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Abstract

This is a version of the (perhaps somewhat neglected) paper The-

ory of The Nearest Square Continued Fraction, A.A. Krishnaswami
Ayyangar (AAK), J. Mysore Univ. 1, (1941), 21-32, 97-117. The task
was undertaken as the online version at http://www.ms.uky.edu/ so-
hum/AAK/PRELUDE.htm was poorly reproduced. Some of the ex-
planations were hard to follow and have been expanded for the ease
of the reader. Only Section 5.5.1 has not been vetted. The circle
diagrams were kindly provided by Judy Matthews.

1. Introduction

The genesis of the present investigation is a remark of the late Sir Thomas
Little Heath that the Indian Cyclic Method of solving the equation x2 −
Ny2 = 1 in integers due to Bhaskara in 1150, is1 ’remarkably enough, the
same as that which was rediscovered and expounded by Lagrange in 1768’.
We have pointed out elsewhere2 that the Indian Cyclic Method implies a
half-regular continued fraction (h.r.c.f. for brevity) with certain noteworthy
properties which have not been previously investigated. If we remember that
it was Lagrange who was mainly responsible for the neglect of the h.r.c.f.
since he showed, by an example, how it would never uniformly lead to the

1See page 285, Diophantus of Alexandria by Sir T.L. Heath, Cambridge 1910
2See pages 602-604, Curr. Sci., Vol. VI, No. 12, June 1938.
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solution of the so-called Pellian equation, we can appreciate the distance
between Lagrange’s simple continued fraction and the one discussed in this
paper.

This new continued fraction, we call, the nearest square continued fraction

or Bhaskara continued fraction - (B.c.f. for brevity), the natural sequel to
Bhaskara’s cyclic method. The whole theory can be developed as it were from
’scratch’ with the help of the simplest mathematics known to the Hindus
about the fifth century A.D.

2. The New Continued Fraction Defined

2.1. Definition. A quadratic surd P+
√

R
Q

is said to be in standard form

if R is a non-square positive integer and P,Q, R−P 2

Q
are integers, having no

common factor other than 1.

Theorem I. If a = ⌊P+
√

R
Q

⌋, where P+
√

R
Q

is a standard surd and

P +
√

R

Q
= a +

Q′

P ′ +
√

R
= a + 1 − Q

′′

P ′′ +
√

R
,

then P ′+
√

R
Q′

and P
′′

+
√

R

Q
′′ are standard surds with the following properties:

(i) P
′′ − P ′ = Q; P

′′

+ P ′ = Q′ + Q
′′

;

Q′ − 1

2
Q ≤ P ′ if Q′ ≤ Q

′′

;

Q
′′

+ 1

2
Q ≤ P

′′

if Q
′′ ≤ Q′.

(ii) Q′2 + Q
′′2

+ Q2 + 2Q′Q
′′

+ 2QQ′ − 2QQ
′′

= 4R.

(iii) If |Q′|, |Q′′|, |Q| be all greater than
√

R, then

|P ′|, |P ′′ |, 1

2
|Q| are all greater than

√
2R,

at least one of |Q′|, |Q′′| is less than 1

2
|Q|;

also |P ′|, |P ′′|, |Q′|, |Q′′ | are less than |Q|.

(iv) (a) If |Q| < 2
√

R, then Q′ > 0 and Q
′′

> 0 and at least one of them is
less than

√
R;

(b) if |Q| <
√

2R, then one of P ′, P
′′

is positive;

(c) if |Q| <
√

R, then 0 < P ′ < 2
√

R and 0 < P
′′

< 2
√

R.
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(v) (a) If |Q| < 2
√

R, then Q′ ≥
< Q

′′

according as

Q′

P ′ +
√

R

≥
<

1

2
+

√
R

Q
−

√

4R − Q2

2Q
;

(b) if |Q| > 2
√

R, then |Q′| ≥
< |Q′′| according as

Q′

P ′ +
√

R

≥
<

1

2
+

√
R

Q
.

Proof. (i) and (ii) follow readily from the relations:-

(1) P ′ = aQ − P ; (2) P
′′

= (a + 1)Q − P,

(3) P ′2 = R − QQ′; (4) P
′′2

= R + QQ
′′

.

The elements of the triple (R−P 2

Q
, P,Q) can be expressed as the sum of

integral multiples of the elements of the triple (R−P ′2

Q′
, P ′, Q′) and vice-versa.

Hence P ′+
√

R
Q′

is also a standard surd, when P+
√

R
Q

is one. Similarly P
′′

+
√

R

Q
′′ is

also standard.

From (ii),

(Q′ − Q
′′

+ Q)2 + 4Q′Q
′′

= 4R = (Q′ + Q
′′

+ Q)2 − 4QQ
′′

= (Q′ + Q
′′ − Q)2 + 4QQ

′′

(5)

If |Q|, |Q′|, |Q′′ | all be greater than
√

R, then |QQ′|, |QQ
′′ |, |Q′Q

′′| > R
and this implies Q′Q

′′

< 0, QQ
′′

> 0 and QQ′ < 0.
Hence Q,Q

′′

are of the same sign and different from that of Q′. (α).

Again, Q′

P ′+
√

R
and Q

′′

P
′′
+
√

R
are positive proper fractions, so that if Q′, Q

′′

area of opposite signs, so also are the pairs P ′+
√

R and P
′′

+
√

R and P ′, P
′′

;
and the latter are absolutely greater than

√
R.

From (3), (4) and (α), |P ′| >
√

2R, |P ′′| >
√

2R. (β).

From (i) and (β), |Q| = |P ′| + |P ′′| > 2
√

2R and one of P ′, P
′′

is not
absolutely greater than 1

2
|Q|.
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From (3) and (α), |QQ′| < P ′2; but |Q| > |P ′|. Hence |Q′| < |P ′| < |Q|;
similarly |Q′′| < |P ′′| < |Q|.

Hence |Q′| or |Q′′| is less than 1

2
|Q|, according as |P ′| or |P ′′| is not greater

than 1

2
|Q|. This proves (iii).

If |P ′|, |P ′′| be both less than
√

R, we have from (3) and (4), Q,Q′ of the
same sign and different from that of Q

′′

.

By (β), P ′ +
√

R and P
′′

+
√

R must also be of oppositie signs, which
contradicts the assumption that |P ′|, |P ′′| <

√
R.

Hence |P ′|, |P ′′| are never both less than
√

R. (γ)

If |P ′|, |P ′′| are both greater than
√

R, then |Q| > 2
√

R.

If |Q| < 2
√

R, one of |P ′|, |P ′′ | is less and the other greater than
√

R, so
that by (3) and (4), Q′, Q

′′

are of the same sign.

When Q′, Q
′′

are of the same sign, P ′ +
√

R and P
′′

+
√

R are also of the
same sign and the numerically greater of |P ′|, |P ′′| must be positive, and so
all the quantiities P ′ +

√
R,P

′′

+
√

R,Q′, Q
′′

must be positive.

Therefore Q′Q
′′

< R by (5) and so one of Q′, Q
′′

is less than
√

R.

Again, if either Q′ < Q
′′

, P ′ < 0, P
′′

> 0, or Q′ > Q
′′

, P
′′

< 0, P ′ >
0, we have Q(Q′ − Q

′′

) = (P
′′ − P ′)(Q′ − Q

′′

) < 0, and by (ii) and (i),
Q2 + (Q′ + Q

′′

)2 > 4R and |Q| > |Q′ + Q
′′| and therefore Q2 > 2R.

If Q′ = Q
′′

and P ′, P
′′

be of opposite signs, then Q2 + (Q′ + Q
′′

)2 = 4R
and again Q2 > 2R.

Therefore, when |Q| <
√

2R, we must have P ′ or P
′′

or both positive,
according as Q′ < Q

′′

or Q′ > Q
′′

or Q′ = Q
′′

.

From (3), |QQ′| = |
√

R − P ′| · |
√

R + P ′|. But |Q′| < |P ′ +
√

R|, so
|Q| > |

√
R − P ′|.

If
√

R > |Q|, then
√

R > |
√

R − P ′|, so 2
√

R > P ′ > 0. Similarly
2
√

R > P
′′

> 0. Thus (iv) is proved.

If |Q| < 2
√

R, we have from (ii), (Q′ + Q
′′

)2 >
< 4R − Q2 according as

Q(Q′ − Q
′′

) <
> 0. By (iv), Q′, Q

′′

> 0 and if Q < 0 and Q′ > Q
′′

, we have
(Q′ + Q

′′

)2 > 4R − Q2,
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i.e.,
Q′ + Q

′′

−2Q
>

√

R

Q2
− 1

4

i.e.,
2P ′ + Q

−2Q
>

√

R

Q2
− 1

4

i.e.,

√
R − P ′

Q
> 1

2
+

√
R

Q
+

√

R

Q2
− 1

4

i.e.,
Q′

P ′ +
√

R
> 1

2
+

√
R

Q
−

√

4R − Q2

2Q
.

The same result is obtained when Q > 0 and Q′ > Q
′′

.

Hence, when Q′ > Q
′′

and |Q| < 2
√

R,

Q′

P ′ +
√

R
> 1

2
+

√
R

Q
−

√

4R − Q2

2Q
.

Similarly , when Q′ ≤ Q
′′

, we can prove that

Q′

P ′ +
√

R
≤ 1

2
+

√
R

Q
−

√

4R − Q2

2Q
.

Again, from (ii), if |Q| > 2
√

R, Q(Q′ − Q
′′

) < 0,

i.e.,
Q′ + Q

′′

Q
>
< 0 according as |Q′| <

> |Q′′|,

i.e.,
2P ′ + Q

2Q
>
< 0 according as |Q′| <

> |Q′′|,

i.e., 1

2
+

√
R

Q
>
<

√
R − P ′

Q
according as |Q′| <

> |Q′′|,

i.e., 1

2
+

√
R

Q
>
<

Q′

P ′ +
√

R
according as |Q′| <

> |Q′′|.

If |Q′| = |Q′′|, then Q′ 6= Q
′′

and therefore Q′ + Q
′′

= 0, which implies
Q′

P ′+
√

R
= 1

2
+

√
R

Q
. Thus (v) is proved.
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2.2. Having settled the preliminaries, we proceed to define the new continued
fraction development as follows:

Let ξ0 = P+
√

R
Q

be a surd in standard form and a = ⌊ξ0⌋. Then ξ0 can be
represented in one of two forms

ξ0 = a +
Q′

P ′ +
√

R
(I) or ξ0 = a + 1 − Q

′′

P ′′ +
√

R
(II),

where P ′+
√

R
Q′

and P
′′

+
√

R

Q
′′ are also standard surds.

We call (I) the positive and (II) the negative representation of ξ0. Choose
the partial denominator b0 and numerator ǫ1 of the new continued fraction
development:

(a) b0 = a if |Q′| < |Q′′|, or |Q′| = |Q′′| and Q < 0, with ǫ1 = 1

(b) b0 = a + 1 if |Q′| > |Q′′|, or |Q′| = |Q′′| and Q > 0, with ǫ1 = −1

Then ξ0 = P+
√

R
Q

= b0 + ǫ1
ξ1

, where |ǫ1| = 1, b0 an integer and ξ1 = P1+
√

R
Q1

> 1.

Also P1 = P ′ or P
′′

and Q1 = Q′ or Q
′′

, according as ǫ1 = 1 or −1.

