Mathematical Proceedings of the Cambridge Philosophical Society

http://journals.cambridge.org/PSP

Additional services for **Mathematical Proceedings of** the Cambridge Philosophical Society:

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

Some properties of the continued fraction expansion of $(m/n) e^{1/q}$

K. R. Matthews and R. F. C. Walters

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 67 / Issue 01 / January 1970, pp 67 - 74 DOI: 10.1017/S0305004100057108, Published online: 24 October 2008

Link to this article: http://journals.cambridge.org/abstract_S0305004100057108

How to cite this article:

K. R. Matthews and R. F. C. Walters (1970). Some properties of the continued fraction expansion of (m/n) e^{1/q}. Mathematical Proceedings of the Cambridge Philosophical Society, 67, pp 67-74 doi:10.1017/S0305004100057108

Request Permissions : Click here

CAMBRIDGE JOURNALS

Some properties of the continued fraction expansion of $(m/n) e^{1/q}$

BY K. R. MATTHEWS AND R. F. C. WALTERS University of Queensland, Australia

(Received 2 January 1969)

Introduction. Continued fractions of the form

$$\left[b_1,\ldots,b_h,\overline{f_1(x),\ldots,f_k(x)}\right]_{x=0}^{\infty}$$

are called Hurwitzian if b_1, \ldots, b_h are positive integers, $f_1(x), \ldots, f_k(x)$ are polynomials with rational coefficients which take positive integral values for $x = 0, 1, 2, \ldots$, and at least one of the polynomials is not constant. $f_1(x), \ldots, f_k(x)$ are said to form a quasi-period.

The expansions

$$e = \left[2, \overline{1, 2x + 2, 1}\right]_{x=0}^{\infty}$$
 and $e^{1/q} = \left[\overline{1, (2x+1)q - 1, 1}\right]_{x=0}^{\infty}$

where q is a positive integer, q > 1, are well-known examples. (See Perron (4), Davis (1), or Walters (5).)

If m and n are coprime positive integers, it follows from a theorem of A. Hurwitz (see Perron(4)) that $(m/n)e^{1/q}$ also has a Hurwitzian continued fraction with a quasiperiod consisting of linear progressions, apart from constants.

In this paper we prove the existence of a quasi-period containing exactly mn linear progressions as above, and a necessary and sufficient condition for each of these progressions to have the form 2qx + b is also derived.

The proofs are based on matrix methods developed by Kolden(2) and Walters(5).

Notation. Let $\{A_r\}$ be a sequence of non-singular matrices with real number elements, and let

$$\prod_{r=0}^{N} A_{r} = \begin{pmatrix} p_{N} & r_{N} \\ q_{N} & s_{N} \end{pmatrix}.$$

Then we write $\xi \sim \prod_{r=0}^{\infty} A_r$ if each of the sequences p_N/q_N and r_N/s_N converges to ξ , as $N \to \infty$. Continued fractions and matrices are connected by the relation

$$[a_0, a_1, \ldots] \sim \prod_{r=0}^{\infty} U_{a_r}, \text{ where } U_a = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}.$$

Any non-empty product $U_{b_1}U_{b_2}...U_{b_r}$, $b_i > 0$, is denoted by P. Kolden proved that any matrix M with non-negative integer elements and determinant ± 1 (apart from U_0 and the identity matrix) has one of the forms P, U_0P , PU_0 , U_0PU_0 . The factorization is unique. (See (2) pages 159–161.)

67

The following facts are used frequently:

(i) $PU_0P = P$, $U_0PU_0P = U_0P$, MP = P or U_0P , $MU_0P = P$ or U_0P . (These follow from $U_aU_0U_b = U_{a+b}$.)

(ii) If
$$P_i = \begin{pmatrix} p & r \\ q & s \end{pmatrix}$$

then $p \ge r$ and $q \ge s$.

Lemma 6 of Walters' (5) is used twice. It implies, under conditions satisfied here, that

$$A_0 \prod_{r=1}^{\infty} A_r \sim \prod_{r=1}^{\infty} (A_0 A_r A_0^{-1}).$$

Our investigation is based on a result of Lehmer (3).

