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1 Introduction

We consider the problem of solving AX = B, where A,X,B are integer
matrices of size m× n, n× 1,m× 1, respectively, with A nonzero.

One classical method, described in M. Newman’s book ([2, page 36]) uses
the Smith Normal Form of A.

Another approach, based on applying the modified LLL algorithm (MLLL)

to

[
At

Bt

]
, is given in M. Pohst’s book [4, pages 23–24].

There are other methods designed to avoid coefficient explosion, such as
that of Chou–Collins [1].

In this note we present another method, presumably well–known, which

finds the Hermite normal form of G =

[
At 0
Bt 1

]
.

Let H = HNF(At) =

[
C
0

]
, where C consists of nonzero rows.

If a solution of AX = B exists, then

HNF(G) =

 C 0
0 1
0 0

 .
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Conversely if

HNF(G) =

 D 0
0 1
0 0

 ,
and P is a unimodular matrix such that PG = HNF(G), then P has the
form

P =

 Q1 0
−Y t 1
R 0


(if the nullspace N(A) (which consists of the integer vectors X such that
AX = 0), is trivial, R will be absent) and from the equation PG = HNF(G),
we deduce that AY = B.

If the LLL–based Hermite normal form algorithm of Havas, Majewski,
Matthews [3] is used and the nullspace N(A) = {X ∈ Zn|AX = 0} is non–
trivial, the corresponding unimodular tranformation matrix P , tends to have
small entries. In particular, Y is likely to have small entries and the columns
of Rt are likely to form a basis for N(A) having small entries.

For matrices A of large dimension, it would be advisable to initially em-
ploy a faster Hermite normal form algorithm such as that of Kannan–Bachem
[5, pages 349–357], to decide if the system is soluble and also if rankA = n,
as the Gram–Schmidt basis component of the LLL–based algorithm is time–
consuming to compute for large matrices.

2 An example of Pohst

Here

G =

[
At 0
Bt 1

]
=


−8 1 −7 −9 −2 −1 0

5 −2 3 −3 1 1 0
7 0 6 4 −5 −8 0

−7 −10 5 9 −4 4 0
3 −4 1 −2 3 −8 0

−7 3 2 6 7 −1 0
4 8 5 1 −8 −9 0
9 5 0 −10 −8 8 0

−6 2 −6 −9 −5 6 0
3 −1 −1 −7 9 8 1

 .
Applying the LLL–based Hermite normal form algorithm to G, with pa-
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rameter α = 1, gives the unimodular tranformation matrix

P =


−3 −8 −4 2 8 2 1 5 0 0
−15 −31 −47 13 37 −4 22 18 −11 0

24 −17 7 6 2 11 −10 23 −29 0
45 −98 −90 44 69 11 26 94 −118 0

−65 94 73 −43 −55 −16 −15 −99 133 0
−43 10 −2 −8 11 −6 8 −25 53 0
−38 −25 6 −1 34 12 −3 3 44 1
102 −214 −137 86 141 47 23 207 −233 0
−86 −51 −18 2 79 15 10 5 85 0

16 −20 54 −3 1 30 −36 22 3 0


and

PG = HNF(G) =

[
I7
0

]
.

From row 7 of P , we read off the short solution

X = [38, 25,−6, 1,−34,−12, 3,−3,−44]t

of AX = B. This is in fact the shortest solution. Also the last three rows of
P constitute a short basis for N(A):

[102,−214,−137, 86, 141, 47, 23, 207,−233]t,

[86, 51, 18,−2,−79,−15,−10,−5,−85]t,

[16,−20, 54,−3, 1, 30,−36, 22, 3]t.

3 Remarks

1. The algorithm is implemented, along with that of Kannan–Bachem, in
the author’s number theory calculator program CALC at

http://www.numbertheory.org/calc/krm calc.html.

There is a slower BCMATH version at

http://www.numbertheory.org/php/axb.html.

2. This note arose in answer to a query of J.S. Silverman in 1998.
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