We proceed similarly with ξ1 and so on. Then

ξn = bn +
ǫn+1

ξn+1

and ξ0 = b0 +
ǫ1|
|b1

+
ǫ2|
|b2

+ · · · (1)

This development is called the Bhaskara continued fraction (B.c.f), or nearest

square continued fraction for reasons to be noted presently.

Analogous classical relations connecting integers Pn, Qn, Pn+1, Qn+1 are

Pn+1 + Pn = bnQn (2)

P 2
n+1 + ǫn+1QnQn+1 = R. (3)

By Theorem I (iii), the |Qn| successively diminish as long as |Qn| >
√

R
and so ultimately, we have |Qn| <

√
R. When this stage is reached, the Pn

and Qn thereafter become positive and bounded , Pn < 2
√

R,Qn <
√

R by
Theorem I (iv). This implies eventual periodicity of the complete quotients
and thence the partial quotients. Hence we have

Theorem II. Every B.c.f. development of a quadratic surd is an eventually
periodic half-regular continued fraction (h.r.c.f).
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Note. (1) If ξ0 = b0 + ǫ1|
|b1 + ǫ2|

|b2 + · · · is a B.c.f., then so is −ξ0 = −b0 − ǫ1|
|b1 +

ǫ2|
|b2 + · · · . This follows immediately from the manner of the development,
which takes into account the relative magnitudes and not the signs of the
Qn.

(2) From Theorem I (iv), it is easily seen that

(i) ǫn+1 = 1, if {ξn} < 1

2
and Qn > 0;

(ii) ǫn+1 = −1, if {ξn} > 1

2
and Qn < 0.

(3) From Theorem I (iii), it follows that if 2n−1
√

R < |Q| < 2n
√

R, then
0 < |Qm| <

√
R for some value of m with n < m < 1 + log2 |Q| − 1

2
log2 R.

2.3. Implications in the Conditions of the Definition of the B.c.f.

If P+
√

R
Q

= a + Q′

P ′+
√

R
= a + 1 − Q

′′

P
′′
+
√

R
as in §2.2, we have

|Q′| ≤
> |Q′′| ⇐⇒ |QQ′| ≤

> |QQ
′′| ⇐⇒ |P ′2 − R| ≤

> |P ′′2 − R|. (4)

Hence, if we are choosing the lesser of |Q′| and |Q′′|, we are choosing, in

effect, the nearer of the two squares P ′2 and P
′′2

to R as the basis of our
development; and if the two squares are equidistant from R, we can obviously
choose either; but to avoid ambiguity, we observe the convention that we
choose Q′ or Q

′′

, according as Q < 0 or Q > 0.
Thus, the name nearest square continued fraction is justified.

With the help of Theorem I (v), we may give the following alternative

choice rule: we assign to each complete quotient Pn+
√

R
Qn

a positive or negative

representation, according as its fractional part is < or > than 1

2
+

√
R

Qn
−
√

4R−Q2
n

2Qn

(resp. 1

2
+

√
R

Qn
), with |Qn| being < (resp. >) 2

√
R.

When the fractional part is equal to 1

2
+

√
R

Qn
−

√
4R−Q2

n

2Qn
(or 1

2
+

√
R

Qn
),

which we may call critical fractions, the representation is chosen positive or
negative, according as Qn is negative or positive.

Such a representation is called a Bhaskara representation (B.R.).

If P+
√

R
Q

= b0 + ǫ1Q1

P1+
√

R
be a Bhaskara representation, where 0 < |Q| <

√
R.

Then by (4) above

|P1
2 − R| ≤ |(P1 + ǫ1Q)2 − R|. (A)
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Exercise (KRM) Noting that |Q| <
√

R implies Q1 > 0, prove that (A) is
equivalent to 1

2
Q1 ≤ |P1 + 1

2
ǫ1Q − 1

2
Q1|. Use Theorem I(i) to prove that

P1 + 1

2
ǫ1Q − 1

2
Q1 > 0 and deduce that (A) is equivalent to Q1 − 1

2
ǫ1Q ≤ P1.

From Theorem I (i), we get Q1 − 1

2
ǫ1Q ≤ P1; if the l.h.s. of this be negative,

|Q1 − 1

2
ǫ1Q| ≤ P1, since Q2

1 + 1

4
Q2 < 1

2
Q2 < R, Q1 being less than 1

2
|Q|.

Thus, Q1 − 1

2
ǫ1Q ≤ P1 implies |Q1 − 1

2
ǫ1Q| ≤ P1; and vice versa. (B)

Squaring both sides of the above inequality, we get

Q2
1 + 1

4
Q2 ≤ P 2

1 + ǫ1QQ1 = R, i.e., Q2
1 + 1

4
Q2 ≤ R. (C)

Conversely, it is seasy to see that (C) implies (B).
Hence, (A),(B),(C) are all equivalent to one another, when 0 < |Q| <

√
R.

‡ Similarly, we can write down another set of equivalent conditions :

|P 2
1 − R| ≤ |(P1 + ǫ′1Q1)

2 − R|. (A′); |Q − 1

2
ǫ1Q1| ≤ P1. (B′);

Q2 + 1

4
Q2

1 ≤ R. (C ′).

It is not difficult to verify that (C) and (C’) imply that P1 and |P1 + ǫ′1Q1|
(or, |P1+ǫ1Q|) are such that one is less and the other greater than

√
R. (D)

Further, if one of the equivalent pairs (A),(A’); (B),B’); (C),(C’) implying
(D) holds, the following inequalities are true :

P1 ≥ 1

2
|Q|, 1

2
Q1. (E); |P1 −

√
R| < |Q|, Q1. (F)

For, (E) is evident when ǫ1Q = −|Q|; and when ǫ1Q = |Q| and |Q| ≥ Q1,
(B’) shows P1 ≥ |Q| − 1

2
Q1 ≥ 1

2
|Q| ≥ 1

2
Q1; when ǫ1Q = |Q| and |Q| ≤ Q1, we

get the same result from (B). (F) follows immediately from (D), for eample,
if P1 <

√
R, then |P1 + ǫ1Q| and |P1 + ǫ′1Q1| are both greater than

√
R and

ǫ′1 in this case must be +1.
That the condition (C’) can co–exist with (C) is clear from the condera-

tion that the Q’s in the B.c.f. development ultimately become positive and
satisfy the conditions (A),(B), or (C). Since the Q’s cannot go on perpetually
decreasing after they become positive, a stage must come when a Q is not
less than its predecessor. Thus, if Q1 ≥ Q, we get

Q2 + 1

4
Q2

1 ≤ Q2
1 + 1

4
Q2 ≤ R.

3. Characteristics of the Ultimate Partial and Complete Quotients

‡ǫ′1 = +1 or −1 according as P1 <
√

R or P1 >
√

R.
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Definition. A surd in the standard form Pv+
√

R
Qv

is said to be a special surd,

when its successor Pv+1+
√

R

Qv+1
in the B.c.F. development is such that

Q2
v+1 + 1

4
Q2

v ≤ R and Q2
v + 1

4
Q2

v+1 ≤ R.

A surd is said to be semi-reduced if it is the successor of a special surd.
The successor of a semi-reduced surd is called a reduced surd.

Theorem III. The conjugate of a semi-reduced surd has its absolute value
less than 1.

Proof. The conjugate of the semi-reduced surd Pv+1+
√

R

Qv+1
is Pv+1−

√
R

Qv+1
, whose

absolute value is less than 1 by §2.3 (F).

Theorem IV. A semi-reduced surd is also a special surd.

Proof. Let Pv+
√

R
Qv

be a special surd and Pv+1+
√

R

Qv+1
its successor, with B.R.’s

given by

Pv +
√

R

Qv

= bv +
ǫv+1Qv+1

Pv+1 +
√

R
;

Pv+1 +
√

R

Qv+1

= bv+1 +
ǫv+2Qv+2

Pv+2 +
√

R
.

It is required to prove that

(i) Q2
v+1 + 1

4
Q2

v+2 ≤ R and (ii) Q2
v+2 + 1

4
Q2

v+1 ≤ R. (1)

Only (i) needs proof, as 0 < Qv+1 <
√

R and inequality (C) of the Lemma,
imply (ii).

Now (i) is true when Qv+1 ≤ Qv+2 or Qv+2 ≤ |Qv|. The former follows as
Qv+1 ≤ Qv+2 implies

Q2
v+1 + 1

4
Q2

v+2 ≤ Q2
v+2 + 1

4
Q2

v+1 ≤ R.

While if Qv+2 ≤ |Qv|, then

Q2
v+1 + 1

4
Q2

v+2 ≤ Q2
v+1 + 1

4
Q2

v ≤ R,

We have therefore to consider only the remaining case

Qv+1 > Qv+2 > |Qv|. (2)
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Since P 2
v+2 − P 2

v+1 = Qv+1(ǫv+1Qv − ǫv+2Qv+2) and Pv+2 + Pv+1 = bv+1Qv+1,
we have

Pv+2 − Pv+1 = (ǫv+1Qv − ǫv+2Qv+2)/bv+1. (3)

If bv+1 = 1, we have

Pv+1 = 1

2
Qv+1 − 1

2
ǫv+1Qv + 1

2
ǫv+2Qv+2 < Qv+1 − 1

2
ǫv+1Qv.

But by hypothesis, Q2
v+1 + 1

4
Q2

v ≤ R, so

Pv+1 ≥ Qv+1 − 1

2
ǫv+1Qv. (4)

Thus there is a contradiction. Hence

bv+1 ≥ 2. (4′)

From (3) and (4′),

|Pv+2 − Pv+1| ≤ 1

2
|ǫv+1Qv − ǫv+2Qv+2|.

If Pv+2 ≤ Pv+1, then

Pv+2 ≥ Pv+1 + 1

2
ǫv+1Qv − 1

2
ǫv+2Qv+2

≥ Qv+1 − 1

2
ǫv+2Qv+2 by (4),

which is what we have to prove, being equivalent to (1).
Next, if Pv+2 > Pv+1, then

Pv+2 − Pv+1 ≤ 1

2
(ǫv+1Qv − ǫv+2Qv+2), (5)

Since both sides of (5) are positive, ǫv+2 = −1, lest (2) should be contradicted.
Now, two cases may occur: either

Pv+2 + 1

2
ǫv+2Qv+2 ≥ Qv+1 or < Qv+1,

the latter of which will be proved to be impossible.
For in the latter case,

Pv+2 < 1

2
Qv+2 + Qv+1, since ǫv+2 = −1,

< 3

2
Qv+1 by (2).

Hence Pv+1 + Pv+2 < 2Pv+2 < 3Qv+1, so that bv+1 = 1 or 2.
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But by (4′), bv+1 ≥ 2, so bv+1 = 2.
Then from (3)

Pv+1 = Qv+1 − 1

4
ǫv+1Qv − 1

4
Qv+2

≥ Qv+1 − 1

2
ǫv+1Qv by (4).

Hence Qv+2 ≤ ǫv+1Qv, which will be impossible if the right-hand side is
negative and will contradict (2) if the right-hand side is positive.

Hence Pv+2 + 1

2
ǫv+2Qv+2 ≥ Qv+1 and our theorem is established.

Corollary 1. The successor of a reduced surd is a reduced surd.

Corollary 2. All the complete quotients of a B.c.f. are ultimately reduced
surds.

Corollary 3. The conjugate of a reduced surd has its absolute value less
than 1 .

Corollary 4. The partial denominators corresponding to a semi-reduced
and therefore a reduced surd, are always greater than 1.