LEMMA 1.

$$\prod_{r=1}^d \begin{pmatrix} (2r-1)q+1 & (2r-1)q \\ (2r-1)q & (2r-1)q-1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & (-1)^d \end{pmatrix} \pmod{d}.$$

Proof. An easy induction shows the matrix product is

$$\begin{pmatrix} A_d(q) & B_d(q) \\ (-1)^d B_d(-q) & (-1)^d A_d(-q) \end{pmatrix}, \\ A_d(q) &= \sum_{k=0}^d \binom{d}{k} \frac{(d+k-1)!}{(d-1)!} q^k \\ B_s(q) &= \sum_{k=0}^{d-1} \binom{d-1}{k} \frac{(d+k)!}{(d-1)!} q^{k+1}$$

where

and
$$B_d(q) = \sum_{k=0}^{d-1} {d-1 \choose k} \frac{(d+k)!}{(d-1)!} q^{k+1}.$$

The lemma follows, since (d+k-1)!/(d-1)! is divisible by d if $k \ge 1$, while

(d+k)!/(d-1)! is divisible by d if $k \ge 0$.

DEFINITION. Polynomials in x are defined by

$$\begin{pmatrix} F_d(x) & R_d(x) \\ G_d(x) & S_d(x) \end{pmatrix} = \prod_{r=1}^d \begin{pmatrix} \{2(dx+r)-1\}q+1 & \{2(dx+r)-1\}q \\ \{2(dx+r)-1\}q & \{2(dx+r)-1\}q-1 \end{pmatrix}.$$

Then by Lemma 1 the coefficients of $G_d(x)$ and $R_d(x)$ are divisible by d.

LEMMA 2. Let d = mn. Then

$$\frac{m}{n}e^{1/q} \sim \prod_{x=0}^{\infty} \begin{pmatrix} F_d(x) & (m/n) R_d(x) \\ (n/m) G_d(x) & S_d(x) \end{pmatrix},$$

where the matrices are unimodular with integer elements, positive unless m = n = q = 1.

Proof. We have
$$e^{1/q} \sim \prod_{y=0}^{\infty} \begin{pmatrix} (2y+1)q+1 & (2y+1)q \\ (2y+1)q & (2y+1)q-1 \end{pmatrix}$$
,

by Theorem 1 and Lemma 2 of (5).

The regrouping Lemma 3 of (5) gives

$$e^{1/q} \sim \prod_{x=0}^{\infty} \begin{pmatrix} F_d(x) & R_d(x) \\ G_d(x) & S_d(x) \end{pmatrix}.$$

68

Consequently, by Lemma 1 of (5),

$$\frac{m}{n}e^{1/q} \sim \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \prod_{x=0}^{\infty} \begin{pmatrix} F_d(x) & R_d(x) \\ G_d(x) & S_d(x) \end{pmatrix}.$$

Our Lemma 2 then follows from the equation

$$\begin{pmatrix} F_d(x) & (m/n) R_d(x) \\ (n/m) G_d(x) & S_d(x) \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \begin{pmatrix} F_d(x) & R_d(x) \\ G_d(x) & S_d(x) \end{pmatrix} \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix}^{-1}, \dots$$
(1)

either by direct comparison of convergents or by using Lemma 6 of (5).

The factorization of the matrices occurring in Lemma 2 must now be examined. Our method is based essentially on the proof of Hurwitz's theorem presented in Perron (4), pages 110-123.

LEMMA 3. Let $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ have non-negative integer elements, with $a_1a_3 \neq 0$, $\Delta = a_1a_4 - a_2a_3 \neq 0$ and either $a_1 \ge a_2$ or $a_3 \ge a_4$. Then A may be factorized uniquely as

$$A = BC_{s}$$

where B is of type P or U_0P and $C = \begin{pmatrix} p & r \\ 0 & s \end{pmatrix}$,

with p and s positive integers, and r an integer.

If $B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$, then det $B = \Delta/|\Delta|$, $p = (a_1, a_3)$, $b_1 = a_1/p$, $b_3 = a_3/p$, $ps = |\Delta|$ and

 $-s < r \leq p$. (See Perron'(4) page 111 for the proof of a similar result.)

