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1. Introduction

Let
M + N

where aM+u ..., aM+N are any complex numbers. Let xlt..., xR (R^ 2) be any
real numbers satisfying

Il*r-*J >& > 0 for r # s,

where ||0|| is the distance from 6 to the nearest integer.
Inequalities of the form

R M + N

2{itf^i^) ^ fol
r = l n = M + l

were first obtained by Davenport and Halberstam [1] with

Other estimates for KCJV,^"1) are nN+5'1 (Gallagher [2]), 2 max (AT, 5"1)
(Ming-Chit Liu [3], Bombieri and Davenport [4]), (A^+d"*)2 (Bombieri and
Davenport [4]), N + 55'1 (Bombieri and Davenport [5]).

(In the following, variables r and s range over 1,..., R, and variables m and n
range over M + l , . . . , M+N.)

The discussion here is based on the fact that ]Erl^(^r)l2 is t n e Hermitian
(positive semi-definite) form

with coefficient matrix PP*, where P is the NxR matrix defined by

P = [Pjrl = K/*r)L J = 1, »., N; r = 1, 2, . . . , K.

(P* denotes the complex-conjugate transpose of P.)
Let Xt ^ A2 ^ ... < Aw be the eigenvalues of PP*. Then it is well known (see
Mirsky [6; p. 388]) that

and that equality occurs when (aM+1, ...,aM+N) is an eigenvector of PP* corres-
ponding to XN.
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It is not obvious how to derive estimates for XN directly from PP*. However,
it is easy to prove that the non-zero eigenvalues of PP* and P*P are identical. In
Lemma 1 we exhibit a matrix JB which is unitarily similar to P*P. A straight-forward
application of Gershgorin's theorem (see Mirsky [6; Theorem 7.5.4, p. 212]) to B
then yields Lemma 2, which contains the estimate

Finally, by a suitable change of variables in the quadratic form corresponding to B,
we derive Lemma 3, which contains the estimate

where y depends on a certain bilinear form, but does not depend on N. Conse-
quently we have the following

THEOREM. Let xlf x2) ..., xR (R 5* 2) be any real numbers satisfying

\\xr-xs\\ >d>0 for r # 5 .

Also let aM+u ..., aM+N be arbitrary complex numbers.
Then

M + N

2 an6{nXr) M + N

k | 2 >

and

r = l

M + N( b ) 2 2 a"e{nxr) M + N

2 k|2>

where y is any number satisfying the inequality

yy
sinn(xs—xr)

for all real numbers uif ..., uR, vu ..., vR.

LEMMA 1. Let B = [brs] be the RxR matrix defined by

N if r = s,

sin Nn(xs—xr)

sinn(xs-xr)

Also let P = [pJr] be the NxR matrix defined by

Pjr = e(jxr).

Then B and P*P have the same eigenvalues.

Proof.

Let A = P*P = [ars\.

if r # s.
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Then

and it is easily verified that

N if r = s,

ii if
)2 / v r)) smn(xs-xr)

Hence if D is the unitary diagonal matrix with diagonal elements

it is easily seen that

D*(P*P)D = B.

Consequently P*P and B have the same eigenvalues.

LEMMA 2. Let y.y ^ fi2 < ••• ^ ^ be the eigenvalues of the matrix B defined in
Lemma 1. Then for r = 1, 2 , . . . , R we have

Proof. By Gershgorin's theorem, applied to B, we have for r = 1, 2 , . . . , R

Now

I K sin 7r|
s

If R = 2, the inequality of Lemma 2 easily follows from the last inequality. For
R ^ 3, the last sum has the form

R-l

where 5 < <5X < 82 < ... < 5R_t < l-d, and
It is then easy to verify that

R-l

- 5 , for t = 1, ..., R-2.

2 ns»ir1<n«iir1+ii*jt-iir1+«"1 J
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by comparison of the areas of suitable rectangles with the area under the curve

Hence

R-l

~i+5-1^ir1 <2<5~i+5

= 2<r1+2<r1iog(<r1/2)

completing the proof.

LEMMA 3. Let y be any number satisfying the inequality

2V urvs

Z-4 sin n(xs—xr)

for all real numbers uu ..., uR,..., vx,..., vR. Also let n± ^ fi2

eigenvalues of the matrix B = [brs], where
be the

N if r = s,

sin Nn(xs—xr)

Then for r = 1,2,..., R we have

sinn(xs — xr)

\H,-N\ < y.

if

Proof Let z^z-i, ••-,zR be arbitrary real numbers. Also let S be the quadratic
form

s-

Then it is easy to verify that

S =

22-
r . s

222*

sinNn(xs—xr)
s ' ( \ '

cos Nnxr sin Nnxs
r s sin n(x.—x.)

2 S? Ur Vs

Z-i sin it(xs—xr)

where ur = zr cos Nnxr and vs = zs sin Nnxs.
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Hence by inequality (1)

On taking (zuz2i ...,zR) to be an eigenvector of B—NIR corresponding to

fir-N, we deduce that

In conclusion the author wishes to thank Professor C. S. Davis and Dr. B. D.

Jones for their encouragement and valuable suggestions.
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