Proof. For by (E) §2.3, we have Pv+2 > 1

2
Qv+1 and Pv+1 > 1

2
Qv+1, so that

Pv+2 + Pv+1 > Qv+1, i.e., bv+1Qv+1 > Qv+1. Hence bv+1 > 1.

Theorem V. A semi-reduced surd Pv+1+
√

R

Qv+1
is greater than 1+

√
5

2
.

Proof. If Qv+1 ≤
√

4R√
5

, then
√

R
Qv+1

≥
√

5
2

.
But Pv+1 ≥ 1

2
Qv+1, so

Pv+1 +
√

R

Qv+1

≥ 1 +
√

5

2
.

If Pv+1 ≥ Qv+1, obviously Pv+1+
√

R

Qv+1
> 2 > 1+

√
5

2
.

If Pv+1 < Qv+1 and Qv+1 >
√

4R√
5

, then

2.118 · · · = 1 +

√
5

2
>

Pv+1 +
√

R

Qv+1

> 1.

But bv+1 ≥ 2. Hence either

Pv+1 +
√

R

Qv+1

> 2 or else 1 <
Pv+1 +

√
R

Qv+1

< 2.

11



In the latter case, its Bhaskara representation must be negative, so that its
fractional part, by Theorem I (iii) is greater than or equal to the critical
fraction

1

2
+

√
R

Qv+1

−
√

4R − Q2
v+1

2Qv+1

,

which is greater than
√

5−1
2

when
√

R
Qv+1

<
√

5
2

.3 In this case

Pv+1 +
√

R

Qv+1

= 2 − Qv+2

Pv+2 +
√

R

= 1 + (a fraction greater than

√
5 − 1

2
)

>

√
5 + 1

2
.

Thus in all cases, Pv+1+
√

R

Qv+1
≥

√
5+1
2

.

Moreover strict inequality occurs, as
√

5+1
2

is not semi-reduced.

Corollary 1. A reduced surd is always greater than 1+
√

5
2

.

Corollary 2. All the complete quotients of a B.c.f. are ultimately and
therefore in the recurring cycle, greater than 1+

√
5

2
.

Hence we have

Theorem VI. The cyclic part of the Bhaskara continued fraction is canon-

ical. ‖

Theorem VII. If Pv+
√

R
Qv

and Pv+1+
√

R

Qv+1
are successive reduced surds, then

|Pv+1−Pv| ≤ Qv. Moreover equality occurs if and only if Pv+
√

R
Qv

=
bv−1+

√
b2v+1

2

and Pv+1+
√

R

Qv+1
=

bv+1+
√

b2v+1

bv
, where bv > 2.

3Let θ =
√

R/Qv+1. Then

1

2
+ θ −

√

θ2 − 1/4 >

√
5 − 1

2

⇐⇒ 2θ + 2 >
√

5 +
√

4θ2 − 1

⇐⇒ 4θ >
√

5
√

4θ2 − 1

⇐⇒ 5 > 4θ2.

‖Vide Die Lehre von den Kettenbrüchen, O. Perron, 1929, p. 170.
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Proof. If Pv+1 and Pv are both greater than
√

R,

|Pv+1 − Pv| = (Pv+1 −
√

R) − (Pv −
√

R)

≤ max (Pv+1 −
√

R,Pv −
√

R)

< Qv by (F) §2.3

Similarly if Pv+1 and Pv are both less than
√

R.
If Pv+1 >

√
R and Pv <

√
R, we have by (D) §2.3

R − (Pv+1 − Qv)
2 ≥ P 2

v+1 − R and

(Pv + Qv)
2 − R ≥ R − P 2

v .

Adding, we get

(Pv + Pv+1)(Pv − Pv+1 + 2Qv ≥ (Pv+1 + Pv)(Pv+1 − Pv),

so that 2(Pv+1 − Pv) ≤ 2Qv, i.e., Pv+1 − Pv ≤ Qv.
If Pv+1 <

√
R and Pv >

√
R, we get in the same way, Pv − Pv+1 ≤ Qv.

Equality will occur only when

(Pv+1 − Qv)
2 + P 2

v+1 = 2R = P 2
v + (Pv + Qv)

2,

i.e.,

P 2
v+1 − Pv+1Qv +

Q2
v

2
= R, (1)

P 2
v + PvQv +

Q2
v

2
= R. (2)

Subtracting (2) from (1) gives

P 2
v+1 − P 2

v − (Pv+1 + Pv)Qv = 0,

and hence
Pv+1 − Pv = Qv. (3)

We also have
Pv+1 + Pv = bvQv. (4)

(Adding (1) and (2) gives P 2
v+1 + Pv

2 + QV (Pv −Pv+1) + Q2
v = 2R and hence

(3) gives P 2
v+1 + P 2

v = 2R, which is needed in the proof of Theorem IX.)

13



Hence

Pv+1 = (bv + 1)Qv/2

Pv = (bv − 1)Qv/2.

Substituting in (2) gives 4R = Q2
v(b

2
v + 1), which implies that Qv is even.

Then (2) gives

R − P 2
v

Qv

= Pv +
Qv

2

= (bv − 1)
Qv

2
+

Qv

2
= 1

2
bvQv.

Further, the surds being in standard form, R−P 2
v

Qv
, Pv, Qv have highest common

factor unity, so common factor Qv

2
= 1.

Hence Qv = 2, R = b2
v + 1, Pv = bv − 1, Pv+1 = bv + 1, Qv+1 = bv, bv+1 = 1

the latter following from R = P 2
v+1 +bv+1Qv+1Qv, which gives bv = bv+1Qv+1.

Now bv = 2 would give Pv+
√

R
Qv

= 1+
√

5
2

, which is not semi-reduced. Hence
bv > 2.
Remark. The above proof only assumed that the first of the given surds is

semi-reduced.

4. Special Critical Fractions∗

4.1.. In §2 of our previous communication† we have called the surds

(i) 1

2
+

√
R

Q
−

√
4R−Q2

2Q
, (|Q| < 2

√
R),

(ii) 1

2
+

√
R

Q
, (|Q| > 2

√
R),

critical fractions, since they decide the nature of the representations to be

assigned to P+
√

R
Q

in a B.c.f. development. Ambiguities arise when

∗This is a continuation of the memoir published in the Journal of the Mysore University,
Vol. 1, part II, pp. 21–32.

†See ibid., Vol. I, part II, p. 26.
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(iii) P+
√

R
Q

− 1

2
−

√
R

Q
+

√
4R−Q2

2Q
= P

Q
− 1

2
+

√
4R−Q2

2Q
is an integer (|Q| < 2

√
R),

which implies 4R−Q2 = t2, where 2P+t
Q

is an odd integer, Q and t are
even integers and R is a sum of squares;

(iv) P+
√

R
Q

− 1

2
−

√
R

Q
= P

Q
− 1

2
is an integer (|Q| > 2

√
R);

but these cases have been circumvented by appropriate conventions.

If P+
√

R
Q

be a special surd with P1+
√

R
Q1

as its successor, and R = Q2
1+

1

4
Q2 >

Q2+ 1

4
Q2

1, then it is easily seen that the fractional part of P+
√

R
Q

in its positive
representation is equal to the corresponding critical fraction which takes the

special form 1

2
+

√
R−Q1

Q
, where Q1 > |Q|.

Definition. A proper fraction of the form
q−p+

√
p2+q2

2q
is called a special

critical fraction when p > 2q > 0.

4.2. Theorem VIII. If Pv−1+
√

R

Qv−1
is a special surd with successors Pv+

√
R

Qv
,

Pv+1+
√

R

Qv+1
, Pv+2+

√
R

Qv+2
, then Pv+1+

√
R

Qv
is a successor of Pv+2+

√
R

Qv+1
(with Pv+2+

√
R

Qv+1
=

bv+1 + ǫv+1Qv

Pv+1+
√

R
) in all cases except when R = Q2

v + 1

4
Q2

v−1. In this case,

ξv = (1 − g)−1, where g is a special critical fraction and ǫv = −1, ǫv+1 = 1.

Proof. Let

Pv+1 +
√

R

Qv+1

= bv+1 +
ǫv+2Qv+2

Pv+2 +
√

R
.

Then
Pv+1 −

√
R

Qv+1

= bv+1 −
ǫv+2Qv+2

Pv+2 −
√

R
,

i.e., − ǫv+1Qv+1

Pv+1 +
√

R
= bv+1 −

Pv+2 +
√

R

Qv+1

.

Hence
Pv+2 +

√
R

Qv+1

= bv+1 +
ǫv+1Qv

Pv+1 +
√

R
. (1)

Now by (C), (1) is a Bhaskara representation if Q2
v + 1

4
Q2

v+1 < R or if Q2
v +

1

4
Q2

v+1 = R and ǫv+1 = −1. So we assume that

Q2
v + 1

4
Q2

v+1 = R and ǫv+1 = 1.

We now show that this is equivalent to the single condition Q2
v + 1

4
Q2

v−1 = R.
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Similar to (1), we have

Pv+1 +
√

R

Qv

= bv +
ǫvQv−1

Pv +
√

R
. (2)

We also have Q2
v−1 + 1

4
Q2

v ≤ R and Q2
v + 1

4
Q2

v−1 ≤ R.
Hence

P 2
v+1 = R − QvQv+1

= Q2
v + 1

4
Q2

v+1 − QvQv+1

= (Qv − 1

2
Qv+1)

2. (2’)

But since Q2
v + 1

4
Q2

v+1 = R ≥ Q2
v+1 + 1

4
Q2

v, we have Qv ≥ Qv+1. Then (2’)
gives

Pv+1 = Qv − 1

2
Qv+1. (3)

Hence

Pv+1 +
√

R

Qv

=

√
R + Qv − 1

2
Qv+1

Qv

= 2 +

√
R − Qv − 1

2
Qv+1

Qv

= 2 − Qv+1√
R + Qv + 1

2
Qv+1

. (4)

Comparing (2) and (4) gives bv = 2,−ǫvQv−1 = Qv+1, Pv − Qv = 1

2
Qv+1.

Hence
1

4
Q2

v−1 + Q2
v = 1

4
Q2

v+1 + Q2
v = R.

Conversely if 1

4
Q2

v−1 + Q2
v = R, we see Qv ≥ |Qv−1|. Then

Pv = Qv − 1

2
Qv−1.

Also because Pv−1+
√

R

Qv−1
= bv−1 + ǫvQv

Pv+
√

R
is a Bhaskara represention with am-

biguous case, we must have ǫvQv−1 < 0. Hence Pv = Qv + 1

2
|Qv−1| and

Pv +
√

R

Qv

= 2 +

√
R + 1

2
|Qv−1| − Qv

Qv

= 2 +
|Qv−1|√

R − 1

2
|Qv−1| + Qv

,
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so that ǫv+1 = 1, Qv+1 = |Qv−1| and Q2
v + 1

4
Q2

v+1 = R.

Consequently (1) implies Pv+1+
√

R

Qv
will fail to be a successor of Pv+2+

√
R

Qv+1
.

4.3. Theorem IX. Two different semi-reduced surds cannot have the same
Bhaskara successor, unless they are conjugates of −g and 1− g, where g is a
special critical fraction.

Proof. Let two different semi-reduced surds ξv = Pv+
√

R
Qv

and ξ′v = P ′

v+
√

R

Q′

v

have the same successor ξv+1. Then P ′
v 6= Pv. For

R = P 2
v + ǫv+1QvQv+1 = P ′

v

2
+ ǫ′v+1Q

′
vQv+1.