The matrix A_x defined by

$$A_x = \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \begin{pmatrix} F_d(x) & R_d(x) \\ G_d(x) & S_d(x) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

is evidently of type A for integers $x \ge 0$, and we can obtain the following factorization:

LEMMA 4.
$$A_x = \begin{pmatrix} F_d(x) & (m/n) R_d(x) \\ (n/m) G_d(x) & S_d(x) \end{pmatrix} B_0 C_{12}$$

where B_0C_1 is the factorization of $\begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

Proof.
$$A_x = \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \begin{pmatrix} F_d(x) & R_d(x) \\ G_d(x) & S_d(x) \end{pmatrix} \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix}^{-1} \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

= $\begin{pmatrix} F_d(x) & (m/n) R_d(x) \\ (n/m) G_d(x) & S_d(x) \end{pmatrix} \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, by equation (1).

LEMMA 5. Matrices B_t and $C_{t+1} = \begin{pmatrix} p_{t+1} & r_{t+1} \\ 0 & s_{t+1} \end{pmatrix}$ are defined by the recurrence relation

$$B_t C_{t+1} = Q_t^{-1} C_t U_{a-1} U_1 U_1 \quad (t = 1, 2, ..., d),$$

69

70 K. R. MATTHEWS AND R. F. C. WALTERS

where $a = \{2(dx+t) - 1\}q$ and $Q_t = Q_t(x) = U_k$, where $k = p_t^2(2qx-1)$. Here $B_t C_{t+1}$ is the factorization of $\begin{pmatrix} 2s_t & s_t \\ p_t \{2d-1+(4t-2)q\} + 2r_t & p_t \{d+(2t-1)q\} + r_t \end{pmatrix}$

and C_1 is defined in Lemma 4. Then the factorization

$$A_x = B_0 \left\{ \prod_{t=1}^d Q_t B_t \right\} C_{d+1}$$

holds.

Proof. With an obvious simplified notation, noting that

$$\begin{pmatrix} a+1 & a \\ a & a-1 \end{pmatrix} = U_1 U_{a-1} U_1,$$
we have
$$A_x = B_0 C_1 U_1^{-1} \begin{pmatrix} F & R \\ G & S \end{pmatrix} U_1 = B_0 C_1 U_1^{-1} \begin{pmatrix} \Pi \begin{pmatrix} a+1 & a \\ a & a-1 \end{pmatrix} \end{pmatrix} U_1$$

$$= B_0 C_1 U_1^{-1} \{ \Pi U_1 U_{a-1} U_1 \} U_1 = B_0 C_1 \Pi (U_{a-1} U_1 U_1)$$

$$= B_0 C_1 \Pi (C_t^{-1} Q_t B_t C_{t+1}), \quad \text{by the recurrence relation;}$$

$$= B_0 \{ \Pi Q_t B_t \} C_{d+1}.$$
LEMMA 6.
$$\begin{pmatrix} F_d(x) & (m/n) R_d(x) \\ (n/m) G_d(x) & S_d(x) \end{pmatrix} = B_0 \begin{pmatrix} \frac{d}{t-1} Q_t B_t \\ B_0 \end{bmatrix} B_0^{-1}.$$

Proof. Lemmas 4 and 5 give

$$A_{x} = \begin{pmatrix} F_{d}(x) & (m/n) R_{d}(x) \\ (n/m) G_{d}(x) & S_{d}(x) \end{pmatrix} B_{0}C_{1} = B_{0} \left\{ \prod_{t=1}^{d} Q_{t}B_{t} \right\} C_{d+1}$$

Using remarks (i) and (ii) of the introduction, it is not hard to see that the uniqueness conditions of Lemma 3 are satisfied if $x \ge 1$. Hence $C_1 = C_{d+1}$. Multiplication on the right by $C_1^{-1}B_0^{-1}$ then gives Lemma 6.

THEOREM 1.

