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The author observes that two Hermitian forms have the same largest eigen- 
value. A large sieve result of Roth-Bombieri type and Selberg’s upper bound 
sieve with a Montgomery type error term are derived. 

1. INTR~DUC~~N 

Let 

M+N 
S(x) = C a,e(nx) (e(O) = e2ni8), 

n=M+l 

where a&,+1 ,..., aM+N are arbitrary complex numbers. Let x, , x2 ,..., xR 
(R 3 2) be any real numbers satisfying 

II x, - xs II 3 6 > 0 for r # s, 

where 11 0 ]I is the distance from 0 to the nearest integer. 
Montgomery [I, Corollary] gave an upper bound large sieve estimate 

which depended on the following inequality of Bombieri and Davenport: 

M+N 

2 < W, S-Y C I a, 12, 
VZ=M=l 

where K(N, 8-l) may equal (N1j2 + 8-1/2)2 or N + C6-1 (see [2-5, 71). In 
the present paper we study the sum Z’(n) defined by 

T(n) = 5 h4W, 
T=l 

where b, , b, ,..., b, are arbitrary complex numbers. (In the following, 
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HERMITIAN FORMS AND SIEVES 17 

variables r and s range over I,..., R and variables m and n range over 
M + l,..., M + N). 

Starting with the inequality, 

(Theorem (l)(i)), we shall derive Theorem 2(i), which leads almost 
immediately to Selberg’s upper bound sieve estimate with a Montgomery 
error term (Section 5). 

2. 

We note that C,. ( S(X,)/~ and Cla ( T(n)12 are positive semidefinite 
Hermitian forms: 

where 

c,, = c e((m - n) x,.) and ars = c e(n(x, - x,.)). 
r 12 

If P is the N x R matrix defined by 

P = hTI = M&)1, j = l,..., N, r = l,..., R, 

the coefficient matrix of the form CT [ S(x,.)l” is the N x N matrix 
PP* = C = [cjk]. The coefficient matrix of En 1 T(n)\” is the R x R 
matrix P*P = A = [u,J. (P* denotes the complex-conjugate transpose 
of P.) 

LEMMA. Let X, < -.. ,< h, be the eigenvalues of C and pl < . * * < pR 
be the eigenvalues of A. Then 

(i) The nonzero eigenvalues of C and A are identical and 

(ii) For r = 1, 2,..., R we have 

I p,. - N I < K6-l, 

where K is an absolute constant. 

(See Matthews [4, Lemma 3; 51, where it is shown that K may be taken 
to be 4.3.) 
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THEOREM 1. Wehave 

6) Cn 1 T(n)i2 < K(N, 8-l) CT 1 b, I’, 

6) Cn I W)12 = (N + W-l)) XT I b, 12. 

Proof. A unitary transformation, 

6, = C yrsds 9 
s 

exists such that 

c I WW = c pr I4 12. ?I 7 
From part (i) of the lemma, we have 

kb < PR = x NY 

and it is easy to see that K(N, 8-l) must satisfy 

Hence, 

A, < K(iv, 8-l). 

; 1 T(n)12 < K(N, 8-l) T / 4 I2 = K(N, 6-l) c 1 b, 12. 
n 

To prove (ii) we write ,u~ = N + V, where by part (ii) of the lemma we 
have 

Then 

c I T(n)12 = NC I 4 I2 + 1 v, l d, I2 
n T r 

= (N + 0(8-l)) c I d,. I2 

= (N + 0(8-l)) i 1 b, 12. 
T 

3. 

Let k be a positive integer and let F(X, k) denote the set of numbers of 
theforma=a/q,wherel<a<q<X,(a,q)=l and(q,k)=l. 
(I;(X, 1) is the set of Farey fractions of order X.) Also let N’ be the number 
of integers n lying in a given arithmetic progression II = I (mod k) and 
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satisfying M + 1 & n < M + N. Then N’ = N if k = 1, N’ = Nk-l + 0, 
1 0 1 < 1, if k > 1, and we have the following corollary. 