Then Pv = P ′
v implies ǫv+1Qv = ǫ′v+1Q

′
v and since Qv and Q′

v are positive,
being semi-reduced, we would have Qv = Q′

v.
Hence we can assume P ′

v > Pv.
Now the following are Bhaskara representations:

Pv +
√

R

Qv

= bv +
ǫv+1Qv+1

Pv+1 +
√

R
, and

P ′
v +

√
R

Q′
v

= b′v +
ǫ′v+1Qv+1

Pv+1 +
√

R
.

Hence
Pv +

√
R

Qv

+ t
P ′

v +
√

R

Q′
v

∈ Z, (1).

where t = ǫv+1ǫ
′
v+1 = ±1. Hence Qv = Q′

v and t = −1.
Then

Pv − P ′
v (modQv). (2)

Arguing as in the proof of Theorem VII∗, replacing Pv+1 by P ′
v, but omitting

the consideration P ′
v <

√
R,Pv >

√
R, which is not true here, we get

P ′
v − Pv ≤ Qv. (3)

From (2) and (3), P ′
v = Pv or P ′

v −Pv = Qv and in the latter case P ′
v
2 +P 2

v =
2R, from which we derive Pv = |Qv−1| − 1

2
Qv.

(For

(Pv + Qv)
2 + P 2

v = 2R = 2P 2
v + 2ǫvQvQv−1

(Pv + Qv)
2 = P 2

v + 2ǫvQvQv−1

∗See Journal of the Mysore University, Vol. I, Part II, page 31.
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so ǫvQv−1 > 0, i.e., ǫvQv−1 = |Qv−1|.
Hence

(Pv + Qv)
2 = P 2

v + 2Qv|Qv−1|
2PvQv + Q2

v = 2Qv|Qv−1|
2Pv + Qv = 2|Qv−1|.

Hence Pv = |Qv−1| − 1

2
Qv.)

Then P ′
v = Pv + Qv = |Qv−1| + 1

2
Qv.

Also

R = P 2
v + |Qv+1|Qv

= (|Qv−1| − 1

2
Qv)

2 + |Qv+1|Qv

= Q2
v−1 + 1

4
Q2

v.

Thus the two surds which have the same successor are of the form

ξv =
|Qv−1| − 1

2
Qv +

√
R

Qv

, ξ′v =
|Qv−1| + 1

2
Qv +

√
R

Qv

= 1 + ξv,

where R = Q2
v−1+

1

4
Qv

2 ≥ Qv
2+ 1

4
Qv−1

2 by Theorem VIII, so Qv < |Qv−1|.
Also Qv is even.

Obviously
1

2
Qv−|Qv−1|+

√
R

Qv
is a special critical fraction, g say. Then ξv is

the conjugate of −g and ξ′v is the conjugate of 1 − g,

4.4. Theorem X. If g be a special critical fraction, then

(i) g−1 has no Bhaskara predecessor,

(ii) (1 − g)−1 is semi-reduced,

(iii) the Bhaskara successors of g−1 and (1 − g)−1 are respectively the con-
jugates of 1 − g and −g;

(iv) the conjugate of 1 − g has no semi-reduced predecessor,

(v) the conjugate of −g has a unique semi-reduced predecessor,
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Proof. Let g =
q−p+

√
p2+q2

2q
, p > 2q > 0. Then a predecessor of g−1 or

(1 − g)−1 will be of the form a ± g, where a is an integer.

Put P+
√

R
Q

= a + g = a + p

p−q+
√

R
= a + 1 − (1 − g) = a + 1 − p

p+q+
√

R
,

where R = p2 + q2.

Then Q = 2q < p <
√

R, p2+ 1

4
Q2 = R > Q2+ 1

4
p2, so P+

√
R

Q
is a special

surd.

Hence g−1 has no predecessor of the form a + g, while (1 − g)−1 has one
of the form a + 1 − (1 − g).

Similarly, it can be shown that g−1 has no predecessor of the form a− g,
while (1 − g)−1 has one of the form a + 1 + (1 − g).

Now

g−1 =
p − q +

√
R

p
= 1 +

p

q +
√

R
= 2 − 2q

p + q +
√

R

= 2 − 1

conjugate of (1 − g)
;

and

(1 − g)−1 =
p + q +

√
R

p
= 3 − 3p − 4q

2p − q +
√

R
= 2 +

2q

p − q +
√

R

= 2 +
1

conjugate of −g
.

Since 2q < p < 3p− 4q, the Bhaskara successors of g−1 and (1− g)−1 are
respectively the conjugates of 1 − g and −g.

Any predecessor of the conjugate of 1−g must be of the form a± p+q−
√

R

p
,

where a is an integer. For a semi-reduced predecessor, a + p+q−
√

R

p
is inad-

missible and a must be an integer such that p(a−1)−q > 0 and (pa−p−q)2

is nearest to R; all these conditions are satisfied only when a = 2, for it
can be easily verified that p − q <

√
R, pa − p − q >

√
R when a > 2 and

R − (p − q)2 < (2p − q)2 − R, when p > 2q. Thus the only possible semi-
reduced predecessor of the conjugate of 1 − g is g−1. But since g−1 has no
Bhaskara predecessor, it cannot be semi-reduced.

19



Similarly, the possible semi-reduced predecessors of the conjugate of −g

must be of the form pa−p+q+
√

R

p
, where a is an integer such that pa−p+q > 0

and (pa − p + q)2 is nearest to R. Obviously a = 2, since when a ≥ 2, pa −
p + q >

√
R and when a = 1, q <

√
R, while (p + q)2 − R < R − q2.

Thus the possible semi-reduced predecessor is (1 − g)−1, which is certainly
semi-reduced, with a special surd as its predecessor.

Corollary 1. Two different reduced surds cannot have the same successor.

From the above proof, we see that the following is true:

Corollary 24. Neither the conjugate of −g nor that of 1 − g can be the

successor of a standard surd of the form
√

R
Q

.

5. Pure Recurring Bhaskara Continued Fractions

5.1. Definition. A pure recurring B.c.f. is one in which the complete
quotients recur from the first.

We have already seen that the complete quotients in a B.c.f. development
are ultimately reduced surds. Hence a pure recurring B.c.f. is a reduced surd.

The converse of this will now be proved.

5.2. Theorem XI. The Bhaskara development of a reduced surd is a pure
recurring half-regular continued fraction.

Proof. Let ξ0 = P0+
√

R
Q0

be a reduced surd and let its B.c.f. development be

ξ0 = b0 +
ǫ1|
|b1

+ · · · + ǫk−1|
|bk−1

+
ǫk|
|bk
∗

+ · · · + ǫk+n−1|
|bk+n−1

∗

,

where ξk+v = ξk+v+tn, (v = 0, 1, . . . , n − 1), t ≥ 1 and bk+v = bk+v+tn.
Since ξ0 is reduced, ξk−1 and ξk+n−1 are also reduced; but their respective

successors ξk and ξk+n are equal.
By Theorem X, Corollary 1, therefore ξk−1 = ξk+n−1.
If ǫk−1 6= ǫk+n−1, then ξk−2 6= ξk+n−2, which will contradict Theorem

X, Corollary (1), so that ǫk−1 = ǫk+n−1, i.e., the recurrence begins one step
earlier. This process can be evidently continued backwards until ξ0 is reached.

4Not quite! Rather an exercise
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The first complete quotient therefore recurs and the h.r.c.f. is pure recurring
one, of the form ξ0 = b0

∗
+ ǫ1|

|b1 + · · · + ǫn−1|
|bn−1

∗

.

5.3. Theorem XII. The B.c.f. development of the standard surd
√

R
Q

(> 1)
has only one term in its acyclic part.

Proof. Let ξ0 =
√

R
Q

= b0 + ǫ1
ξ1

be a B.c.f., where ξ1 = P1+
√

R
Q1

. Then

P1 = b0Q, ǫ1QQ1 = R − P 2
1 .

√
R

Q
being in standard form, we may write R = QQ′, where gcd(Q,Q′) = 1;

hence ǫ1Q1 = Q′ − b2
0Q.

By Theorem I, since Q <
√

R, we have P1 > 0, Q1 > 0 and

|Q1 − 1

2
ǫ1Q| ≤ P1. (1)

We now prove |Q − 1

2
ǫ1Q1| ≤ P1.

Case 1. Q < 1

2
Q1 and ǫ1 = 1. Then

|Q − 1

2
ǫ1Q1| = 1

2
Q1 − Q < Q1 − 1

2
Q ≤ P1 by (1).

Case 2. Assume Q ≥ 1

2
Q1 and ǫ1 = 1. Then we have to prove

Q − 1

2
Q1 ≤ P1,

i.e., Q − 1

2
Q′ + 1

2
b2
0Q ≤ b0Q

i.e., Q(1 − b0 + 1

2
b2
0) ≤ 1

2
Q′,

i.e., (b0 − 1)2 ≤ Q′

Q
− 1. (2)

As ǫ1 = 1, we have P1 <
√

R, i.e., b0Q <
√

QQ′. Hence b2
0 < Q′

Q
, so that

(b0 − 1)2 ≤ b2
0 − 1 <

Q′

Q
− 1

and (2) holds.

Case 3. Assume ǫ1 = −1. Then from (1), we have Q1 + 1

2
Q ≤ P1 and hence

b2
0Q − Q′ + 1

2
Q ≤ b0Q

b2
0 − b0 + 1

2
≤ Q′

Q
.
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Also since ǫ1 = −1, we are dealing with the negative representation of ξ0, so
b0 > 1. Hence (b0 − 1)2 + 1 < b2

0 − b0 + 1

2
; hence (2) again holds.

Thus in all cases,

|Q − 1

2
ǫ1Q1| ≤ P1. (5)

holds.

From, (1) and (5),
√

R
Q

is a special surd and therefore ξ1 is a semi-reduced
surd, ξ2 is a reduced surd and the period of recurrence must begin at least
from ξ2, the successor of ξ1.

By Theorem X, Cor. 2, ξ1 cannot be the conjugate of −g or 1 − g,
where g is a special critical fraction. Therefore ξ1 is the unique semi-reduced
predecessor of ξ2. Hence ξ1 must recur.

Further ξ0 cannot recur. For if ξ0 = ξn+1, with n > 0, then Pn+1 = 0 and
QnQn+1 = R, an impossible relation when each of Qn, Qn+1 is less than

√
R.

Hence the recurring period begins from ξ1 and the B.c.f. development of√
R

Q
has one and only one term in the acyclic part.

Corollary. b0 is such that b2
0Q

2 is the nearest to R among the aquare
multiples of Q2.

5.4. Theorem XIII. If g be a special critical function, then (1 − g)−1

develops as pure recurring B.c.f.

Proof. We know that (1 − g)−1 is of the form p+q+
√

R

p
, where p > 2q > 0

and R = p2 + q2. It is sufficient for our purpose to prove that there exists
a Bhaskara predecessor of (1 − g)−1 which is semi-reduced and the rest will
follow from Theorem XI.

As we have seen already in Theorem X, a semi-reduced predecessor of

(1−g)−1 must be of the form (2n−1)q−p+
√

R

2q
, where n ≥ 2 and (2n−1)q−p > 0.