(a)
$$\frac{m}{n}e^{1/q} \sim B_0 \prod_{x=0}^{\infty} \prod_{t=1}^{\infty} Q_t(x) B_t$$

(b)
$$\frac{m}{n}e^{1/q} \sim \begin{pmatrix} F_d(0) & (m/n) R_d(0) \\ (n/m) G_d(0) & S_d(0) \end{pmatrix} B_0 \prod_{x=1}^{\infty} \prod_{t=1}^d Q_t(x) B_t.$$

Proof. By Lemmas 2 and 6, and Lemma 6 of (5)

$$\frac{m}{n}e^{1/q} \sim \prod_{x=0}^{\infty} \left\{ B_0 \left(\prod_{t=1}^d Q_t(x) B_t \right) B_0^{-1} \right\} = B_0 \prod_{x=0}^{\infty} \prod_{t=1}^d Q_t(x) B_t$$

The proof of (b) is similar.

Remarks. (i) The matrices of (b) are of type M and may be factorized, as mentioned in the introduction. It follows that the regular continued fraction for $(m/n)e^{1/q}$ has a quasi-period containing exactly mn linear progressions.

(ii) The expansion (a) does not give the regular continued fraction for $(m/n) e^{1/q}$ as the matrix $Q_t(0)$ has a negative element.

As a simple example we consider 3e. It is easily verified that

$$p_1 = p_2 = p_3 = 1, \quad B_0 = U_3, B_1 = B_2 = U_0 U_1 U_5 U_1, \quad B_3 = U_0 U_1 U_1 U_5,$$
$$\begin{pmatrix} F_3(0) & 3R_3(0) \\ \frac{1}{3}G_3(0) & S_3(0) \end{pmatrix} = \begin{pmatrix} 106 & 261 \\ 13 & 32 \end{pmatrix} = U_8 U_6 U_2 U_2 U_0.$$

Theorem 1(b) then gives

$$\begin{aligned} &3e \sim U_8 U_6 U_2 U_2 U_0 U_3 \prod_{x=1}^{\infty} \{U_{2x-1} U_0 U_1 U_5 U_1\} \{U_{2x-1} U_0 U_1 U_5 U_1\} \{U_{2x-1} U_0 U_1 U_1 U_5\} \\ &\sim U_8 U_6 U_2 U_5 \prod_{x=1}^{\infty} \{U_{2x} U_5 U_1 U_{2x} U_5 U_1 U_{2x} U_1 U_5\}, \end{aligned}$$

and the corresponding regular continued fraction is

$$3e = \left[8, 6, 2, 5, \overline{2x, 5, 1, 2x, 5, 1, 2x, 1, 5}\right]_{x=1}^{\infty}.$$

It is natural to ask when the numbers p_t of Theorem 1 satisfy $p_t = 1$ for t = 1, 2, ..., d. This is answered by Theorem 2. It is convenient to state, without proof, the following lemma:

LEMMA 7. If $\begin{pmatrix} X & V \\ Y & W \end{pmatrix}$ is a matrix of type P or U_0P , with XW - YV = 1 and X > 1, then V is determined by the conditions $YV \equiv -1 \pmod{X}$ and 0 < V < X.

THEOREM 2. Each of the progressions $p_i^2(2qx-1)$ in Theorem 1 reduces to 2qx-1 if, and only if, the integers K_t defined by the recurrence relation

$$K_t = (4t-2) q K_{t-1} + K_{t-2} \quad for \quad 2 \leqslant t \leqslant d,$$

with $K_0 = 1$, $K_1 = 2q - 1 + 2r_1$, satisfy $(K_t, d) = 1$.

Proof. (i) Assume $p_t = 1$ for t = 1, 2, ..., d. Then the definition of $B_t C_{t+1}$ in Lemma 5 gives

$$\begin{pmatrix} 2d & d \\ 2d - 1 + (4t - 2)q + 2r_t & d + (2t - 1)q + r_t \end{pmatrix} = B_t C_{t+1}$$

Hence

for

$$B_{t} = \begin{pmatrix} 2d & v_{t} \\ 2d - 1 + (4t - 2)q + 2r_{t} & w_{t} \end{pmatrix}, \quad C_{t+1} = \begin{pmatrix} 1 & r_{t+1} \\ 0 & d \end{pmatrix},$$

By Lemma 7, v_t is determined by

$$\{2r_t + (4t-2)q - 1\}v_t \equiv -1 \pmod{2d}$$
⁽²⁾

and $0 < v_t < 2d$.

