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Theorem XIII of A.A.K. Ayyangar ([2, p.103]) states that the nearest

square continued fraction expansion (NSCF) of ξ0 =
p+q+

√
p2+q2

p
, p > 2q > 0

is purely recurring. In [1], it is stated that a period contains at most two
complete quotients ξh of this form. This is proved in [2, p.109]. We give
another proof. In the case where there are two complete quotients of the
above form in a period, we show that they are separated by half a period-
length. Our proof is an extension of the argument in [2, pp.112-113], which
dealt with the case where there is only one complete quotient of the above
form in a period.

Theorem. Let k be the period-length of the NSCF expansion of
p+q+

√
p2+q2

p
,

where p > 2q > 0. Then if ξh, 1 ≤ h < k is also of this form,

(a) k is even and h = k/2;

(b) Qv = Qk−v for 0 ≤ v ≤ k − 1; (Q0 = Q2h by periodicity and Q1 =
Q2h−1 = 2q);

(c) Pk+1−v = Pv for 2 ≤ v ≤ k
2
− 1;

(d) bv = bk−v, 2 ≤ v ≤ k
2
− 2, bk−1 − 1 = b1, b k

2
+1 = b k

2
−1 − 1, b k

2
= 2;

(e) ak+1−v = av, 2 ≤ v ≤ k
2
− 1, a k

2
= −1, a k

2
+1 = 1, a1 = 1, ak = −1.

By Corollary 4, [2, p.29], the period of the NSCF expansion of a quadratic
surd has all partial denominators bν ≥ 2. Also in [2, pp.147-153], Perron

introduces the transformation t1, where if av = −1, av−1|
|bv−1

− 1|
|bv

is replaced by
av−1|

|bv−1−1
+ 1|

|1 + 1|
|bv−1

. Repeated use of t1 results in a transformation T1.
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Thus each partial numerator −1 produces a partial numerator 1, while
each partial denominator bv is replaced by:

bv if av = 1, av+1 = 1

bv − 1 if av = 1, av+1 = −1 or av = −1, av+1 = 1

bv − 2 if av = −1, av+1 = −1.

Hence T1 converts the NSCF expansion to a continued fraction where all
partial numerators aν are 1 and all partial denominators bν are non-negative.

The following lemma shows that for a NSCF expansion where ξ0 or ξ1

are reduced surds, T1 in fact produces the regular continued fraction (RCF)
expansion of ξ0.
Lemma 1. Suppose ξt and ξt+1 are reduced quadratic surds. Then if at = −1
and at+1 = −1, we have bt ≥ 3.
Proof. Assume ξt and ξt+1 are reduced. Then

Pt+1 ≥ Qt + 1
2
Qt+1 (1)

Pt ≥ Qt + 1
2
Qt−1. (2)

Then (1) and (2) give

btQt = Pt+1 + Pt ≥ 2Qt + 1
2
Qt+1 + 1

2
Qt−1.

Hence btQt > 2Qt, as Qt+1 > 0 and Qt−1 > 0. Hence bt > 2. Now suppose

ξh =
P+Q+

√
P 2+Q2

P
, P > 2Q > 0 occurs remotely in the cycle of ξ0. We know

that ah = −1 and ah+1 = 1.
Also as ah = −1, ξh gives rise to the RCF complete quotient ξh − 1 =

Q+
√

P 2+Q2

P
and by Lemma 2, section 5.5 of [2], this can only occur once in a

period.

We now prove h = k/2.

Lemma 2. Suppose ξ0 = b0 + a1|
|b1 + · · ·+ ak−1|

|bk−1
+ · · · is purely periodic with

period k and let

ζv = −ak−v/ξk−v =
Pk−v +

√
D

Qk−v−1

,

for v = 0, . . . , k − 1 and where a0 = ak. Then if none of ξh+1, . . . , ξk−1 has

the form
p+q+

√
p2+q2

p
, p > 2q > 0, by Theorem VIII [2, p.98], we have the
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Bhaskara expansion

ζ0 = bk−1 +
ak−1|
|bk−2

+ · · ·+ ah+2|
|ζk−h−2

. (3)

Now assume ξ0 =
p+q+

√
p2+q2

p
, p > 2q > 0 and that ξh =

P+Q+
√

P 2+Q2

P
, P >

2Q > 0, with 1 < h < k. Then we know that none of ξh+1, . . . , ξk−1 has this
form and Lemma 2 applies. We find with ak = −1 that

ζ0 = 1/
p + q −

√
p2 + q2

p
=

p + q +
√

p2 + q2

2q
=

p− q +
√

p2 + q2

2q
+ 1,

which together with (3), gives the Bhaskara expansion

p− q +
√

p2 + q2

2q
= bk−1 − 1 +

ak−1|
|bk−2

+ · · ·+ ah+2|
|ζk−h−2

. (4)

Now ζk−h−2 = Ph+2+
√

D

Qh+1
and we see Ph+2 = (2a + 1)Q − P , where a =

bP/Qc. Also Qh+1 = 2Q. Hence we have the Bhaskara expansion

ζk−h−2 =
(2a + 1)Q− P +

√
D

2Q
= a + 1− P + Q +

√
D

P
. (5)

Then equations (4) and (5) give

p− q +
√

p2 + q2

2q
= bk−1 − 1 +

ak−1|
|bk−2

+ · · ·+ ah+2|
|a + 1

− 1|
|P+Q+

√
D

P

. (6)

But
p + q +

√
p2 + q2

p
= 2 +

2q

p− q +
√

D
,

so we also have the Bhaskara expansion

p− q +
√

p2 + q2

2q
= b1 +

a2|
|b2

+ · · ·+ ak−h−1|
|bh−k−1

+
ak−h|
|ξk−h

. (7)

By comparing (6) and (7), we deduce ξk−h = P+Q+
√

D
P

and so k − h = h,
k = 2h. Also bk−1 − 1 = b1, ah = −1, bh = 2, bh−1 = a + 1 = bh+1 + 1, the
latter following from [3, pp.7-8].

3



Also av = ak+1−v for v = 2, . . . , h− 1 and bv = bk−v for v = 2, . . . , h− 2.
Finally, we have for v = 2, . . . , h− 1,

ξv = ζv−1,

Pv +
√

D

Qv

=
Pk−v+1 +

√
D

Qk−v

,

so Pv = Pk+1−v and Qv = Qk−v. The last equation also holds for v = 0
by periodicity and holds for v = 1 as Q1 = 2q = Qk.

Example. ξ0 = 324+
√

81770
283

. Here 2832 + 412 = 2772 + 712 = 81770. p =
283, q = 41, P = 277, Q = 71, k = 8, k′ = 10.

ξ0 = 324+
√

81770
283

a1 = 1 b0 = 2

ξ1 = 242+
√

81770
82

a2 = 1 b1 = 6

ξ2 = 250+
√

81770
235

a3 = 1 b2 = 2

ξ3 = 220+
√

81770
142

a4 = −1 b3 = 4

ξ4 = 348+
√

81770
277

a5 = 1 b4 = 2

ξ5 = 206+
√

81770
142

a6 = 1 b5 = 3

ξ6 = 220+
√

81770
235

a7 = 1 b6 = 2

ξ7 = 250+
√

81770
82

a8 = −1 b7 = 7

ξ8 = 324+
√

81770
283

a9 = 1 b8 = 2
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[4] O. Perron, Kettenbrüchen, Band 1, Teubner, 1954.

4