Also its Bhaskara predecessor is a special surd of the form

µ +
2qǫ

(2n − 1)q − p +
√

R
= µ − p − (2n − 1)q +

√
R

ǫ{(2n2 − 2n)q − p(2n − 1)} , (0)

where µ is an integer and ǫ = ±1. (AAK has a + sign instead of a − sign on
the RHS of (0), but (1) and (2) below follow from the − sign.)
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The condition for special surds becomes

|2q − 1

2
(2n − 1)p + q(n2 − n)| ≤ (2n − 1)q − p, (1)

|q − (2n − 1)p + q(2n2 − 2n)| ≤ (2n − 1)q − p. (2)

We have to consider four cases:

(i) 2q − 1

2
(2n − 1)p + q(n2 − n) ≥ 0, q − (2n − 1)p + q(2n2 − 2n) ≥ 0;

(ii) 2q − 1

2
(2n − 1)p + q(n2 − n) ≥ 0, q − (2n − 1)p + q(2n2 − 2n) < 0;

(iii) 2q − 1

2
(2n − 1)p + q(n2 − n) < 0, q − (2n − 1)p + q(2n2 − 2n) ≥ 0;

(iv) 2q − 1

2
(2n − 1)p + q(n2 − n) < 0, q − (2n − 1)p + q(2n2 − 2n) < 0.

Case (iii) is impossible.

(i) is equivalent to p/q ≤ n2−n+ 1

2

n− 1

2

and p/q ≤ n2−n+2
n− 1

2

.

(ii) is equivalent to
n2−n+ 1

2

n− 1

2

< p/q ≤ n2−n+2
n− 1

2

.

(iv) is equivalent to n2−n+2
n− 1

2

< p/q and
n2−n+ 1

2

n− 1

2

< p/q.

This corresponds to p/q belonging to one of the intervals

(2,
n2−n+ 1

2

n− 1

2

], (
n2−n+ 1

2

n− 1

2

, n2−n+2
n− 1

2

], (n2−n+2
n− 1

2

,∞).

Also in case (i),

(1) and (2) become n2−3n+3
n− 3

2

≤ p/q and n − 1 ≤ p/q.

In case (ii),

(1) and (2) become n2−3n+3
n− 3

2

≤ p/q and p/q ≤ n.

Finally, in case (iv),

(1) and (2) become p/q ≤ n2+n+1
n+ 1

2

and p/q ≤ n.

But if m > 4,m ∈ N, the intervals

(a) (m − 1,
m2−m+ 1

2

m− 1

2

], (b) (
m2−m+ 1

2

m− 1

2

, m2−m+2
m− 1

2

], (c) (m2−m+2
m− 1

2

,m]

divide up the interval p/q > 4.
So if p/q > 4, let n be the unique integer m > 4 such that one of intervals

(a), (b) and (c) contains p/q.

In case (a), then (i) holds and as n2−3n+3
n− 3

2

≤ n−1, (1) and (2) are satisfied.
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In case (b), then (ii) holds and as n2−3n+2
n− 3

2

≤ n2−n+ 1

2

n− 1

2

and
n2−n+ 1

2

n− 1

2

≤ n, (1)

and (2) are satisfied.

In case (c), then (iv) holds and as n ≤ n2+n+1
n+ 1

2

, (1) and (2) are satisfied.

Finally, if n = 3 and 2 < p/q ≤ 13/5 (case (i)) or 13/5 < p/q ≤ 3
(case(ii)), then (1) and (2) hold; while if n = 4 and 3 < p/q ≤ 25/7 (case
(i)) or 25/7 < p/q ≤ 4 (case(ii)), then again (1) and (2) hold.

In fact n is the least integer exceeding p/q, if q does not divide p and p/q
otherwise.

5.5. Before discussing further the properties of the recurring B.c.f., we re-
quire certain lemmas on the behaviour of unit partial quotients in simple
continued fractions.

Lemma 1. If ξ = P+
√

R
Q

develops as a pure recurring simple continued
fraction, with a sequence of at least three successive unit partial quotients
preceded and followed by other partial quotients, then the denominators of
the complete quotients corresponding to the unit partial quotients, other
than the first and last of the sequence, are less than

√
R.

With

ξ =
P +

√
R

Q
= a0

∗
+

1|
|a1

+ · · · + +
1|
|ar

+
1|
|1 + · · · + 1|

|1 +
1|

|ar+n+1

+ · · · + 1|
|ap
∗

,

= (a0
∗
, a1, . . . , ar, 1[n], ar+n+1, . . . , ap

∗
).

ξr+v =
Pr+v +

√
R

Qr+v

= (1[n−v+1]
∗

, an+r+1, . . . , ap, a0, a1, . . . , ar, 1[v−1]
∗

) = f, say (1)

By∗ Galois’ theorem of inverse periods,

−Qr+v

Pr+v −
√

R
= (1[v−1]

∗
, ar, . . . , a0, ap, . . . , an+r+1, 1[n−v+1]

∗
).

Hence

−Pr+v +
√

R

Qr+v

= (0, 1[v−1]
∗

, ar, . . . , a0, ap, . . . , an+r+1, 1[n−v+1]
∗

) = f ′ (say) (2).

∗Vide pp. 82-85, Die Lehre von den Kettenbrüchen, O. Perron, 1929.
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Adding (1) and (2), 2
√

R
Qr+v

= f + f ′, so that Qr+v
<
>

√
R, according as f >

<

2 − f ′ = f
′′

(say).

But

2 − f ′ = 2 − (0, 1[v−1]
∗

, ar, . . . , a0, ap, . . . , an+r+1, 1[n−v+1]
∗

)

= (1, 1, 0, 1[v−2], . . .)

= (1, 2, 1[v−3], . . .).

If n−1 ≥ v ≥ 3, the second complete quotient of f is less than the correspond-
ing complete quotient of f

′′

and therefore f > f
′′

, implying Qr+v <
√

R.

If v = 2 and n ≥ 3, we have

f
′′

= 2 − (0, 1, ar, . . .) = (1, 1 + ar, . . .)

< 1 +
1

1 + ar

≤ 1 +
1

2
.

Also f = (1, 1, ξ), ξ > 1, so f ≥ 1 + 1
2
. Hence f

′′

< f and again Qr+v <√
R.

Thus for all values of v greater than 1 and less than n (≥ 3), Qr+v <
√

R.

Lemma 1.1. Let n > 2.

(i) If ar > 2, then Qr+1 >
√

R;

(ii) If ar+n+1 > 2, then Qr+n >
√

R.

Proof. f = (1, 1, 1, ξ), ξ > 1.
(i) Then f = 3ξ+2

2ξ+1
< 5

3
.

Also f ′ < 1
ar

≤ 1
3

if ar > 2. Hence f + f ′ < 2 in this case.
(ii) Now assume ar+n+1 > 2. Then
f = (1, an+r+1, . . .) and f ′ = (1, 1, ξ), ξ > 1; so f < 1 + 1

an+r+1
≤ 4

3
. Also

f ′ = ξ+1
2ξ+1

< 2
3
. Hence f + f ′ < 2.

Similarly, we have

Lemma 1.2. Let n = 2.

(i) If ar − 1 < ar+n+1, then Qr+1 <
√

R, while if ar + 1 < ar+n+1, then
Qr+n >

√
R;
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(ii) if ar+n+1 + 1 < ar, then Qr+1 >
√

R, while if ar+n+1 − 1 < ar, Qr+n <√
R;

(iii) if ar = ar+n+1, then Qr+1 <
√

R and Qr+n <
√

R.

Proof.
Case 1. n = 2, v = 1. Then

f = (1, 1, ar+3, . . .), f
′ = (0, ar, . . .) and hence

1 +
1

1 + 1
b

< f < 1 +
1

1 + 1
b+1

1

1 + a
< f ′ <

1

a
,

where a = ar and b = ar+3.

So f + f ′ < 1 + b+1
b+2

+ 1
a
. Hence Qr+3 >

√
R if 1 + b+1

b+2
+ 1

a
≤ 2 and this

reduces to b + 1 < a.
Also f + f ′ > 1 + b

b+1
+ 1

1+a
. Hence Qr+3 <

√
R if 1 + b

b+1
+ 1

1+a
≥ 2 and

this reduces to b > a − 1.

Case 2. n = 2, v = 2. Then f = (1, ar+3, . . .), f
′ = (0, 1, ar, . . .) and hence

1 +
1

b + 1
< f < 1 +

1

b
1

1 + 1
a

< f ′ <
1

1 + 1
a+1

,

where a = ar and b = ar+3.

So, f + f ′ < 1 + 1
b
+ a+1

a+2
. Hence

Qr+3 >
√

R if 1 + 1
b
+ a+1

a+2
≤ 2 and this reduces to a + 2 ≤ b or a + 1 < b.

Also f + f ′ > 1 + 1
b+1

+ a
a+1

. Hence Qr+3 <
√

R if 1 + 1
b+1

+ a
a+1

≥ 2 and
this reduces to a ≥ b or a + 1 > b.

Lemma 2. In the simple continued fraction development of a surd of the

form
q+
√

p2+q2

p
, p, q being integers such that p > 2q > 0, there cannot occur a

complete quotient of the same form more than once in the recurring period;
when such a complete quotient does occur, the recurring period is symmetric,
with an even number of terms, which include a central sequence of an even
number (possibly zero) of unit partial quotients.
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Proof. Let ξ0 = P0+
√

R
Q0

=
q+
√

p2+q2

p
, where p > 2q > 0. Let ξv = Pv+

√
R

Qv
be

the v-th successor of ξ0. Let ξ0 be the conjugate of ξ0. Then ξ0ξ0 = −1. Also

1 < ξ0 <
1 +

√
5

2
= (1, 1, . . .) = (1

∗
) = (1∞) and − 1 < ξ0 < 0. (1)

By a well-known theorem of Galois, as ξ0 is a reduced quadratic surd, the
simple continued fraction for ξ0 has a purely recurring period (a0

∗
, a1, . . . , an

∗
)

say.

From (1), a0 = 1 and if am is the first partial quotient greater than 1, m
must be odd; for if m be even, we have successively

(am, . . .) > (1∞)

(1, am, . . .) < (1∞)

(1[2], am, . . .) > (1∞)

· · · · · ·
(1[m], am, . . .) > (1∞),

which contradicts (1). Hence

ξ0 = (1[m]
∗

, am, . . . , an
∗

). (2)

Also, ξ0 = −1/ξ0 = (an
∗

, . . . , 1[m]
∗

). (3)

Comparing (2) and (3), we have an = an−1 = · · · = an−m+1 = 1, am =
an−m: i.e., the period is a symmetric one, beginning and ending with an odd
number of unit partial quotients.

Comparison of the complete quotients in (2) and (3) gives

Pv +
√

R

Qv

=
Pn+1−v +

√
R

Qn−v

, (v ≤ n),

i.e., Pv = Pn−v+1, Qv = Qn−v.

If Qv = Qv−1, then

ξv =
Pv +

√
R

Qv

=
Pn+1−v +

√
R

Qv−1

=
Pn+1−v +

√
R

Qn+1−v

= ξn+1−v.
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Figure 1: Partial quotients for rcf of 27+
√

7453
82

arranged symmetrically

and so v = n+1− v, i.e., v = (n+1)/2, which implies that n should be odd.

Thus, only when n is odd, Qn+1

2

= Qn−1

2

and these are the only consecutive

Q′s which can be equal to each other. (4)

If a complete quotient, say, ξv, should be of the same form as ξ0, its simple
continued fraction development should have the same properties.