The matrix equation obtained by equating the two expressions for $B_t C_{t+1}$ gives

$$1 = 2r_{t+1} + v_t. (3)$$

Congruence (2) and equation (3) imply

$$\{(4t-2)q - v_{t-1}\}v_t \equiv -1 \pmod{2d}$$
(4)
$$t = 2, \dots, d.$$

K. R. MATTHEWS AND R. F. C. WALTERS

Residue classes k_t , each prime to 2d, can now be defined by the recurrence relation

$$k_t \equiv k_{t-1}\{(4t-2)q - v_{t-1}\} \pmod{2d} \quad (2 \le t \le d), \tag{5}$$

with $k_1 \equiv 2q + 2r_1 - 1 \pmod{2d}$.

Congruence (4) may then be written as

$$k_t v_t \equiv -k_{t-1} \pmod{2d}.$$

This congruence is valid for t = 1 on taking $k_0 \equiv 1 \pmod{2d}$. Substituting for $k_{t-1}v_{t-1}$ in congruence (5) gives $k_{t-1} = (4t - 2) ck + k_{t-1} \pmod{2d}$

$$k_t \equiv (4t-2) q k_{t-1} + k_{t-2} \pmod{2d},$$

completing the 'only if' part of the proof of Theorem 2.

(ii) Assume the integers K_t , defined in Theorem 2, satisfy $(K_t, d) = 1$ for t = 1, 2, ..., d. Since K_t is clearly odd, $(K_t, 2d) = 1$.

By definition, $B_t C_{t+1}$ is the factorization of

$$\begin{pmatrix} 2s_t & s_t \\ p_t \{2d - 1 + (4t - 2)q\} + 2r_t & p_t \{d + (2t - 1)q\} + r_t \end{pmatrix}. \\ B_t = \begin{pmatrix} X_t & V_t \\ Y_t & W_t \end{pmatrix},$$

Also

where

 $X_t = 2s_t/p_{t+1}, Y_t = [p_t \{2d - 1 + (4t - 2)q\} + 2r_t]/p_{t+1},$

and

$$p_{t+1} = (2s_t, p_t \{2d - 1 + (4t - 2)q\} + 2r_t).$$

By Lemma 7, V_t is determined by

 $Y_t V_t \equiv -1 \pmod{X_t} \quad \text{and} \quad 0 < V_t < X_t.$

Since $(K_t, 2d) = 1$ for t = 0, 1, ..., d, we can define integers v_t by

$$K_t v_t \equiv -K_{t-1} \pmod{2d}$$
 and $0 < v_t < 2d$

for t = 1, 2, ..., d.

It is now shown that $v_t = V_t$ and $p_t = 1$, for t = 1, 2, ..., d. We use induction and assume

$$p_1 = 1, p_2 = 1, \dots p_t = 1$$
 and $V_1 = v_1, \dots, V_{t-1} = v_{t-1}$

for some t with $2 \leq t < d$.

We first verify that the assumption is correct for t = 2.

By definition, $p_1 = (m, n) = 1$. Hence $s_1 = d$ and

$$B_1 C_2 = \begin{pmatrix} 2d & d \\ 2d - 1 + 2q + 2r_1 & d + q + r_1 \end{pmatrix}$$
$$= \begin{pmatrix} 2d & d \\ 2d + K_1 & d + q + r_1 \end{pmatrix}.$$

Consequently $p_2 = (2d, 2d + K_1) = (2d, K_1) = 1$,

and
$$B_{\mathbf{I}} = \begin{pmatrix} 2d & V_{\mathbf{I}} \\ 2d + K_{\mathbf{I}} & W_{\mathbf{I}} \end{pmatrix},$$

where $(2d + K_1)V_1 \equiv -1 \pmod{2d}$ and $0 < V_1 < 2d$. But $K_1v_1 \equiv -1 \pmod{2d}$ and $0 < v_1 < 2d$, so that $v_1 = V_1$. This completes the verification for t = 2.

To complete the induction, we need the following result which is easily deduced:

$$\{(4t-2)q - v_{t-1}\}v_t \equiv -1 \pmod{2d}$$
(6)

for $t \ge 2$.

