relation
\ 0 st+i'

= 1, 2,..., d),
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where a = {2{dx +1) - l}q and Qt = Qt(x) ~ Vk, where k = p\{2qx - 1 ) . Here BtCt+1 is the
factorization of . .

[pt{2d - 1 + (4«*- 2) q) + 2rt pt{d + (2t - 1) q) + rj

and Cx is defined in Lemma 4. Then the factorization

holds.
Proof. With an obvious simplified notation, noting that

wehave

= BOCX Il(Cf 1QtjBtC
f
t+1), by the recurrence relation;

= B0{UQtBt}Cd+x.

LEMMA 6- U) ̂ () (̂) j = *• i S Q*^J ̂  •
Proof. Lemmas 4 and 5 give

_ /
\{nlm) Od(x) Sd(x) j ^ \ ,3

Using remarks (i) and (ii) of the introduction, it is not hard to see that the uniqueness
conditions of Lemma 3 are satisfied if x ^ 1. Hence Gr = Cd+1. Multiplication on the
right by C f 1 ^ 1 then gives Lemma 6.

THEOREM 1.
ivn CO 00

(«) - e 1 / 9 ~ 5 0 n U

(0) Wn)Bd(0)\
)

Proof. By Lemmas 2 and 6, and Lemma 6 of (5)

™ei>*~ 5 W n Q M B \ B A = B0ft ri t t
» x=0 I \< = 1 / i z = 0 < = 1

The proof of (6) is similar.

Bemarlcs. (i) The matrices of (6) are of type M and may be factorized, as mentioned
in the introduction. I t follows that the regular continued fraction for (m/n) e1'8 has
a quasi-period containing exactly mn linear progressions.

(ii) The expansion (a) does not give the regular continued fraction for (m/n) e1'8 as
the matrix Qt(0) has a negative element.
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As a simple example we consider 3e. It is easily verified that

F3(0) 3£3(0)\_/106 261\
W > ) -S3(0) J " I 13 32J -

B3 =

Theorem 1 (b) then gives

3e ~ ?78 C/6 U2 U2 Uo U3 U { £ ^ - 1 Uo U, U5 UJ {U2x_x Uo U, Ub UJ {U^ Uo Vx TJX U5}
x=l

~ u8u6u2u5 ft {u^u^u^u^u^u^u,},
x=l

and the corresponding regular continued fraction is

3e = 8, 6,2, 5,2x, 5,1, 2x, 5,1, 2x, 1,5
L

It is natural to ask when the numbers^ of Theorem lsatisfy^)t = lfor< = 1,2, ...,d.
This is answered by Theorem 2. It is convenient to state, without proof, the following
lemma:

LEMMA 7. / / I I is a matrix of type P or U0P, with XW— YV = 1 and X > 1,

then V is determined by the conditions YV = — 1 (modX) and 0 < V < X.

THEOREM 2. Each of the progressions p\{2qx— 1) in Theorem 1 reduces to 2qx— 1 if,
and only if, the integers Kt defined by the recurrence relation

Kt = (it - 2) qKt_x + Kt_2 for 2 < t ^ d,

with Ko= l,K1 = 2q-l + 2rx, satisfy (Kt, d) = 1.

Proof, (i) Assume^ = 1 for t — 1, 2,..., d. Then the definition of BtCt+1 in Lemma 5
gives

( U d \=BC
-l)q + rt) * t+vrt d + (2t

By Lemma 7, vt is determined by

{2rt + (4t-2)q-l}vt=-l(mod2d) (2)
and 0 < vt < 2d.

The matrix equation obtained by equating the two expressions for BtCt+1 gives

(3)

Congruence (2) and equation (3) imply

{(4i -2)q-v t _ x }v t =- l (mod2d) (4)
for« = 2, ...,d.
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Residue classes kt, each prime to 2d, can now be defined by the recurrence relation

kt = kt_x{(4& - 2) q-Vt-J (mod 2d) (2 < K d), (5)

with kx = 2q + 2rt — 1 (mod 2d).
Congruence (4) may then be written as

ktvt = -kt_1 (raod2d).