Writing Q0, Q1, . . . , Qn around a circle at the vertices of a regular polygon
of n+1 sides, we find that that they arrange themselves symmetrically about
a diameter, such that the Q’s symmetrically placed about this diameter are
also equal, since Qv = Qn−v. (See figure 1 above.)

The symmetry of the Q’s corresponding to ξv imply that Qv = Qv−1, just
as Q0 = Qn. From (4) we see that this can happen only once and so, there
cannot be more than one ξv of the same form as ξ0 and it occurs when n is
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odd and v = n+1
2

. In this case, we realise that same symmetry of Q’s starting
from Qn+1

2

, going round the circle and ending with Qn−1

2

as in the first set
Q0, Q1, . . . , Qn.

Thus we see that there exists a complete quotient ξv of the same form as
ξ0, only when n is odd and Qn+r

2

= Qn−r

2

, r = 1, 3, 5, . . . , n.

Hence, if ξ0 should have a remote successor of the same form as itself in
the recurring period of its simple continued fraction development, then the
recurring period must consist of an even number of symmetrically disposed
partial quotients, including an initial, a central and a final set of unit partial
quotients. In order that the recurring cycle may not lose its character as a
primitive period, it is necessary that the first half of the cycle is not itself
symmetical.

Example. 27+
√

272+822

82
= (1

∗
, 2, 1, 1, 1, 1, 1, 1, 2, 1

∗
) has a remote successor

P5+
√

P 2
5
+Q2

5

Q5
within the recurring period of the same form 37+

√
372+782

78
.

Also 37+
√

372+782

78
= (1

∗
, 1, 1, 2, 1, 1, 2, 1, 1, 1

∗
)

Lemma 3. If the standard surd of the form
√

R
Q0

have in its simple contin-

ued fraction development, a complete quotient of the form
q+
√

p2+q2

p
, where

p > 2q > 0, then the symmetric portion of the recurring period of partial
quotients will include a central even number of the form 4n − 2 of unit par-
tial quotients; also there cannot occur any other complete quotient of similar
form within the recurring period, which must consist of an odd number of
terms.

Conversely, if any simple continued fraction development of the standard

surd
√

R
Q0

has in its recurring period an odd number of partial quotients with
a central even number 4n−2 of unit partial quotients in the symmetric part,

then R = p2 + q2, where p > 2q > 0 and the complete quotient q+
√

R

p
occurs

just once in the recurring period.

Proof. Let
√

R
Q0

= (a0, a1
∗
, . . . , ak−1, 2∗

a0). (1)

From Lemma 2, a complete quotient, say ξ of the form in question in (1)
cannot have 2a0 (obviously 6= 1) as its first partial quotient, so that we may
write ξ = (av

∗
, . . . , av−1

∗
), where av 6= 2a0. From the equality of the first and

last Q’s in ξ, we must have Qv = Qv−1 in (1), which implies, by a well-known
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theorem of Muir ∗ that the period-length k is odd and v = k+1
2

; and in this

case, it is easily seen that ξ = Pv+
√

R
Qv

and R = P 2
v + Q2

v.

Further, there cannot be another complete quotient of the same form in
the recurring period, since it is possible only when the number of terms in
the recurring period is even.

We infer therefore that ξ k+1

2

= (a
∗ k+1

2

, . . . , ak−1, 2a0, a1, . . . , a∗ k+1

2

), where

an odd number 2n − 1 of unit partial quotients must begin with a k+1

2

and

also an equal odd number 2n − 1 of such partial quotients end with a k+1

2

.

Thus
√

R
Q0

must contain in its period, an even number 4n−2 of unit partial
quotients in the centre of the symmetric portion, as, for example,

(i)
√

58 = (7, 1
∗
, 1, 1, 1, 1, 1, 14

∗
); (ii)

√
97 = (9, 1

∗
, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18

∗
).

In this case, ξ k+1

2

is of the form
p+
√

p2+q2

q
, where v = k+1

2
, p = Pv, q = Qv

and ξ k+1

2

< (1∞), as the continued fraction begins with an odd number of

unit partial quotients.

Hence
q+
√

p2+q2

p
< 1+

√
5

2
,
−q+

√
p2+q2

p
> −1+

√
5

2
, so that subtracting the

second from the first, gives 2q/p < 1 and obviously p and q are positive in a
recurring period.

This completes our proof.

5.5.1. We will now point out an application of the last two lemmas to the
most rapidly convergent continued fractions. Tietze∗ has shown that such
continued fractions are characterised by the property that the complete quo-
tients are, after a point, always greater than 1+

√
5

2
. The B.c.f.’s are therefore

of this class. We have proved elsewhere† that the only transformations (apart
from the P-transformation) which convert a simple continued fraction into
one of the most rapidly convergent h.r.c.f.’s are the annihilatory transfor-
mations, which we have called the C1, C2 and C1C2 types. The effect of an
annihilatory transformation applied to a unit partial quotient is obviously to
increase the following complete quotient by 1, without affecting the preceding
complete quotient.

∗Vide p.91, Perron, loc. cit.
∗Tietze, H., Monatshefte für Mathematik und Physik, 1913, 24
†Ayyangar, A.A.K., Maths. Student, 1938, 6
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From these considerations, we see that a complete quotient of the form
q+p+

√
p2+q2

p
will occur in any most rapidly convergent h.r.c.f. development

(not involving a P-transformation) of
√

R
Q0

(> 1 and in standard form), when

and only when either
q+
√

p2+q2

p
or

q+p+
√

p2+q2

p
occurs in the simple contin-

ued fraction development. But
q+p+

√
p2+q2

p
is not a reduced surd in Perron’s

sense‡ and therefore cannot occur in the recurring period of the simple con-

tinued fraction, while
q+
√

p2+q2

p
will occur just once in the recurring period

under the conditions of Lemma 3.

Hence, every most rapidly convergent h.r.c.f. development of
√

R
Q0

(not

involving a P-transformation) will contain in its period
q+p+

√
p2+q2

p
as a com-

plete quotient just once when the unit partial quotient corresponding to
q+
√

p2+q2

p
in the simple continued fraction is not annihilated.

If
√

R
Q0

= (a0, a1, . . . , ap, 1[4l+2], ap, . . . , a1, 2a0), where ξp+2l+2 is the only

complete quotient of the form
q+
√

p2+q2

p
, the result of applying the C1−trans-

formation gives the complete quotient 1+ξp+2l+2, while the C2−transformation
will annihilate the unit partial quotient corresponding to ξp+2l+2 and so there
will be no complete quotient of the form in question.

To preserve the complete quotient, we may also apply the eclectic trans-
formation C1C2, provided that the C1 process is continued at least until it
annihilates the (2l + 1)-th central unit quotient Hence we may state that it
is possible to have a complete quotient of the form in question in the B.c.f.
development as well as in the continued fraction to the nearest integer, but
not in the singular continued fraction (all of which do not involve the P -
transformation∗). (Inserted by Keith Matthews: a less vague, but related
explanation can be based on §40 of Perron’s Kettenbrüchen (1954) Band 1,
147-154 using Perron’s T1 and T2 transformations. See the appendix.)

5.6. We are now in a position to resume our original thread of discussion
and study the nature of the recurring period of the B.c.f. development of√

R
Q0

. We recognize three possible types:

‡Vide p.79, Perron, loc. cit.
∗Vide Maths. Student, 6, 63 and J. Mysore Univ. Vol. 1 Part II, Note (2), Th. II
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Type I. This occurs when the recurring cycle does not contain any complete

quotient of the form (1 − g)−1, i.e.,
q+p+

√
p2+q2

p
, where g is a special

critical fraction pertaining to R. Evidently this type must occur when

R cannot be expressed as the sum of two squares, or when
√

R
Q0

does
not satisfy the conditions of Lemma 3. We will presently show that
the characteristic property of this type is that it simulates the simple
continued fraction period in its symmetries and also in the property of
the last partial quotient. Thus

(i) bv−1 = bk−v, Qv−1 = Qk−v (v = 2, 3, . . . , k − 1);

(ii) ǫv = ǫk−v, Pv = Pk−v (v = 1, 2, . . . , k − 1);

e.g.
√

46 = 7 − 1|
|5
∗

− 1|
|2 + 1|

|2 + 1|
|6 + 1|

|2 + 1|
|2 −

1|
|5 −

1|
|14
∗

.

Type II. This occurs when the recurring cycle contains a complete quotient of

the form ξ =
q+p+

√
p2+q2

p
, where p > 2q > 0. We call this almost

symmetrical, as the symmetries are slightly disturbed. It has the form

√
R

Q0

= b0 +
ǫ1|
|b1
∗

+ · · · +
ǫ k−3

2

|
|b k−3

2

− 1|
|2 +

1|
|b k+1

2

+
ǫ k+3

2

|
|b k+3

2

+ · · · + ǫk−1|
|2b0

∗

,

where the period k − 1 is even and b k−3

2

= b k+1

2

+ 1, P k−1

2

6= P k+1

2

,

but otherwise has the symmetries of Type I. Also
P k−1

2

+
√

R

Q k−1
2

= ξ. e.g.
√

58 = 8 − 1|
|3
∗

− 1|
|2 + 1|

|2 −
1|
|16
∗

.5

Type III. This has only two terms in the recurring period and has the form
√

n2 + n + 1
2

= n + 1 − 1|
|2
∗

+ 1|
|2n+1

∗

.

5.6.1. 6 We need a result analogous to Satz 6, p.83, Perron.

Suppose

ξ0 = b0 +
ǫ1

ξ1

, ξ1 = b1 +
ǫ2

ξ2

, . . . , ξk−1 = bk−1 +
ǫk

ξk

,

5Selenius noticed that the + was a − in the original
6Comment inserted by Keith Matthews
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is a periodic B.c.f. expansion, where ξk = ξ0.
Let ζv = −ǫk−v/ξk−v, v = 0, 1, . . . , k, where ǫ0 = ǫk. Then ζv−1 = bk−v +

ǫk−v

ζv
and

−ǫk

ξ0

= ζ0 = bk−1 +
ǫk−1

ζ1

, ζ1 = bk−2 +
ǫk−2

ζ2

, . . . , ζk−1 = b0 +
ǫk

ζk

.

Also ζk = ζ0.

Then if none of ξ0, ξ1, . . . , ξk−1 has the form (1−g)−1, where g is a special
critical fraction, then by Theorem VIII, the above recurrences also form a
B.c.f. expansion.

Let ξ0 =
√

R
Q0

= b0 + ǫ1|
|b1
∗

+ · · · ǫk−1|
|bk−1

∗

, ξv = Pv+
√

R
Qv

and ζv = − ǫk−v

ξk−v

, (v =

0, 1, . . . , k − 1), where ξv is the v-th successor of ξ0 and ξk = ξ1.

Then, as in the simple continued fraction, (see above discussion) we have

ζv−1 = bk−v +
ǫk−v

ζv

=
Pk−v+1 +

√
R

Qk−v

ζ0 = bk−1 +
ǫk−1|
|bk−2

+ · · · ǫ1|
|ζk−1

.

But ζk−1 = −ǫ1
ξ1

= −ǫk

ξk

= ζ0. Hence

ζ0 = bk−1
∗

+
ǫk−1|
|bk−2

+ · · · ǫ2|
|b1
∗

+
ǫ1|
ζ0

. (1)

By Theorem VIII, ζv is the Bhaskara successor of ζv−1 in all cases, except
when Q2

k−v−1 + 1

4
Q2

k−v−2 = R, which implies that ǫk−v−1 = −1, ǫk−v = 1 and
ξk−v−1 is of the form (1 − g)−1, g being a special critical fraction.