It is now shown that $p_{t+1} = 1$.

The induction hypothesis gives $p_t = 1$ and $s_t = d$, so that

$$B_t C_{t+1} = \begin{pmatrix} 2d & d \\ 2d - 1 + (4t - 2)q + 2r_t & d + (2t - 1)q + r_t \end{pmatrix}$$

and consequently $p_{t+1} = (2d, (4t-2)q + 2r_t - 1).$

Also since $p_{t-1} = 1$, $s_{t-1} = d$, and $v_{t-1} = V_{t-1}$, we have

$$\begin{split} B_{t-1}C_t &= \begin{pmatrix} 2d & d \\ 2d-1+(4t-6)q+2r_{t-1} & d+(2t-3)q+r_{t-1} \end{pmatrix} \\ &= \begin{pmatrix} 2d & v_{t-1} \\ 2d-1+(4t-6)q+2r_{t-1} & W_{t-1} \end{pmatrix} \begin{pmatrix} 1 & r_t \\ 0 & d \end{pmatrix}. \end{split}$$

Hence $2r_t + v_{t-1} = 1$ and $p_{t+1} = (2d, (4t-2)q - v_{t-1}).$

Congruence (6) then implies $p_{t+1} = 1$. Finally, we show that $V_t = v_t$. By definition

$$B_t = \begin{pmatrix} 2d & V_t \\ 2d + (4t-2)q - v_{t-1} & W_t \end{pmatrix},$$

where by Lemma 7,

$$\{2d + (4t - 2) \, q - v_{t-1}\} \, V_t \equiv -1 \; (\mathrm{mod} \; 2d) \quad \mathrm{and} \quad 0 < V_t < 2d$$

Congruence (6) together with $0 < v_t < 2d$, gives $V_t = v_t$ and the induction is complete. The following theorem deals with $m e^{1/q}$. Here $r_1 = 0$, $K_0 = 1$, and $K_1 = 2q - 1$.

THEOREM 3. Let q_i denote a prime with the property that $(K_t, q_i) = 1$ for $t = 1, 2, ..., q_i$. Also let S be the set of natural numbers m for which each of the progressions $p_i^2(2qx-1)$ reduces to 2qx-1, in the expansions of $me^{1/q}$ given by Theorem 1. Then S is identical with T, the set of numbers which contain only $q_1, q_2, ...$ as prime factors.

Proof. (i) Suppose m belongs to S. Then by Theorem 2, $(K_t, m) = 1$ for t = 1, 2, ..., m. Hence $(K_t, q) = 1$ for t = 1, 2, ..., q, for each prime q dividing m.

(ii) Suppose *m* belongs to *T*. Then to deduce that *m* belongs to *S*, it suffices, by Theorem 2, to prove that the condition $(K_t, q) = 1$ for t = 1, 2, ..., q is equivalent to $(K_t, q) = 1$ for all *t*.

However, this follows from the congruence

$$K_{t+q} \equiv (-1)^q K_t \pmod{q} \quad \text{for} \quad t \ge 0.$$

This congruence is easily deduced from the formula

$$K_t = \sum_{r=0}^t \binom{t}{r} (-1)^{t-r} \frac{(t+r)!}{t!} q^r,$$

which may be verified by induction.

74 K. R. MATTHEWS AND R. F. C. WALTERS

In conclusion, the authors wish to acknowledge the help of Prof. C.S. Davis in the preparation of this manuscript for publication.

REFERENCES

- DAVIS, C. S. On some simple continued fractions connected with e. J. London Math. Soc. 20 (1945), 194-198.
- (2) KOLDEN, K. Continued fractions and linear substitutions. Arch. Math. Naturvid. 50 (1949), 141-196.
- (3) LEHMER, D. N. Arithmetical theory of certain Hurwitzian continued fractions. Amer. J. Math. 40 (1918), 375-390.
- (4) PERRON, O. Die Lehre von den Kettenbrüchen. Bd. 1, 110-123. (3rd ed. Toubnor, 1954.)
- WALTERS, R. F. C. Alternative derivation of some regular continued fractions. J. Austral. Math. Soc. 8 (1968), 205-212.