COROLLARY 1. Let f (a) be an arbitrary complex-valuedfunction defined 
on F(X, k). Then 

(ii) i NE,; li, f(a) e(m)i’ = W’ + 0(X2)) C I f(a)12e 
n=&od I;) 

oeF(K,P) 

Proof. The sum on the left of these inequalities may be written as 

where g(a) = e(olZ)f(a). Also it is not difficult to verify that the numbers 
kol, 01 E F(X, k) satisfy 

if ~1~ # 01~ , Theorem 1 may now be applied with x1 ,..., xR replaced by 
the numbers ka, and 6 = XW2. 

4. 

THEOREM 2. For each prime p < X, let H(p) be a set of w(p) distinct 
residues mod p. Let g(q) be an arbitrary complex-valued function of q and 

&fine Q(P, n) by 

JXp, 4 = C c,(n - td, 
t9 

where t, runs over H(p), and c,(m) is Ramanujan’s function: 

where the asterisk indicates a summation over a reduced set mod q. Then ITO 
and 7 are dejined by 

and 

(3 = ; 1 ,& cL(q)g(d I-J Q(P9 n)12 

7 = q;xP2(4)l &)I2 5 (P - W(P)) W(P), 
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we have 

(i) u < K(N, X2)7, 

(ii) u = (N + O(Xz))r. 

Proof. By the Chinese remainder theorem we can define H(q) for all 
q < Xinductively: 

We let w(l) = 1 and suppose q = uv, (u, v) = 1, where H(U) and H(v) 
are already defined. Then if integers m, and m, are defined by the con- 
gruences 

urn, E 1 (mod u), urn, = 1 (mod v), 

the elements t, of H(q) are given by 

t, = urn& + urn& , 

where t, and t, run independently over H(U) and H(v), respectively. We see 
that’ o(q) = w(u) o(v); also 

t, = t, (mod U) and t, z t, (mod v). 

Ifol=a/q,l<a<q<X,(a,q)=l,wedefinef(ol)by 

f@> = dd g(q) C 4--olta)~ 
% 

and apply Corollary 1. 
We have 

where 

Also 

where 

Q(q, n) = C cg(n - tg). 
% 

c 
aoPw,l) 

I f(4” = a;x P2(dl ml2 &A 
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The proof of Theorem 2 is completed by demonstrating that a(q, n) and 
A(q) are multiplicative functions of q. For then 

Qk, 4 = fl Q(P, 4 and A(q) = fl &P), 
PI@ PI@ 

Moreover, 

= Y C C e (z VP - G) 
a=1 t, TD 

= F ; CPVP - tP) = (P - W(P)) 44, 

P 9 

where we have used the results 

if t E O(mod p), 
if t + O(modp). 

Hence, 

48 = jJ (P - 4-J)) 4P). 
plq 

To prove the multiplicative property of Q(q, n), let q = UU, (u, u) = 1. Then 

where 

t, = vrn,t, 4 um,t, , 

as defined earlier. 
But 

c,(n - t*) = c&z - tu) and c,(n - tq) = c,(n - t,). 
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Consequently, 

-WI, n> = c c c,@ - L) c,(n - to) 
1, t* 

= L&u, n) Q(t+ n). 

The proof for A(q) is similar, noting the identity 

A(q) = c Q(q, 0 
% 

5. AN UPPER ESTIMATE FOR SELBERG'S QUADRATIC FORM 

The form under consideration is 

Here 

where 

.fW = 444 f,w = fW l-J (1 - &j 

and 

See Prachar [6, Satz 3.1, p. 381. 
Taking g(p) = (p - W(P)>- 1 in inequality (i) of Theorem 2, we obtain 

(2) 

where 
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It is now a straightforward exercise to verify the following identity: 

(3) 

Inequalities (2) and (3) then give the following upper estimate for the 
quadratic form (1): 
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