When no successor (immediate or remote) of
√

R/Q =
√

D (say) ,

√
D = b0 +

ǫ1|
|b1
∗

+ · · · ǫk−1|
|bk−1

∗

, (2)

is of the form in question, we may write

ǫ1√
D − b0

= b1
∗

+
ǫ2|
|b2

+ · · · ǫk−1|
|bk−1

∗

.
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But ζ0 = −ǫk

ξk

= −ǫk

ξ1

= ǫkǫ1(
√

D + b0).

Hence (1) gives

ǫkǫ1(
√

D + b0) = bk−1
∗

+
ǫk−1|
|bk−2

+ · · · ǫ2|
|b1
∗

. (3)

Since the r.h.s. is positive, ǫkǫ1 = 1.

Comparing (2) and (3), which are both B.c.f.’s, we get bk−1 = 2b0 and
the following symmetries:

bv−1 = bk−v (v = 2, 3, . . . k − 1);
Qv−1 = Qk−v (v = 2, 3, . . . k − 1);
ǫv = ǫk−v (v = 1, 2, . . . k − 1);
Pv = Pk−v (v = 1, 2, . . . k − 1).

When k is even, or the number k − 1 of terms in the recurring period is
odd, two consecutive b’s and two consecutive Q’s are equal, viz., b k−2

2

= b k

2

,

Q k−2

2

= Q k

2

.

When k is odd, or the number k − 1 of terms in the recurring period is
even, two consecutive a’s and two consecutive P ’s are equal, viz., ǫ k−1

2

= ǫ k+1

2

,

P k−1

2

= P k+1

2

.

Conversely, if two consecutive Q’s are equal in the recurring cycle, say

Qv = Qv−1, then ξv = Pk−v+
√

R

Qk−v

= Pv+
√

R
Qv

= ξv, so that v = k/2 and k is even.

Similarly for two consecutive P ’s, v = k+1
2

and k is odd.

Theorem XIV. If
√

R
Q0

(> 1) develops as Type I B.c.f. and the number of
terms in the recurring cycle is odd, then R is either a sum of two squares or
a composite number of 3.

Proof. Let k′ be the cycle-length, k′ odd. Then with v = k′−1
2

,

P 2
v+1 + ǫv+1QvQv+1 = R and Qv = Qv+1.

If ǫv+1 = 1, R = P 2
v+1 + Q2

v+1.
If ǫv+1 = −1, P 2

v+1 − Q2
v+1 = R. So if R is a prime, we have

Pv+1 + Qv+1 = R and Pv+1 − Qv+1 = 1,
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so that Qv+1 = R−1
2

<
√

R and therefore R = 3 or 5. In both these cases, it
is easily verifed that k′ = 1.

When R is neither 3 nor a sum of two squares, then ǫv+1 = −1 and R is
composite.

Corollary. When R is a prime other than 3 and is not the sum of two
squares, then the cycle-length k′ is even.

5.6.2. If in the B.c.f. development of
√

R/Q0 given in (2) of 5.6.1, ξk−2

happens to be of the form (1 − g)−1 = p+q+
√

R

p
, p > 2q > 0, then ξk−1 =

−g = p−q+
√

R

2q
is the conjugate of −g (vide Theorem X) and being the

predecessor of ξk, is also of the form
√

D + µ, where µ is an integer; i.e.,
p−q+

√
R

2q
= µ +

√
D. Hence p − q = 2qn, n an integer and p > 2q > 0. Hence

p = (2n + 1)q, R = p2 + q2 = q2(4n2 + 4n + 2); also gcd(Q0, R/Q0) = 1,

so q = 1 and p = 2n + 1. ξk−1 = n +
√

R
2q

, so that
√

D is of the form√
4n2 + 4n + 2/2.

The Bcf development of
√

4n2 + 4n + 2/2 is n + 1 − 1|
|2
∗

+ 1|
|2n+1

∗

, with

ξ1 = 2n+2+
√

R
2n+1

, ξ2 = 2n+
√

R
2

and ξ3 = ξ1.

This is what we have called Type III.

5.6.3. As we have already seen, the recurring period in Type II will contain

one and only one complete quotient of the form ξ′0 = p+q+
√

R

p
, p > 2q > 0

and therefore, the recurring cycle will be merely a cyclic permutation of that
of this complete quotient.

By Theorem XIII, ξ′0 develops as a pure recurring B.c.f. with period k′,
We will now proceed to study its nature, on the assumption that ξ′v is only
of the form (1 − g)−1 when v = tk′, t ≥ 0.

As observed in the proof of Theorem X,

ξ′0 = 2 +
1

−g
= 2 +

2q

p − q +
√

R

= 2
∗
+

1|
|b′1

+
ǫ′2|
|b′2

+ · · · + ǫ′k′−1|
|b′k′−1

∗

.

Hence

−g = b′1 +
ǫ′2|
|b′2

+ · · · + ǫ′k′−2|
|b′k′−2

+
ǫ′k′−1|
|ξk′−1

(1)
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Now by Theorem VIII, the following are Bhaskara expansions, since ξ′v is
not of the form (1 − g)−1 for v = 1, 2, . . . , k′ − 1:

ζ ′
0 = b′k′−1 +

ǫ′k′−1

ζ ′
1

, · · · , ζ ′
k′−3 = b′2 +

ǫ′2
ζ ′

k′−2

.

or

ζ ′
0 = b′k′−1 +

ǫ′k′−1|
|b′k′−2

+ · · · + ǫ′3|
|b′2

+
ǫ′2|

|ζ ′
k′−2

(2)

But ζ ′
0 = −g + 1. For, noting that P ′

k′ = P ′
0 = p + q and Q′

k′ = Q′
0 = p,

p2 + q2 = R = P ′
k′

2
+ ǫ′k′Q′

k′Q′
k′−1

= (p + q)2 + ǫ′k′pQ′
k′−1

−2pq = ǫ′k′pQ′
k′−1

−2q = ǫ′k′Q′
k′−1.

Hence ǫ′k′ = −1 and Q′
k′−1 = 2q.

Hence

ζ ′
0 =

P ′
k′ +

√
R

Q′
k′−1

=
p + q +

√
R

2q
=

p − q +
√

R

2q
+ 1 = −g + 1.

Then (2) gives

−g = −1 + b′k′−1 +
ǫ′k′−1|
|b′k′−2

+ · · · + ǫ′3|
|b′2

+
ǫ′2|

|ζ ′
k′−2

(3)

We can equate the first k′−1 complete quotients and the first k′−2 terms
of (1) and (3), to obtain the following properties of B.c.f of (1 − g)−1:

(i) −1 + b′k′−1 = b′1;

(ii) the following symmetries hold if k′ > 2:

b′v = b′k′−v (v = 2, 3, . . . k′ − 2);
Q′

v = Q′
k′−v (v = 1, 2, . . . k′ − 1);

ǫ′v = ǫ′k′−v+1 (v = 2, 3, . . . k′ − 1);
P ′

v = P ′
k′−v+1 (v = 2, 3, . . . k′ − 1).
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(iii) Also

P ′
1 = p − q,Q′

1 = 2q, P ′
k′−1 = q(2n − 1) − p,Q′

k′−1 = 2q,

where by the proof of Theorem XIII, n = b′k′−1 is the integer just
greater than p/q when p is not divisible by q and n = p/q otherwise.

Thus if p > 2q > 0, period-length k′ and if ξv is only of the form (1 − g)−1

when v = tk′, t ≥ 0, we have

p + q +
√

p2 + q2

p
= 2

∗
+

1|
|b′1

+
ǫ′2|
|b′2

+ · · ·+ ǫ′k′−2|
|b′k′−2

+
ǫ′k′−1|
|b′1 + 1

∗

− 1|
|2 +

1|
|b′1

+ · · ·

As in §5.6.1, we can prove that two consecutive Q’s will be equal, only
when k′ is odd and that two consecutive P ’s will be equal, only when k′ is
even. For example, if P ′

v = P ′
v+1, then

ξ′v =
P ′

v +
√

R

Q′
v

=
P ′

v+1 +
√

R

Q′
v

=
P ′

k′−v +
√

R

Q′
k′−v

,

so that v = k′ − v, or v = k′/2, i.e., k′ is even. Conversely if k′ is even,
P ′

k′

2

= P ′
k′+2

2

.

Similarly, if Q′
v = Q′

v−1, then ξ′v = ξ′k′−v+1 and v = (k′ + 1)/2, i.e., k′ is
odd. Conversely if k′ is odd, Q′

k′+1

2

= Q′
k′−1

2

. 7

5.6.4. Reverting to the B.c.f. development of
√

D(=
√

R/Q0) = ξ0 and
following the notation of §5.6.1, we assume that ξk−v−1, 0 ≤ v ≤ k − 2 is the

only complete quotient of the form
p+q+

√
p2+q2

p
, p > 2q > 0, in the period of√

D.

Now v = 0 implies ξk−1 = (1 − g)−1, ξ1 = −g. But this would imply −g
was a successor of

√
D, contradicting Theorem X, Corollary 2.

Also v = 1 leads to a Type III expansion.
Hence 1 < v ≤ k − 2 and (1 − g)−1 = ξk−v−1 = ξt, 1 ≤ t < k − 2. Then

bk−1 = 2b0, ǫ1 = ǫk−1, P1 = Pk−1, Q1 = Qk−2.

7Examples (KRM): 19+
√

221

14
, p = 14, q = 5, k′ = 3; 13+

√
97

9
, p = 9, q = 4, k′ = 6.
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(AAK states in addition, that bk−2 = b1, but this would hold only if the
period-length k − 1 ≥ 6.)

For ξk−2 is not of the form
p+q+

√
p2+q2

p
, p > 2q > 0 and hence by Theorem

VIII, we have the Bhaskara expansion

Pk +
√

R

Qk−1

= bk−1 +
ǫk−1

Pk−1+
√

R

Qk−2

(1)

Now Pk = P1. Also P0 = 0 and P1 + P0 = b0Q0. Hence P1 = b0Q0.
Also R = P 2

1 +ǫ1Q0Q1 = P 2
k +ǫkQk−1Qk. Hence, as ǫ1 = ǫk and Q1 = Qk,

we have Qk−1 = Q0. Hence

Pk +
√

R

Qk−1

=
b0Q0 +

√
R

Q0

= b0 +

√
R

Q0

. (2)

Then (1) and (2) give

bk−1 +
ǫk−1

Pk−1+
√

R

Qk−2

= 2b0 +
ǫ1

P1+
√

R
Q1

. (3)

Hence

bk−1 = 2b0, ǫk−1 = ǫ1,
Pk−1 +

√
R

Qk−2

=
P1 +

√
R

Q1

.

Consequently Pk−1 = P1 and Qk−2 = Q1.

Now the sequence

ξ1, . . . , ξk−1 = (1 − g)−1 (α)

of complete quotients for
√

D is obtained from the sequence

ξ′1 = −g, . . . , ξ′k−1 = (1 − g)−1 (β)

of complete quotients for (1 − g)−1, by cyclic permutation.

Hence

ξt+1 = ξ′1, ξt+2 = ξ′2, . . . , ξk−1 = ξ′k−1−t, ξ1 = ξk = ξ′k−t.