This congruence is valid for t = 1 on taking k0 = 1 (mod 2<2). Substituting for Jfct-xWt-i
in congruence (5) gives

& & &t = (« - 2) g i ^ + &t_2 (mod 2d),

completing the ' only if' part of the proof of Theorem 2.
(ii) Assume the integers Jft, denned in Theorem 2, satisfy {Kt,d) = lfort = 1,2, ...,d.

Since iTt is clearly odd, (Kt, 2d) = 1.
By definition, Bfit+1 is the factorization of

\pt{2d -l + (it-2)q}+ 2rt pt{d + (2t-l)q} + rj.

Mf I)-
where Xt = 2at/pt+1, 7t = [pt{2d - 1 + {U - 2) g} + 2rt]/pt+1>

and i9t+1 = (2st,^t{2d - 1 + (« - 2) q) + 2rt).

By Lemma 7, P£ is determined by

ytT£ = - 1 (modZt) and 0 < Vt < Xt.

Since (Kt, 2d) = 1 for t = 0 ,1 , . . . , d, we can define integers «t by

Ktvt = —Kt_x (mod 2d) and 0 < vt < Id
for<= \,2,...,d.

I t is now shown that vt = Vt and pt = 1, for f = 1, 2, ...,eZ. We use induction and
assume

p1=l,pz=l,...pt=l and V1 = v1,...,Vt_1 = vt_,

for some t with 2 ^ t < d.
We first verify that the assumption is correct for t = 2.
By definition, px = (m, %) = 1. Hence sx = d and

- 1 + 2^+2^ d + q + r

2d d

j

Consequently^ = (2d, 2^ + ̂ ) = (2d,Zx) = 1,

a n d Bl
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where (2d + K1)Vl=-\ {vaoA2d) and 0 < Vx < 2d. But K1v1=-1 (mod2d) and
0 < vx < 2d, so that v1 = V1. This completes the verification for t = 2.

To complete the induction, we need the following result which is easily deduced:

{{At-2)q-vt_^vt=-\ (mod2d) (6)
for t > 2.

It is now shown that pt+1 = 1.
The induction hypothesis gives pt = 1 and st = d, so that

2d d
t t+1 \2dl + (U2) + 2 d + (2t-l)q +

and consequently pt+1 = (2d, (it — 2)q+ 2rt — 1).
Also since pt_1 = 1, st_1 = d, and vt_1 = Vt_y, we have

/ 2d d
' - 1 * \2dl + (U6)q + 2rt_1 d+ (2t-

vt_A/l rt\
t_1 Wt_J \0 d)'

H e n c e 2rt + vt_1 = 1 a n d p t + 1 = (2d, (4:t — 2)q — v t _ 1 ) .

Congruence (6) then implies pt+1 = 1. Finally, we show that Vt = vt.
By definition , „ , T/

B =\ *
* \2d + (±t-2)q-vt_1 W

where by Lemma 7,
{2d+(U-2)q-vt_1}Vt = -l(mod2d) and 0 < Vt < 2d.

Congruence (6) together with 0 < vt < 2d, gives Vt = «tand the induction is complete.
The following theorem deals with me1'8. Here r1 = 0, Ko = 1, and K1 = 2q— 1.

THEOREM 3. Let qi denote a prime with the property that (K^q^) = lfort= 1,2, . . . ,^.
Also let S be the set of natural numbers m for which each of the progressions p\(2qx — 1)
reduces to 2qx —1, in the expansions of m ellq given by Theorem 1. Then 8 is identical
with T, the set of numbers which contain only qx, q2,... as prime factors.

Proof, (i) Suppose m belongs to S. Then by Theorem 2, (Kt, m) = 1 for t = 1,2,..., m.
Hence (Kt, q) = 1 for t = 1, 2,..., q, for each prime q dividing m.

(ii) Suppose m belongs to T. Then to deduce that m belongs to S, it suffices, by
Theorem 2, to prove that the condition (Kt,q) = 1 for t = 1, 2, ...,q is equivalent to
(Kt, q) = 1 for all t.

However, this follows from the congruence

Kt+q =(-l)«Kt (modq) for t> 0.

This congruence is easily deduced from the formula

which may be verified by induction.
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In conclusion, the authors wish to acknowledge the help of Prof. C. S. Davis in the
preparation of this manuscript for publication.
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