But Pk−1 = P1, so P ′
k−1−t = P ′

k−t. Consequently the period k−1 = k′ is even
and k′− t = k′/2. Hence t = k′/2. (See Figures 2 and 3 below where k′ = 6.)
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Figure 2: P ’s for complete quotients ξv = Pv+
√

97
Qv

of ξ0 =
√

97

Figure 3: P ′’s for complete quotients ξ′v = P ′

v+
√

97
Q′

v

of ξ′0 = 13+
√

97
9 = ξ3
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Then we have a periodic expansion for Type II of the form

√
D = b0 +

ǫ1|
|b1
∗

+ · · · +
ǫ k−3

2

|
|b k−3

2

− 1|
|2 +

1|
|b k+1

2

+ · · · + ǫk−1|
|2b0

∗

+
ǫ1|
|b1

+ · · ·

having an even number of recurring terms and possessing the same symme-
tries as Type I, apart from the following exceptions:

b k−1

2

= 2, ǫ k−1

2

= −1, ǫ k+1

2

= 1, b k−3

2

= b k+1

2

+ 1, P k−1

2

6= P k+1

2

,

which justify our characterisation of this type as almost symmetric.

Example8. R = 97, Q0 = 1.

√
97 = 10 − 1|

|7
∗

−1|
|3

−1|
|2

+1|
|2

−1|
|7

−1|
|20
∗

13 +
√

97

9
= 2 +

1|
|2
∗

−1|
|7

−1|
|20

−1|
|7

−1|
|3

−1|
|2
∗

.

It may be useful to telescope the results of this section applicable to
the case of

√
R, where R is a non-square positive integer, in the form of a

theorem.

Theorem XV. The period of the B.c.f. development of
√

R is either a
completely symmetrical type simulating the corresponding simple continued
fraction, or an almost symmetrical type, consisiting of an even numbe rof
partial quotients, say, 2ν, with a central sequence of three unsymmetrical
terms of the form ǫν−1|

|bν−1

−1|
|2

+1|
|bν−1−1

.

Corollary. In the almost symmetrical type B.c.f. expansion of
√

R with
period consisting of 2v terms, Qv > 4.

Proof. For Pv+
√

R
Qv

=
p+q+

√
p2+q2

p
and Qv = p > 2q.

If q = 1, then
√

R =
√

p2 + 1 = p + 1
2p
∗

, which is not of type II. Hence

q ≥ 2 and Qv > 4. In fact when Qv = 5 = p, we must have q = 2 and
R = 29.

√
29 = 5 + 1|

|3
∗

−1|
|2

+1|
|2

+1|
|10
∗

.

8Keith Matthews
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We give below a table of the B.c.f.’s for the square-roots of non-square
integers less than 100.

R B.c.f. R B.c.f.
2 1 + 1/2

∗
23 5 − 1/5

∗
− 1/10

∗
3 2 − 1/4

∗
24 5 − 1/10

∗
5 2 + 1/4

∗
26 5 + 1/10

∗
6 2 + 1/2

∗
+ 1/4

∗
27 5 + 1/5

∗
+ 1/10

∗
7 3 − 1/3

∗
− 1/6

∗
28 5 + 1/3

∗
+ 1/2

∗
+ 1/3 + 1/10

∗
8 3 − 1/6

∗
29 5 + 1/3

∗
− 1/2 + 1/2 + 1/10

∗
10 3 + 1/6

∗
30 5 + 1/2

∗
+ 1/10

∗
11 3 + 1/3

∗
+ 1/6

∗
31 6 − 1/2

∗
+ 1/3 + 1/5 + 1/3 + 1/2 − 1/12

∗
12 3 + 1/2

∗
+ 1/6

∗
32 6 − 1/3

∗
− 1/12

∗
13 4 − 1/2

∗
+ 1/2 − 1/8

∗
33 6 − 1/4

∗
− 1/12

∗
14 4 − 1/4

∗
− 1/8

∗
34 6 − 1/6

∗
− 1/12

∗
15 4 − 1/8

∗
35 6 − 1/12

∗
17 4 + 1/8

∗
37 6 + 1/12

∗
18 4 + 1/4

∗
+ 1/8

∗
38 6 + 1/6

∗
+ 1/12

∗
19 4 + 1/3

∗
− 1/5 − 1/3 + 1/8

∗
39 6 + 1/4

∗
+ 1/12

∗
20 4 + 1/2

∗
+ 1/8

∗
40 6 + 1/3

∗
+ 1/12

∗
21 5 − 1/2

∗
+ 1/2 + 1/2 − 1/10

∗
41 6 + 1/2

∗
+ 1/2 + 1/12

∗
22 5 − 1/3

∗
+ 1/4 + 1/3 − 1/10

∗
42 6 + 1/2

∗
+ 1/12

∗

R B.c.f. R B.c.f.
43 7 − 1/2

∗
+ 1/4 − 1/7 − 1/4 + 1/2 − 1/14

∗
72 8 + 1/2

∗
+ 1/16

∗
44 7 − 1/3

∗
− 1/4 − 1/3 − 1/14

∗
73 9 − 1/2

∗
+ 1/5 + 1/5 + 1/2 − 1/18

∗
45 7 − 1/3

∗
+ 1/2 + 1/3 − 1/14

∗
74 9 − 1/2

∗
+ 1/2 − 1/18

∗
46 7 − 1/5

∗
− 1/2 + 1/2 + 1/6 + 1/2 + 1/2 − 1/5 − 1/14

∗
75 9 − 1/3

∗
− 1/18

∗
47 7 − 1/7

∗
− 1/14

∗
76 9 − 1/3

∗
+ 1/2 − 1/6 + 1/4 + 1/6 − 1/2 + 1/3 − 1/18

∗
48 7 − 1/14

∗
77 9 − 1/4

∗
+ 1/2 + 1/4 − 1/18

∗
50 7 + 1/14

∗
78 9 − 1/6

∗
− 1/18

∗
51 7 + 1/7

∗
+ 1/14

∗
79 9 − 1/9

∗
− 1/18

∗
52 7 + 1/5

∗
− 1/4 − 1/5 + 1/14

∗
80 9 − 1/18

∗
53 7 + 1/4

∗
− 1/2 + 1/3 + 1/14

∗
82 9 + 1/18

∗
54 7 + 1/3

∗
− 1/8 − 1/3 + 1/14

∗
83 9 + 1/9

∗
+ 1/18

∗
55 7 + 1/2

∗
+ 1/2 + 1/2 + 1/14

∗
84 9 + 1/6

∗
+ 1/18

∗
56 7 + 1/2

∗
+ 1/14

∗
85 9 + 1/5

∗
− 1/2 + 1/4 + 1/18

∗
57 8 − 1/2

∗
+ 1/4 + 1/2 − 1/16

∗
86 9 + 1/4

∗
− 1/3 − 1/10 − 1/3 − 1/4 + 1/18

∗
58 8 − 1/3

∗
− 1/2 + 1/2 − 1/16

∗
87 9 + 1/3

∗
+ 1/18

∗
59 8 − 1/3

∗
+ 1/7 + 1/3 − 1/16

∗
88 9 + 1/3

∗
− 1/3 − 1/3 + 1/18

∗
60 8 − 1/4

∗
− 1/16

∗
89 9 + 1/2

∗
+ 1/3 + 1/3 + 1/2 + 1/18

∗
61 8 − 1/5

∗
+ 1/4 − 1/3 + 1/3 − 1/4 + 1/5 − 1/16

∗
90 9 + 1/2

∗
+ 1/18

∗
62 8 − 1/8

∗
− 1/16

∗
91 10 − 1/2

∗
+ 1/6 − 1/6 + 1/2 − 1/20

∗
63 8 − 1/16

∗
92 10 − 1/2

∗
+ 1/2 + 1/4 + 1/2 + 1/2 − 1/20

∗
65 8 + 1/16

∗
93 10 − 1/3

∗
− 1/5 + 1/6 + 1/5 − 1/3 − 1/20

∗
66 8 + 1/8

∗
+ 1/16

∗
94 10 − 1/3

∗
+ 1/3 + 1/2 − 1/7 − 1/10 − 1/7 − 1/2 + 1/3 + 1/3 − 1/20

∗
67 8 + 1/5

∗
+ 1/2 + 1/2 − 1/9 − 1/2 + 1/2 + 1/5 + 1/16

∗
95 10 − 1/4

∗
− 1/20

∗
68 8 + 1/4

∗
+ 1/16

∗
96 10 − 1/5

∗
− 1/20

∗
69 8 + 1/3

∗
+ 1/4 − 1/6 − 1/4 + 1/3 + 1/16

∗
97 10 − 1/7

∗
− 1/3 − 1/2 + 1/2 − 1/7 − 1/20

∗
70 8 + 1/3

∗
− 1/4 − 1/3 + 1/16

∗
98 10 − 1/10

∗
− 1/20

∗
71 8 + 1/2

∗
+ 1/3 − 1/9 − 1/3 + 1/2 + 1/16

∗
99 10 − 1/20

∗

(See footnote9)

9For D = 86, Selenius noticed that the second + was a − in the original
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The basic elements of the theory are now fairly complete, and it should
be obvious that the B.c.f. has a complicated indviduality of its own, that
claims recognition and cannot easily be brushed aside by such remarks a
”Bhaskara’s method is the same as that rediscovered by Lagrange”. We have
only constructed ”an arch, wherethro’ gleam untravelled and partly travelled
regions”, such as the character of the acyclic part, the transformations that
convert the simple continued fraction into the continued fraction to the near-
est square, and associated quadratic forms. These difficult problems need
further investigation.

Appendix (supplement to 5.5.1)

We consider the B.c.f. expansion of ξ0 =
p+q+

√
p2+q2

p
, where p > 2q > 0 and

consider the conversion of ξ0 to a simple continued fraction.

Suppose ξv =
p′+q′+

√
p′2+q′2

p′
, p′ > 2q′ > 0 occurs remotely in the cycle of

ξ0. We know that ǫv = −1 and ǫv+1 = 1. Hence from the discussion page
148, Perron, Band 1, we see that under the transformation T1, the term −1|

|bv
is

replaced by 1|
|1 + 1|

|bv−1
and ξv is replaced by ξv/(ξv−1) and ξv−1, respectively.

Then by Lemma 2, section 5.5, as ξv −1 =
q′+

√
p′2+q′2

p′
, p′ > 2q′ > 0, it follows

that the occurrence of a complete quotient such as ξv is unique. Similarly in
the B.c.f. expansion of

√
R/Q0, it follows that there is at most one remote

complete quotient of the form
p+q+

√
p2+q2

p
, p > 2q > 0.

Examples (AAK).

(a)

ξ0 =
386 + 101 +

√
159197

386
, ξ3 =

374 + 139 +
√

159197

374
,

Here 1012 + 3862 = 1392 + 3742 = 159197, period-length=6.

(b)

ξ0 =
82 + 27 +

√
7453

82
, ξ3 =

78 + 37 +
√

7453

78
,

Here 272 + 822 = 372 + 782 = 7453, period-length=6.

We conjecture that if the surds are respectively ξ0 and ξv, where 1 ≤ v < k
and k is the period-length, then v = k/2. Also Qv = Qk−v, 0 ≤ v ≤ k,
Pk+1−v = Pv, bv = bk−v, 2 ≤ v ≤ k

2
−1 and b1 = bk−1, b k

2
+1 = b k

2
−1−1, b k

2

= 2.
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